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Abstract: The underground intelligent load-haul-dump vehicle (LHD) is a product of the deep
integration of traditional LHD with information network technology, automatic controlling and
artificial intelligence technology. It gathers the functions of environmental perception, autonomous
driving and fault diagnosis in one machine and exhibits higher safety and greater efficiency than
traditional LHD. Hence, it is a particularly important piece of underground mining equipment for
building green, safe and smart mines. Taking the studies about intelligent LHD collected by CNKI
and WOS databases from 1980 to 2022 as a sample data source, employing Citespace visual analysis
software for key feature extraction from the documents, statistical analysis was conducted to clarify
the current research progress and the frontier topics of the intelligent LHD academia in the past
40 years, in relation to the future development trends. The development history and application
status of underground intelligent LHD was expounded in this article, summarizing the research
status at home and abroad from four aspects: ore heap perception and modeling technology, trajectory
planning method of bucket shoveling, autonomous navigation technology, real-time monitoring and
intelligent fault diagnosis technology. The demerits and merits of the technologies were reviewed as
well, with future developing and researching trends of the underground intelligent LHD concluded.

Keywords: underground intelligent LHD; CiteSpace; heap perception; trajectory planning; autonomous
navigation; real-time monitoring; fault diagnosis

1. Introduction

Mining is a very important global industry, which is the foundation for industrial
development. With the increasing demand of ore raw materials from all over the world
and the depletion of shallow mineral resources, following thereupon, the mining scale of
underground ore increases greatly [1].

Load-haul-dump vehicle (LHD) is an important and necessary piece of mining equip-
ment, which plays a key role in the transportation of underground ores. Traditional LHD
vehicles usually complete ore shoveling, transporting and unloading through manual
operation [2–4]. However, the following problems always exist [5–8]. First of all, the
production environment is quite harsh. Possible accidents by the underground roadway
collapse and the hostile interspace with dust, humidity and noise seriously threaten the
health and safety of LHD operators. Second, there are high safety risks upon the driver.
Due to underground tunnels normally being narrow and with poor illumination, it is easy
for the drivers to experience fatigue while driving, causing accidents. Third, high energy
is consumed with low operating efficiency. Since the work efficiency of the LHD mainly
depends on the proficiency of the driver, the operating stability of the LHD is unable to
be guaranteed. Hence, in order to possibly minimize those issues, how to control and
automate the LHDs intelligently have become the main developing trends in this field [9].
In recent years, a large amount of effort has been made on intelligent mining equipment for
underground mines, by experts from industry to academia, both overseas and domestically
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in China. Developed countries, such as Canada, Finland and Sweden, deployed research
and application about intelligent and unmanned mining early at the beginning of the 21st
century [10]. Various autonomous controlling systems of underground LHDs have been
developed successfully and tested in large industrial mines with good results. In China,
smart mines have also been constructed gradually with strong technical and financial
support from national institutions [11].

Intelligent LHD is a machine system upgraded from traditional LHD by artificial
intelligence technology [12], robotic technology [13], information-physics-network technol-
ogy and image processing technology [14]. It is multi-functionally integrated by remote
control, intelligent autonomous operation, intelligent perception and diagnosis, etc. The
rapid development of intelligent LHD has really benefitted a lot from the improvements
in high-precision positioning and navigation technology. Furthermore, the continuous
development and maturity of artificial intelligence (AI) technology also makes significant
contributions to it. The intelligent LHD can continue learning new skills to optimize its
performance and think like human beings with AI technology [15]. Currently, machine
learning (ML) technology has gained wide attention as one of the research directions
for artificial intelligence [16–18], which has been popularly used in image, speech and
other patterns for recognition. Through combining AI technology with automatic control
technology, a more effective intelligent trajectory control algorithm has been developed.
In addition, the accumulated running data from a real LHD is also conducive to fault
prediction and diagnosis.

