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Abstract: The rarity of equipment failures results in a high level of imbalance between failure data and
normal operation data, which makes the effective classification and prediction of such data difficult.
Furthermore, many failure data are dominated by mixed data, which makes the model unable
to adapt to this type of failure problem. Second, the replacement cycle of production equipment
increases the difficulty of collecting failure data. In this paper, an equipment failure diagnosis method
is proposed to solve the problem of poor prediction accuracy due to limited data. In this method,
the synthetic minority oversampling technique is combined with a conditional tabular generative
adversarial network. The proposed method can be used to predict limited data with a mixture of
numerical and categorical data. Experimental results indicate that the proposed method can improve
6.45% compared to other similar methods when equipment failure data account for less than 1% of
the total data.

Keywords: Mixed-Type Data; fault diagnosis; SmoteNC ctGAN; limited failure

1. Introduction

Coronavirus disease 2019 has severely affected manufacturing and service industries
worldwide, which has prompted corporations to focus on ensuring the stable delivery of
orders. Consequently, equipment stability has become a key problem. In general, data
on equipment failure are sparse. Given the high level of imbalance between failure data
and regular-operation data, failure data cannot be effectively classified and predicted.
Moreover, machine equipment is limited by its replacement cycles, which further increases
the difficulty in collecting failure data [1,2]. Such data, which are time-limited and rare,
are referred to as “limited data” [3]. Due to the properties of limited data sets, learning
models often categorize the big data according to the normal operation conditions and do
not diagnose fault type, which is crucial in the manufacturing industry.

Applications of the categorization and prediction of limited data include cancer di-
agnosis, scam trading identification, and equipment fault diagnosis. The failure comes
from mechanical issues or abnormal data [4–6], and we discuss the data from mechanical
issues in this study. Among these three applications, equipment fault diagnosis is the
most difficult. Since equipment must be replaced periodically, with the new machine
often having different operating procedures from the previous machine, the fault diagnosis
model of the previous machine becomes outdated. Therefore, a new diagnosis model must
be developed, which requires new failure data to be accumulated. Limited data has become
a hot topic recently, and such data are analyzed using two methods. The first method is
few-shot learning, which is a learning method aimed at overcoming the difficulties involved
in classifying minority class data. In few-shot learning, small data are used to identify
minority classes, and a feature extractor is used to perform small-sample tasks, thereby
effectively extracting valuable information from small samples. In [7–11], few-shot learning
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was adopted to detect the manufacturing data of the minority class. By ensuring that no
new data are generated, this method effectively prevents overfitting. The second method
used to analyze limited data involves generating additional minority data or reducing
the quantity of majority data to balance the data, increase the focus of the classifier on
minority data, and enhance the accuracy of minority prediction. The most representative
algorithm of this method is the synthetic minority oversampling technique (SMOTE) [12],
in which simulated minority data are used to achieve data balance. Liu et al. employed a
generative adversarial network (GAN) to simulate equipment failure data and adopted a
long-short term memory network for fault prediction [13,14]. In [15–17], a hybrid approach
that involves combining a GAN with the SMOTE was adopted for processing limited data.
This approach solved the overfitting problem of the SMOTE and fulfilled the requirement
of a GAN-based training model for considerable data. However, advancements in sensor
technology and the Internet of Things (IoT) have increased the complexity of the status of
environmental data obtained in machine operation processes, which has resulted in the
emergence of data consisting of hybrid features (i.e., categorical and numerical features).
The aforementioned methods are inapplicable to such data [18].

Machines have complicated structures and are vulnerable to various types of faults.
The nonlinear relationship between performance parameters and faults increases the dif-
ficulty in overcoming the imbalanced nature of a data set containing limited data with
hybrid features. In [12], a SMOTE-based technique (i.e., Synthetic Minority Over-Sampling
Technique for Nominal and Continuous (SmoteNC)) was proposed to balance and process
data with continuous and categorical features. In [19], an approach named Conditional
Tabular Generative Adversarial Network (ctGAN) was used to establish an adversarial
network with hybrid features. However, the SMOTE is prone to overfitting, and a ctGAN
requires considerable data for training (Table 1).