This article reviewed the research and development status for intelligent LHDs sys-
tematically. Four main research directions, such as mine pile perception and modeling
technology, bucket loading trajectory planning, autonomous navigation technology and
real-time monitoring and fault diagnosis technology, were reviewed in detail separately.
The mechanism, characteristics and shortcomings of each technology were discussed as
well; the development trend of underground intelligent LHD for the future was also
pointed out.

2. The Literature Sources and Statistical Analysis
2.1. Data Source

The output English literature data were extracted from the Web of Science Core
collection (WOSCC), while the Chinese data sample was obtained from China’s largest
academic journal indexing platform—China National Knowledge Infrastructure (CNKI).
Both searches were performed on 17 May 2022 and the detailed data retrieval strategies
are shown in Table 1. The valid sample data obtained are: 127 international articles and
158 Chinese articles. It can be seen that the number of articles in Chinese is even greater
than that from the international WOSCC database; hence, it is quite important for statistical
analysis. However, both source amounts are small, which indicates more attention and
attempts should be paid to this topic by industry and researchers in related fields.

Table 1. Data sources and collation results.

Region Foreign China

Retrieval date 17 May 2022 17 May 2022
Database Web of Science Core Collection (WOS) CNKI

Retrieval method

TS = (autonomous OR automatic OR
intelligent OR navigation OR location OR
unmanned OR track OR remote OR route
plan OR control OR shovel OR perception
OR model OR underground mining OR

sensors) AND TS = (load haul dump)

SU = (“intelligent” + “unmanned” +
“autonomous” + “automatic” + “track” +
“location” + “navigation” + “remote” +

“control”) × (“load haul dump”)

Time span 1980–2022 1980–2022
Number of documents retrieved/article 127 449

Number of valid documents/article 127 158
imported into CiteSpace software 125 142
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2.2. Statistical Method and Result

Data from the above-mentioned database were imported into and analyzed indi-
vidually by CiteSpace (version 6.1.R2) software, which is a widely used tool for visual
exploration of scientific literature provided by SOURCEFORGE software platform in San
Diego, CA 92101, United States. The numbers of articles for valid sample data imported
into the software were 125 and 142, respectively, as invalid ones were unformatted or
information missed. Cluster and keyword co-occurrence analysis for articles in English
and Chinese was performed individually and network maps were visually generated, to
illustrate the development trend of key technologies and methods worldwide in the field of
intelligent LHD as time went by. The results are shown in Figures 1 and 2, respectively. The
keywords in the figures mainly come from both the original keywords of the literature and
the those expanded based on the subject classification of the journal or database. The font
size in the figure represents the occurrence frequency of the keywords. The larger the font,
the higher the frequency of the keyword and the more research on it and vice versa. The
horizontal position of the keyword represents the recorded year; the more left, the earlier
it was paid attention to and studied. The words with a “#” symbol and serial number in
the front are the cluster words; the smaller the number, the more keywords are included in
the cluster.

The figures can be analyzed as follows:

(1) As can be seen from Figure 1, the research in foreign countries about intelligent
LHD could be traced back early to the 1990s and was mainly focused in 2007–2022.
The keyword co-occurrence was not focused, shown as many scattered words with
similar font sizes. If anything was summed up, the research topics about simulation
prediction, dynamic model, algorithm, navigation and path tracking were relatively
popular.

(2) From Figure 2, the research about the intelligent LHD in domestic China was much
later than that in foreign countries, beginning from about 2007 and mainly focused
in 2009–2021, with hotspots mainly focused on key technologies, such as fuzzy con-
trol, remote control, autonomous driving, path tracking, environmental recognition,
autonomous navigation and safe obstacle avoidance.