Table 1. Analysis of previous literature.

A Small Amount of
Minority Class to

Synthesize New Fault
Data

Mixed-Type
Data

Synthetic Data
Representation Solution

SmoteNC [12] YES YES NO
The ctGAN was used to overcome the

drawback of SmoteNC, namely the
lack of sample representativeness.

GAN [14] NO NO YES CtGAN can overcome the inability to
apply to Mixed-Type Data.

ctGAN [19] NO YES YES

The oversampling method can
increase the minority class data, which
can provide enough data for ctGAN

training model.
SmoteNC–ctGAN YES YES YES

In response to these problems, an equipment-fault diagnosis method that involves
combining SmoteNC and ctGAN is proposed in this paper. This method comprises three
stages. First, SmoteNC is used to simulate hybrid features to balance the data. Second, the
simulated and real data are inputted into a ctGAN to generate new fault characteristic data.
Third, real data are used to verify the reliability of the data produced by the ctGAN. In this
paper, a novel fault diagnosis system, namely SmoteNC–ctGAN, is proposed for handling
hybrid limited data. The proposed model can simultaneously handle imbalanced data with
continuous and categorical features and fulfill the demand of a ctGAN for considerable
training data; thus, the proposed model provides a solution for equipment fault diagnosis
by using limited failure data.

The rest of this paper is organized as follows: We explain the proposed algorithm
SmoteNC–ctGAN in Section 2; we compare this to other similar methods in Section 3; the
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case study and numerical results are reported in Section 4; finally, the conclusions and
future works are presented in Section 5.

2. Materials and Methods

In this paper, a novel fault diagnosis system, namely SmoteNC–ctGAN, is proposed
for handling hybrid limited data. SmoteNC and ctGAN have been proven to be effective
models in the literature and are used in various fields. However, we found two shortcom-
ings when these models were applied to equipment failure prediction. First, SmoteNC
lacks a verification mechanism in the simulation process, which leads to insufficient au-
thenticity of the simulated fault data. Second, ctGAN requires a lot of training data when
simulated fault data. Therefore, in order to solve the above problems, SmoteNC can be
used to generate a large amount of simulated fault data from a small amount of real fault
data. Then, the simulated and real fault data are added to the ctGAN training process to
solve the scarcity of fault data. The proposed method comprises three steps, namely data
collection and preprocessing, limited data generation, and model learning and application.
The framework of the proposed system is depicted in Figure 1.
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Figure 1. Framework of the proposed SmoteNC—conditional tabular generative adversarial network
(ctGAN) system.

2.1. Data Collection and Pre-Processing

The machine operation processes involved in the production of different products
are complicated and require different operating settings. IoT sensors receive different
information when different products are produced. The differences in the sensor data
received for each product is not considered an abnormality.

During data collection and preprocessing, data complexity (e.g., English text, punctua-
tion, and Chinese text) might result in errors in a subsequent analysis. Therefore, product
names are transformed through one-hot encoding to facilitate the next step.

2.2. Limit-Data Generating Process

The limited data generation process comprises three stages. First, SmoteNC is used to
simulate hybrid features to balance the data. Second, the simulated failure data and real
failure data are input into a ctGAN to generate additional simulated failure data. Finally,
the real failure data are used to verify the reliability of the generated simulated failure data.
The limited data generation process is illustrated in Figure 2.
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2.2.1. Synthetic Minority Oversampling Technique-Nominal Continuous (SmoteNC)

SmoteNC, which is based on the k-nearest neighbor algorithm, generates new samples
of the minority class by using the k-nearest neighbors (Algorithm 1). It randomly generates
eigenvectors using the minority features of the k-nearest neighbor. However, because the
nearest neighbor of a categorical feature cannot be computed based on distance, this study
replaced “distance” in the computation with “frequency.” Of the k-neighbors computed
using numerical features, the minority categorical sample with the highest frequency was
replicated as a new sample [20]. By increasing the quantity of minority data, the data
was balanced. In addition, the numerical feature generation indicators are presented in
Equation (1):

Snew = Si + rand(0, 1) ∗
(
Si − Sj

)
(1)

where Snew is the synthetic new data, Si is the minority class data, Sj is one of the K nearest
neighbors of Si, and T is the training data set. Si, Sj∈T, rand(0, 1) is randomly generated
random numbers from 0 to 1.