(3) No matter whether at home or abroad, the research on intelligent LHD was scattered
and not extensive. However, it is an undoubtedly important machine and would be
one of the hotspots for the intelligent mining industry.
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3. Development and Application Status of Intelligent LHD

The first LHD (version ST-5) was traced back to the 1960s, which was developed
successfully in the Grandview Mine by the Wagner Company in the United States. Since
then, the LHD has been widely used in underground mining around the world due
to its high efficiency and flexibility. According to the level of automation control and
development history, LHDs can be divided into four generations [19], as shown in Figure 3.
At present, the underground LHD belongs to the fourth generation, with functions of
intelligent and independent control [9].
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Figure 3. The development history of the LHD.

Foreign research on intelligent LHDs began relatively earlier; hence, many companies
invented LHD autonomous driving, uploading controlling systems with their own char-
acteristics after long-term theoretical research and field tests, such as Sandvik in Sweden,
Caterpillar in the United States, Atlas Copco in Sweden, etc. [9].

The Tamrock cooperation in Finland (acquired and owned by Sandvik now) was
reported to be the first company in the world to exploit automated mining, which developed
the AutoMine system with functions of integrated shoveling, transporting, unloading ores
and fault diagnosis automatically [20]. The system was helpful for production increases
and maintenance and operation cost decreases. The automatic mining yield of each LHD
machine (version LH621) in Finland Pyhäsalmi Mine was improved greatly to 300,000 tons
per year after being equipped with the AutoMine system. Both the utilization rate of
equipment and the output of the entire mine increased significantly [21]. Canada Kidd
Creek Mine extended the effective working time of four LH514 LHDs from 12 h to 15 h and
increased the production capability by 50% accordingly, after being equipped with four
sets of Sandvik company’s single remote-controlling intelligent LHD system [9]. In 2018,
Sandvik innovatively invented another new generation of unmanned underground LHDs,
which made it possible to shovel, transport and unload ores totally automatically during the
whole process. The machine passed through a complicated glass maze successfully with the
help of equipped laser scanners, gyroscopes, odometers and angle sensors [22]. However,
there has been no industrialization application yet [23]. The MINEGEM system was a new
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autonomous control system for a new generation of LHDs, jointly developed by Caterpillar
and DAS in Australia in around 2004. Remotely controlling the LHDs on the ground
to perform operations, such as shovel, transport or unload ore, could be attained with
this system, through the cooperation of airborne computers, sensors, wireless networks,
etc. This system was adopted by the Malmberget iron mine in Sweden and protected
their operators from the dangerous underground environment with a remote ground
comfortable operating room. Moreover, the system ran quickly and greatly improved the
production efficiency by about 25%; the effective operating time was extended by 4~6 h
as well [24,25]. In later years, Caterpillar further developed the ancillary software for this
system, named Auto Dig, to automatically control the whole shoveling, transporting and
unloading process. Through recoding a large amount of operation data by experienced
drivers from a variety of buckets for a variety of given ores during loading cycles, the
loading model could be established and optimized by computer and the fully autonomous
operation was finally realized.

Atlas copco in Sweden is another famous company for intelligent underground LHD
research and development. In 2006, it modified the ST. 1010 underground LHD with a
reactive navigation system to an autonomous machine together with researchers from the
University of Urebro, which was proved to be practical in the Kvarntorp Mine through
automatic tests. At the end of 2007, its LHD automatic control system was applied to the
ST-14 underground scraper and the automation experiment was carried out successfully
in the Kemi mine in Finland [19]. The machine was equipped with three cameras, two in
the front and one at the back. In addition, three additional cameras were reinstalled in
the loading and unloading zones on the roadway as a supplement. Through scanning the
way in the front roadway in 35 m by the laser mounted on each side of the vehicle, the
real-time precise relative position of the ST-14 to the wall could be acquired [23]. After
combining the ultra-precision steering algorithm and the speedometer, the operator could
determine the precision potion of the machine in the roadway. Recently, Atlas company
developed its own Scooptram automation technology, a semi-autonomous control system,
with the goal of protecting human safety, improving machine performance and flexibility.
The main advantage of the system is that the operation system could be maintained easily
in control and integration with other systems without exposing the operator to the unsafe
environment. Moreover, no other infrastructure support was needed and it could work
even during blasting operation [26].