Algorithm 1: SmoteNC(Pseudocode)

Input: Training data set T
Which contains failure dataset (minority class) S
Output: Synthesized failure dataset Snew
User defined parameter for k-nearest neighbors (Default k = 5)

1. for i in len(S)
2. KNN(si, k, T) // x ∈ X
3. do
4. if (numerical feature):
5. Generate new failure feature datausing Equation (1)
6. else:
7. Find the highest frequency data in the k nearest
8. j++
9. while (j < k)
10. Snew←New fail data
11. Return Snew
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Studies have used SmoteNC on data sets with only nominal features [12,21]. In [14], a
random forest was used in advance to classify data with nominal features and eliminate
data in the error category, thereby increasing data representativeness. These methods
for handling imbalanced data were input into a ctGAN as training data to fulfill the
demand of neural network training, namely, the requirement for considerable training data.
Subsequently, the ctGAN was used to overcome the drawback of SmoteNC, namely, the
lack of sample representativeness.

2.2.2. Conditional Tabular Generative Adversarial Network (ctGAN)

A ctGAN is a modified conditional GAN applicable to solving problems involving
hybrid characteristics, which cannot be solved using a GAN (Algorithm 2). The operation
of a ctGAN involves three stages. First, normalization is conducted to process complicated
data combinations. Second, condition vectors and sample training methods are used to
learn the original data distribution. Finally, a discriminator is used to determine the loss
rate threshold and verify whether the simulated minority data generated in the second
stage are close to the real minority sample. ctGAN loss function and network structure
adopt the [22,23] frameworks, respectively, and the generation network structure is G(m,
cond) [19,24]. 

c0 = cond⊕m
c1 = c0 ⊕ ReLU(BN(FC|cond|+|m|→256(c0)))

c2 = c1 ⊕ ReLU(BN(FC|cond|+|m|+256→256(c1)))

α̂i = tanh(FC|cond|+|m|+512→1(c2))

β̂i = gumbel0.2(FC|cond|+|m|+512→ni
(c2))

d̂i = gumbel02(FC|cond|+|z|+512→|Di |(h2))

(2)

Algorithm 2: ctGAN(Pseudocode)

Input: the training set of the fault data F, which includes
The original training set S and the synthetic Snew by SmoteNC
Output: Synthesized failure dataset Gnew by ctGAN
//user setting Generate number

1. for i in len(F)
2. normalization and condition vector
3. R←Generate new failure feature data using Equation (2) //input F
4. D←Discriminator (R, S) //Calculate the loss rate of real fault
5. Data S and synthetic data. (loss function [9], network structure [10])
6. Gnew←D
7. return Gnew

The proposed method has two advantages. First, the minority class features exhibited
by the generated minority data samples depend on the condition vector and sample training
method. These data are different from those obtained solely by simulating the distance
between minority class data. Second, in the proposed method, a discriminator is used to
verify whether the simulated minority class samples are representative of the real minority
class samples.

2.2.3. Data Combination

In this study, the simulated and actual fault data are integrated, with the aim of
reaching a balance between fault and normal operation data. There are three sources
of integration. The first is the real operation data, which contains the fault and normal
operation data. Second, the fault data generated by SmoteNC simulation can greatly
increase the data for a very small number of fault samples, but the authenticity may not be
enough. Finally, the equipment failure data simulated by ctGAN are closer to the real data
after being screened by the discriminator. However, the disadvantage is that this requires a
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variety of training data. Therefore, we merged the real data and the two simulated data, so
that the fault and normal operation data are balanced (Algorithm 3).