In addition to the main three companies mentioned above, there were also many other
companies or research institutes investing finance and effort on this topic. A German
manufacturing company of underground mining equipment called PAUS developed a new
version (Tiger 300D) of underground LHD, based on the video remote control technology
of the NAUTILUS company. Two cameras were set in front of the loader and another in
the back. The cameras acquired and transmitted the image data to the display screen of
the remote-control box firstly; the machine was automatically slowed down if someone
was found standing on the road, even stopping if necessary. The device not only expanded
the driver’s vision, but also could be controlled through wider-range radio and was much
safer. Furthermore, it could be either remote controlled automatically or manually con-
trolled [27]. The Commonwealth Scientific and Industrial Research Organization (CSIRO)
and the University of Sydney in Australia cooperated in the research on the special sen-
sors for autonomous control of the LHD on the mount ISA. The sensors suitable for the
underground environment were picked out through collecting a large amount of data
from the sensors installed on the underground LHD [28]. Afterwards, CSIRO further
researched the development of autonomous control of underground LHDs, with financial
support from AMIRA, mainly focused on the positioning technology based on the dead
reckoning method. The autonomous navigation system integrated from the underground
electronic map data and the laser scanner sensor and, finally, the autonomous control of the
driving process and identification of the signs and blocks on the road could be realized [29].
Vielle Montague in Sweden also developed a remotely operated and navigation-enabled
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LHD; autonomous controlling tests were carried out in the Zinkgruvan zinc mine. The
navigation and autonomous driving could be attained by tracking the white lines coated
on the roadway roof with a camera. The maximum running speed was 8 km/h. During the
9-month test period, a total amount of 1200 buckets of ores was transported [30].

China’s research on the autonomous control system of underground LHDs started
relatively late and has gone through four stages of introducing from abroad, cooperative
manufacturing, independently developing, innovatively creating and developing [31].
During the “Eleventh Five-Year” period (2006~2010), Beijing General Research Institute
of Mining and Metallurgy conducted a research program on “Accurate Positioning Tech-
nology of the Underground Mining Equipment and Modeling Method for the Intelligent
Unmanned Underground LHD” under the “863” goal-oriented project, together with the
University of Science and Technology Beijing [32].

They constructed an underground electronic map through the vectorization of engi-
neering drawings using GIS software and the position display and alarm of the scraper
were basically realized by combined technologies of the laser scanner system [33], track
estimation and beacon correction at the same time [34]. As a result, the underground LHD
autonomous navigation and control technology were initially developed in China and
the model for the unmanned underground LHD was established [35]. Later on from the
“Twelfth Five-Year Plan” period, the two institutes cooperated continuously on the program
on “Underground Intelligent LHD” under the “863” theme project. The program team
explored and researched deeply the autonomous driving and unloading technologies of
the LHD [36] and realized the field operation in the line of sight or by remote control in the
Zhangzhuang Mine, Fankou Lead-Zinc Mine, Dayingezhuang Gold Mine, etc. [4,8,10].

At present, some underground mines in China are testing and promoting fourth-
generation underground fully automatically operated LHDs gradually, in order to realize
unmanned mining operations [9].

4. Autonomous Shovel Technology
4.1. Rock Pile Identification and Modeling Technology

The underground intelligent LHD identifies the ore pile and obtains information, such
as its shape and outline, through equipment, such as cameras or laser scanners, in the first
step, creates a three-dimensional model of the ore pile secondly and then transmits it to
the bucket excavation trajectory planning system to assist it in the process for planning
of optimal mining trajectories. Therefore, the perception and modeling of the ore pile is
a significantly decisive step to realize the autonomous shoveling and loading with the
LHD [5,9].

There is extensive research on mine pile sensing technology at home and abroad,
which can be mainly classified into two categories by sensing mechanisms: mine pile
identification based on image sensors and that based on distance sensors [5].

4.1.1. Image Sensor-Based Rock Pile Identification

The image sensor is the core component in cameras. It converts an optical image
on the photosensitive surface to electrical signals through photoelectric cells and obtains
information consistent with human perception under good illumination conditions [37].
According to the number of cameras, the vehicle camera system can be divided into
monocular camera, binocular camera, depth cameras (RGBD) and panoramic camera [38].
The utilization of monocular camera faces contradictions in ranging and distance. The
wider the perspective view of the camera, the shorter the length of the accurate distance
that can be detected and the narrower the angle of view, the longer the distance detected.
As a result, when it is used on the scraper to perceive the ore pile, it can only obtain its
information from a limited certain angle, which makes it difficult to construct the 3D model
for the ore pile. The binocular camera system can cover different ranges of scenes through
different cameras [39] and obtain comprehensive information about the ore pile. However,
the process for comprehensively extracting information of the ore pile from multiple angles
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and multiple pictures is always extremely complicated to calculate, with high system
requirements, which makes the 3D modeling construction quite difficult and slow.

The University of Southern Queensland produced an LHD model with a ratio of 1:5 to
the physical machine. It is constituted with a CCD camera, a PC with image acquisition
hardware and structured lighting form a vision system together and was successfully
applied on 3D model establishment for rock piles [40]. The Western Mining Resource
Center in the Colorado School of Mines in the United States conducted a project about LHD
automation research. They collected mine production images with digital cameras, then
filtered and interpolated the images and established a 3D curved surface model finally. This
is helpful for the enhancement of the LHD’s autonomous controlling and running capability
as feedback. According to the experimental results, 3D models could be built even in a
dark environment, but failed to be updated in real-time. An example to illustrate the
image-sensor-based rock pile identification and 3D modeling process is shown in Figure 4.
It proved that even for images obtained from pretty dark sites (Figure 4a), the 3D model
was established successfully (Figure 4b) [41].
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diagram [41].

The advantage of a 3D ore pile model based on an image sensor is that, after obtaining
the information of the ore pile through the image sensor as images, it can quickly build a 3D
model through an image processing algorithm and update the model in real time. However,
when the light is insufficient or the camera is blocked by dust, the image obtained would
be not clear enough, possibly resulting in failure of the 3D mine pile model establishment
through a single view [5].

4.1.2. Rock Pile Identification Based on Distance Sensor

The distance sensor mainly obtains the size information of the object by detecting the
time interval from the light pulse emission to object reflection [42].

Carnegie Mellon University developed the first large-scale excavation and loading
automatic system (Autonomous Loading System, ALS), which uses laser scanners to scan
the to-be-excavated area for planning of the optimal excavation location. However, this
system is mainly favorable for the excavation of soft-soil ore piles; no research has been
carried out on the excavation of large hard ore piles [43].

The particles in the ore pile are always irregularly shaped without uniform sizes, since
they are usually obtained after blasting the mine. Therefore, in order to avoid shovel loading
failure or damage to the scraper, pretreatment must be performed first, meaning large ore
blocks in the ore pile should be crushed or removed if they exist [44–46]. McKinnon C. et al.
generated point cloud images with a rock pile recognition algorithm based on the images
from the time-of-flight camera successfully. This technology realized good recognition
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of ore piles without the help of other sensors, which is beneficial for the extraction of
bulk ores from irregular heap surfaces, as demonstrated in Figure 5. It can be seen that
point cloud images could be generated based on the original photo by the camera, as
expected. Moreover, the sampled lump ores, numbered as 1 to 4 in the point cloud image
(Figure 5b), could be recognized clearly and matched quite well with those in the original
one (Figure 5a) [47].
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Figure 5. Point cloud processing of mine pile. (a) Mine pile original image; (b) mine pile point cloud
image [47].