Algorithm 3: SmoteNC–ctGAN (Pseudocode)

Input: Training set T,
which contains failure dataset (minority class) S
Output: Synthesized failure dataset Tnew

1. Snew ← SmoteNC(T)
2. Gnew ← ctGAN(S, Snew)
3. Tnew ← T ∪ Snew ∪ Gnew
4. Return Tnew

Finally, we present the synthetic training dataset (Tnew):

Tnew = T ∪ Snew ∪ Gnew (3)

2.3. Model Learning and Applications

In the model learning and application stage, the effects of simulated and real failure
data in equipment failure diagnosis are verified. Two classification tasks are performed
in this stage. The first task involves classifying the failure diagnosis results as failure or
nonfailure data. The second task involves multicategory classification, where the fault
diagnosis results are further classified according to the type of failure, such as tool wear
failure (TWF), heat dissipation failure (HDF), power failure (PWF), overstrain failure (OSF),
and random failure (RNF).

Since obtaining equipment operation data is difficult, insufficient data are collected
for deep learning in most studies [4,25]. Therefore, in this study, the CatBoost classifier [26],
which is a popular classifier, was employed to classification tasks. The following section
details this classifier and the Optuna hyperparameter learning method [27].

2.3.1. CatBoost Classifier and Optuna

CatBoost, which is an ensemble-learning algorithm based on a gradient boosting
decision tree, employs an ordered boosting algorithm and a greedy algorithm to solve
problems related to iterative gradient descent [15] and to reduce the risk of overfitting. To
increase model accuracy and enhance model performance, the Optuna hyperparameter
learning method [16] was adopted in the present study. The training parameters in this
method are detailed in Section 3.

2.3.2. Model Evaluation

In equipment fault diagnosis, the rate of true positives is considerably higher than that
of true negatives. Furthermore, a high false positive rate results in the constant triggering
of a failure alarm, which decreases user confidence in a fault diagnosis model. Therefore, in
this study, recall rate, accuracy [28], and balanced accuracy [29] were selected to evaluate
the proposed model. In addition, balanced accuracy is an overall indicator for a small
number of fault data. A confusion matrix [29–31] for fault diagnosis evaluation metrics
is presented in Table 2. The equations for calculating these indicators are presented in
Equations (4)–(6) below:

Recall rate =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Balanced accuracy = (
TP

(TP + FN)
+

TN
(TN + FP)

)/2 (6)
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Table 2. Confusion matrix for fault diagnosis dataset.

Actual Condition

Prediction
Condition

Failure Normal

Failure TP
(True Positive)

FP
(False Positive)

Normal FN
(False Negative)

TN
(True Negative)

3. Results

The results section details the fault data set; the design of relevant model parameters;
and the experiment results, including those for recall, accuracy, and balanced accuracy.

3.1. Dataset Description

In this study, the UCI AI4I 2020 Predictive Maintenance Dataset [32] was used to verify
the performance of the proposed model [33]. This data set contains 10,000 data points, of
which, 3.4% of points represent fault data. Each data point has 12 features, specifically, six
equipment operation features and six equipment fault features. These features are detailed
in the following text.

The six equipment operation features of the data points are as follows:

1. Product ID: Product ID, which represents categorical data, is a key feature used to
distinguish the type of product processed and consists of a letter Low (50%), medium
(30%), High (20%) as product quality variants.

2. Air temperature: Air temperature, which represents numerical data, refers to the
temperature of the environment (between 2 K and 300 K after normalization).

3. Process temperature (K): Process temperature, which represents numerical data, refers
to the temperature of the production process.

4. Rotational speed (rpm): Rotational speed, which represents numerical data, refers to
the rotational speed of the main shaft.

5. Torque (Nm): Torque represents a type of numerical data and is generally equal to
40 Nm where ε = 10 and no negative values.