The advantage of mine pile identification based on distance sensors is that it can
completely collect the mine environment information and create a 3D mine pile surface
model quickly. However, only the surface information on the ore pile can be acquired
through the distance sensor and the texture information of the surface is easy to lose [5].
Moreover, the modeling speed will be slowed down for high-density data processing,
which is a result of ore pile scanning from multiple perspectives.

To sum up, a single type of mine pile identification based on either image sensors or
distance sensors has its drawbacks. Therefore, the cooperation of both sensors on ore pile
identification and modeling technology would be a considerable research direction for future
underground intelligent LHDs. As the example, shown in Figure 6, both types of sensors are
adopted as two sets of laser scanner and camera (one in the front and the other in the back) on
the LHD to collect information of the ore piles. After data recognition and integration, the 3D
heap model for even dark and dusty underground environments can be quickly established.
The model can also be updated in real time with changes in the field conditions [48].
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4.2. Shovel Trajectory Planning

After establishing an accurate three-dimensional ore pile model, the starting position
for ore shovel loading will be independently determined and the optimal trajectory will
be planned as well, theoretically based on the maximization of loading efficiency and
minimization of energy consumption [50]. Based on the controlling model, bucket loading
trajectory planning methods can be divided into the one determined by resistance force
and the other directed by self-learning.

4.2.1. Resistance Force Determined Trajectory Planning Method

In a joint project by Russian scholar Mikhirev and the Minsk Machinery Research
and Production Association, which was mainly about the development of the open-pit
mining automatic loader, the calculation method of the effective trajectory for the excavator
bucket was firstly studied based on mechanical control [51]. In order to shovel the materials
better with the bucket, it is rather necessary to accurately predict the digging resistance
from the obstacle. Obermayr et al. [52], from Kaiserslautern University of Technology,
Germany, predicted the excavation resistance of a slab excavator in unbonded granular
material, excavating using the discrete element simulation method and the accuracy of the
results was verified by experiments. Coetzee, from Stellenbosch University in South Africa,
simulated and analyzed the bucket excavation process using the discrete element method
simulation platform, but the predicted excavation resistance was found to be smaller than
the actual value from experiments. In addition, the excavation resistance changing trends
were almost the same in the entire excavation time domain [53,54].

Since the shape and size of the ores are inconsistent after blasting, the resistance from
the ore blocks on the scraper will change during the shovel loading process. Therefore,
when establishing the resistance model, it is necessary to take the change in the shape and
size of the ores into consideration. Guiyu Lin et al. [55], from Northeastern University,
counted the rock materials with different particle sizes after blasting through discrete ele-
ment and simulated their excavation process based on the actual prototype, then predicted
the excavation resistance under several complex working conditions. It was found that
the results from prediction were quite close with the resistances under actual situation.
Xiaobang Wang [56], from Dalian University of Technology, established a rapid online
excavation trajectory planning method for the mining shovel, based on a dynamic exca-
vation resistance prediction model, especially for complex ore piles. The experimental
results showed that the running accuracy of the trajectory planned by this method can be
improved by more than 14%, compared with the traditional mining resistance model, and
the energy consumption was reduced by 8.86%.