6. Tool wear (min): Tool wear, which represents numerical data, refers to the tool
operation time.

The six equipment fault features of the data points are as follows:

7. Tool wear failure (TWF): Tool wear failure causes a process failure.
8. Heat dissipation failure (HDF): Heat dissipation causes a process failure.
9. Power failure (PWF): Power failure causes a process failure.
10. Overstrain failure (OSF): OSF refers to the failure caused by overstrain in the produc-

tion process.
11. Random failures (RNF): RNFs are failures whose cause cannot be determined. Their

occurrence probability in the production process is 0.1%.
12. Machine failure: The original two-category label (0 represents normal, and 1 represents

failure) was changed into a multicategory label (0 represents normal, 1 represents
TWF, 2 represents HDF, 3 represents PWF, 4 represents OSF, and 5 represents RNF) to
verify the multicategory prediction accuracy of the proposed model.

3.2. Experiment Setting

The experimental method adopts a three-fold cross-validation, and explains the aver-
age number of training and testing data sets after each round of segmentation. Please refer
to the following, Table 3.
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Table 3. The number of training and testing data sets after each round of segmentation.

Round
(Cross Validation) Total Training Set Test Set

Each Round 10,000 (100%) 6700 3300

3.3. Parameter Setting

All parameters that are applied to ctGAN and CatBoost are listed in Tables 2 and 3,
respectively.

3.4. Experiment Results

Equipment fault data exhibit two types of features: categorical features (related to the
product information) and numerical features. Considerable imbalance was observed in the
collected data, with the fault data accounting for a small proportion of the collected data
(Figure 3, in which 1 and 0 represent fault and normal data, respectively).
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The severe imbalance in the collected data set increased the difficulty of obtaining
accurate model predictions. The prediction results obtained for the TWF, HDF, PWF, OSF,
and RNF diagnoses with the confusion matrix and other methods for processing limited
data were compared.

According to the results presented in Tables 4–13, the experimental results of five
failures are presented. The proposed method exhibited a higher recall rate and balanced
accuracy than did the other methods for the diagnoses of all types of failure. Perfect recall
was achieved with the proposed method in PWF diagnosis and OSF diagnosis, and balanced
accuracy achieved the best result at 98.77% and 98.05%, respectively. Although some false
positive results were obtained using the proposed method in the aforementioned fault
diagnoses, its performance was acceptable. For the TWF diagnosis, a balanced accuracy of
91.02%, which was 17.08% higher than the second-performing diagnosis, was observed,
and the accuracy was only behind by 2.45%. For the HDF diagnosis, a balanced accuracy
of 97.61% was observed, and other recall and accuracy data were higher than the second-
performing ctGAN + CatBoost. For the RNF diagnosis, a balanced accuracy, recall rate,
and accuracy of 63.84, 85.71%, and 42.06%, respectively, were achieved using the proposed
method. This kind of random failure has no exact failure type, which makes it difficult to
grasp. In addition, SmoteNC + CatBoost exhibited excellent performance in the HDF and
OSF diagnoses, but performed unsatisfactorily in the PWF and RNF diagnoses. ctGAN +
CatBoost exhibited favorable performance in the HDF and OSF diagnoses, but performed
unsatisfactorily in the PWF and RNF diagnoses.

Table 4. The number of samples generated by SMOTE-NC and ctGAN.

Failure
Mode

Total
Traning Set

Traning Set
(Original Training Data) SMOTE-NC ctGAN

TWF 19,658 6700
(Contains 27 Failure)

6673
(Failure)

6700
(Failure)

HDF 19,658 6700
(Contains 80 Failure)

6620
(Failure)

6700
(Failure)

OSF 19,658 6700
(Contains 62 Failure)

6638
(Failure)

6700
(Failure)

PWF 19,658 6700
(Contains 60 Failure)

6640
(Failure)

6700
(Failure)

RNF 19,658 6700
(Contains 12 Failure)

6688
(Failure)

6700
(Failure)

Machine Failure 19,658 6700
(Contains 221 Failure)

6479
(Failure)

6700
(Failure)

Table 5. Parameter settings for the ctGAN.

Parameter Value

echo 10

Size of the output samples Generator: (256,256)
Discriminator: (256,256)

Optimizer Adam
Learning Rate 0.0002
Loss Function lower-bound (ELBO) loss

Activation ReLU

Number of generated failure data 6700 (Same as the number of
failures in the training set)
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Table 6. Parameter settings for CatBoost (results of parameter optimization based on the Optuna
method).

Parameter Value

Iterations 50
Depth 6

Learning rate 0.18176
Early stopping rounds 10
Bagging temperature 0.8278

Iterations 50
Depth 6

Table 7. Prediction results for the TWF diagnosis obtained using the confusion matrix.

Actual

Prediction
Failure Normal

Failure 17 244
Normal 2 3037

Table 8. Prediction results obtained for the TWF diagnosis using other methods used for processing
limited data.

Method Recall Rate Accuracy Balanced Accuracy

CatBoost (non-oversampling) 0.0000 0.9942 0.5000
SmoteNC + CatBoost 0.3684 0.9718 0.6719

ctGAN + CatBoost 0.5263 0.9500 0.7394
SmoteNC + ctGAN + CatBoost

(The proposed method) 0.8947 0.9255 0.9102

Table 9. Prediction results obtained for the HDF diagnosis using the confusion matrix.

Actual

Prediction
Failure Normal

Failure 34 63

Normal 1 3202

Table 10. Prediction results obtained for the HDF diagnosis using other methods used for processing
limited data.

Method Recall Rate Accuracy Balanced Accuracy

CatBoost (non-oversampling) 0.5143 0.9948 0.7571
SmoteNC + CatBoost 0.9429 0.9888 0.9661

ctGAN + CatBoost 0.9714 0.9785 0.9750
SmoteNC + ctGAN + CatBoost

(The proposed method) 0.9714 0.9806 0.9761

Table 11. Prediction results obtained for PWF diagnosis with the confusion matrix.

Actual

Prediction
Failure Normal

Failure 35 80
Normal 0 3185
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Table 12. Prediction results obtained for the PWF diagnosis using other methods used for processing
limited data.

Method Recall Rate Accuracy Balanced Accuracy

CatBoost (non-oversampling) 0.4857 0.9942 0.7427
SmoteNC + CatBoost 1.0000 0.9579 0.9787

ctGAN + CatBoost 1.0000 0.9715 0.9856
SmoteNC + ctGAN + CatBoost

(The proposed method) 1.0000 0.9758 0.9877

Table 13. Prediction results obtained for the OSF diagnosis using the confusion matrix.

Actual

Prediction
Failure Normal

Failure 36 127
Normal 0 3137

To demonstrate the effectiveness of the proposed method for a multicategory fault
diagnosis, the five types of failures were mixed and labeled (the normal condition, TWF,
HDF, PWF, OSF, and RNF were labeled 0–5, respectively). The results obtained in the
multicategory fault diagnosis are presented in Tables 14–17.

Table 14. Prediction results obtained for the OSF diagnosis using other methods used for processing
limited data.

Method Recall Rate Accuracy Balanced Accuracy

CatBoost (non-oversampling) 0.5833 0.9952 0.7915
SmoteNC + CatBoost 0.9722 0.9870 0.9797

ctGAN + CatBoost 0.9722 0.9742 0.9732
SmoteNC + ctGAN + CatBoost

(The proposed method) 1.0000 0.9615 0.9805

Table 15. Prediction results obtained for the RNF diagnosis using the confusion matrix.

Actual

Prediction
Failure Normal

Failure 6 1911
Normal 1 1382

Table 16. Prediction results obtained for the RNF diagnosis using other methods used for processing
limited data.

Method Recall Rate Accuracy Balanced Accuracy

CatBoost (non-oversampling) 0.0000 0.9979 0.5000
SmoteNC + CatBoost 0.2857 0.8615 0.5742

ctGAN + CatBoost 0.0000 0.9882 0.4951
SmoteNC + ctGAN + CatBoost

(The proposed method) 0.8571 0.4206 0.6384
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Table 17. Results obtained using different methods in multicategory fault diagnosis.