Although the excavation resistances predicted by the above method are close to
those under actual conditions, it cannot be said that the predicted situation can fully
explain the actual site, since the possible accidents, such as collapse or landslide, would
happen during the actual excavation process. Hemani [57] believed that the material
excavation could not be realized but only guided through the resistance model preset
by the mathematical formula. Hence, he proposed to adjust the excavation trajectory
according to the real-time magnitude of the resistance during the excavation process. W.
Richardson-Little [58] presented a rheological method for simulating the interaction force
between the soil and bucket. Then, under real conditions, the excavation trajectory of the
excavator bucket could be controlled and adjusted through detecting the force on it. Meng
Yu et al. [49] established a mechanics feedback model for the bucket based on Coulomb
earth pressure theory. With 100% full bucket rate as the prerequisite, the insertion depth
was optimized to minimize the energy consumption and the optimal bucket trajectory was
finally determined. Marshall J.A. et al. [59], from Carlton University in Canada, proposed a
velocity-based admittance controller for the first time according to the characteristics of
the scraper hydraulic cylinder induction force during the excavation process. Field tests
were also conducted on the Atlas Copco scraper and proved that the shovel loaded more
efficiently than manual operation. Chaozhong Yin et al. [60], from University of Electronic
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Science and Technology of China, established a manipulator model system, which adopted
the method of intelligent drag reduction, inserting a shovel on the basis of the minimum
energy consumption trajectory. The bucket was stressed less, the energy consumption of
the process was effectively reduced and the production was significantly improved under
this planning method. The corresponding calculating formula for the uprise velocity for
minimum energy consumed trajectory is listed below as Equation (1).

Vpu = −(l1 + l2)sinβ2β2 + [r5 sin(β2 + β3) + r6 cos(β2 + β3)]ω (1)

in which, Vpu is the uprise velocity component of the bucket tooth point P, l1 is the boom
length, l2 is the pull rod length, r5 is the depth of the bucket, r6 is the vertical distance
between the tooth point and the bottom of the bucket, ω is angular velocity of the bucket
and β2 and β3 are the second and third velocity vectors of motion pair, respectively. For a
better understanding of those parameters, the manipulator model system is graphically
described in Figure 7, in which the blue lines are a simple profile for the reverse six-bar
linkage mechanism, with letters A–G representing the movable mechanical joints; the black
lines are just for annotations.
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4.2.2. Self-Learning-Guided Trajectory Planning Methods

With the development of artificial intelligence technology, many scholars have tried
to solve the complex and changeable problems during the shovel loading process of LHD
by applying learning methods. Scholars from the University of Arizona [61] applied
fuzzy logic control to perform mechanical mining in unstructured and unpredictable
environments for the first time and combined fuzzy logic with neural networks to simulate
robotic autonomous mining experiments. Lever et al. [62] developed an automatic dig
control system (ADCS) based on the combination of both a behavior-controlled and fuzzy-
logic-controlled model. Tests were conducted on a Cutler wheel loader and found to
excavate comparably to manual operation but required longer mining time. G. J. Maeda
et al. [63] proposed an earthwork excavation control method for the excavator based on
a combination control of iterative learning and impedance. Siddharth Dadhich et al. [64]
proposed an autonomous mining method based on reinforcement learning (RL), which
is suitable for the mining of different pile types and ore shapes. This method worked
well with steady loading weight, cycle time and fuel efficiency [44]. Heshan Fernand
et al. [65] advanced an iterative learning-based admittance control algorithm, which could
automatically update the control parameters according to the target bucket filling weight.
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It was verified to be effective for both fragmented rock and gravel shoveling after field
testing with a 14-ton scraper. In addition, the performance on the fragmented rock piles
was better than that on gravel piles.

The self-learning-guided shovel trajectory planning method has obvious advantages
when working in the uncertain underground roadway. Through interactive learning about
the environment, the bucket trajectory planning can be better completed. However, a
large amount of data and long time of study are required for training to implement good
trajectory planning.

In general, the shovel loading trajectory needs to be planned according to the actual
real-time loading conditions, either guided by resistance force or self-learning. The ultimate
aim is to excavate successfully with optimized shovel time and energy consumption. If the
loading trajectory is planned improperly, as shown in Figure 8, the shovel fails as the lump
block is too big.
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5. Autonomous Navigation Technology

Autonomous navigation technology refers to the technology that the scraper can
automatically identify the environment through its own various sensors under unmanned
control after ore shoveling and then automatically plan and complete the best driving path
in the roadway [66].