Recall Rate Accuracy Balanced Accuracy

CatBoost (non-oversampling) 0.2868 0.9687 0.6423
SmoteNC + CatBoost 0.7881 0.9670 0.8809

ctGAN + CatBoost 0.8305 0.9082 0.8708
SmoteNC + ctGAN + CatBoost

(The proposed method) 0.9068 0.8712 0.8883

The results presented in Tables 14–17 indicate that CatBoost classified most data into
the normal category and, thus, exhibited a recall rate of 28.68%. SmoteNC + CatBoost
exhibited high accuracy in the multicategory prediction but had a relatively low recall rate.
ctGAN + CatBoost exhibited a recall rate of 83.05%. Finally, SmoteNC + ctGAN + CatBoost
exhibited a recall rate of 90.68% and a balanced accuracy of 88.83%.

4. Discussion

Given that the failure data accounted for only 3.4% of the total data and were divided
into five failure modes (i.e., 0.5%, 0.9%, 1.2%, 1.0%, and 0.2% of the data were classified
into the TWF, HDF, PWF, OSF, and RNF minority classes, respectively), the data were
highly imbalanced, which increased the difficulty in failure prediction. The experiment’s
results indicated that the proposed method was superior to the other methods in the
five-category failure classification. Although the proposed method exhibited a high false
positive rate, from the equipment diagnosis perspective, the cost of sudden machine
downtime considerably exceeds that of system misdiagnosis.

4.1. The Focus of Prediction Is to Detect Equipment Failure, Not Normal Operation

From the perspective of equipment failure prediction, the cost of false negatives
considerably exceeds that of false positives. Therefore, this study aimed to increase the
possibility of false positives and, thus, reduce the possibility of false negatives. The
experiment results revealed that prior to oversampling, the recall rate of the proposed
method was approximately 0. This result suggests that the equipment exhibits normal
operation; thus, the possibility of equipment failure can be ignored.

The experiment results for RNF prediction revealed that most methods did not exhibit
favorable prediction results. Despite achieving a recall rate of 85.71%, the proposed method
generated an excessive number of false alarms, possibly due to the insufficient scope of
data collection. To overcome this problem, an IoT sensor can be attached to the equipment,
or the collected data can be expanded. In the future, the authors of this study will analyze
the reason for the aforementioned problem and collect operation data according to the
identified reason. Finally, the multicategory prediction results revealed that some categories
of equipment failure correlated. Due to the overlap of the categories, they could not
be effectively separated. This problem is commonly encountered in equipment failure
prediction. To solve this problem, a new failure category can be established to relabel
correlating failure categories, thereby increasing the failure prediction accuracy of the
proposed method.

4.2. Necessity of Processing Data with Hybrid Features in Limited Data Sets

The categorical data features of a product include product type. This information is
crucial to the prediction of equipment failure. Different product types require drastically
different allocations of production resources and sensor values. Therefore, processing data
with hybrid features in limited data sets is essential.

4.3. Interpretability of the Equipment Failure Prediction Results

In this study, a tree-based model was selected for failure prediction. This model
has a certain degree of interpretability and can be used for problem analysis, correctly
predicting failures, and analyzing the causes of failures. The results of equipment failure
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prediction can be interpreted using tree algorithms to determine the reason for failure
and to implement preventive measures accordingly [33]. Moreover, these results can be
interpreted using GAN algorithms [34] to analyze the reason for each minority data class.
The aforementioned analysis overcomes the overfitting problem of GAN algorithms.

5. Conclusions

In this paper, a method is proposed for predicting limited failure data with high
accuracy to overcome the limitations associated with the processing of limited data with
hybrid features. The experimental results indicate that the proposed method can improve
6.45% compared to similar methods when equipment failure data account for less than 1%
of the total data. The proposed model can simultaneously handle imbalanced data with
continuous and categorical features and can fulfill the demand of a ctGAN for considerable
training data; thus, the proposed model provides a solution for equipment fault diagnosis
by using limited failure data. Moreover, given the interpretability of the tree-based structure
used in the proposed method, its results can be easily interpreted, and the reason for failure
can be easily determined, thereby improving the maintenance efficiency.

Given that equipment deterioration is a time-series problem, failure data might be
sequential in nature. Future studies can employ time-series production and prediction
models in the failure data generation process to increase the accuracy of the generated data.
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