5.1. Positioning Technology

The positioning technology for the underground intelligent scraper refers to the determi-
nation of its position in a two-dimensional coordinate system and its own attitude as well or
it can also be expressed as the relative position of the scraper to the coordinate of a known
location (beacon point) in the underground tunnel. Thus, positioning technology is the basis
for autonomous navigation of LHD. GPS-based autonomous positioning technology is known
to be popular in many fields, but as the GPS signal is too weak in the underground roadway,
other methods need to be found for scraper positioning [67]. At present, there is much re-
search on the LHD positioning technology at home and abroad, mainly as the dead reckoning
method, inertial navigation technology, ultra-wide band (UWB) positioning technology, visual
positioning technology and information fusion positioning technology, etc. [68–70].

(1) Dead reckoning method

The basic principle of the dead reckoning method is with known initial coordinates of
the scraper, collecting the information of heading angle, speed and time using the sensors
installed on the scraper (such as heading gyro, speedometer, odometer, etc.) and calculating
the data for the current position of the shovel [71]. This method has good accuracy and
low cost for short-term positioning, but has accumulated errors for long-term positioning
estimation, which need to be corrected by correction techniques [68,72].

(2) Inertial navigation technology

The inertial navigation system is a completely independent system that does not rely
on external information, but obtains the information of the speed, position and attitude
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of the vehicle by its own inertial components, such as gyroscopes and accelerometers [68].
Although the inertial navigation technology exhibits good concealment, it has advantages,
such as being affected by neither natural, man-made factors nor external electromagnetic
interference, and there will be inevitable accumulative errors after a long-time server. In
order to improve the absolute accuracy of the system, other auxiliary positioning sensors
are necessarily installed. To be specified, the cost for the equipment in this system is
reported to be quite expensive [73,74].

(3) UWB Positioning

UWB technology locates in real time the vehicle through building a base station in
the roadway, obtaining signals between the base station and the vehicle tag, then attaining
the real-time location information of the tag. This method is reviewed to be insensitive
to channel fading, showing high positioning accuracy and low system complexity [75,76].
To position the accurate two-dimensional location of the vehicles, Chehri A. et al. [77]
conducted tests to collect the distance signals and position the tags, especially for narrow-
long underground coal mine roadways, through UWB technology and TOA algorithms,
respectively. It was found that this method was proved to show higher positioning accuracy
than regular methods in both visual and non-visual distance. However, in UWB positioning
technology, the location information of at least three base stations needs to be received
for calculation about the tags’ location in the targeted area zone. Since the underground
tunnels are always long and narrow, multiple base stations must be constructed and high
cost would be consumed for higher positioning accuracy [67].

(4) Visual Positioning

Visual positioning technology refers to collecting the surrounding environment of the
roadway by cameras or other visual sensors, setting, identifying and tracking special route
markers by the scraper, analyzing the signals and finally obtain the location information
of the scraper. Weiss L.E. et al. [78] proposed a form of visual serving control, which
can overcome uncertainties in the calculation models (including robots, vision systems
and environments) and improve the accuracy of visual positioning or tracking. Iu S.
et al. [79] pointed out that estimating the target’s moving direction and structure through
the maximum likelihood estimation method was found to be quite accurate. Wu Di et al. [75]
proposed a calculation method of minimizing the error of photometrics based on its weight
of different texture areas, to improve the matching accuracy for images with dim and noisy
points obtained from a dust-filled underground roadway.

In general, the visual positioning technology is accurate in location, but as the scraper
works in unique underground scenes, it still faces challenging problems, such as envi-
ronmental features being insufficient, roadways being too dusty and lighting conditions
varying too much, etc. Hence, how to make the system operate stably and long term will
be a key problem to be solved in the future.

(5) Information Fusion and Location Technology

Single-positioning technology usually has certain limitations. Therefore, various in-
formation from different positioning technologies can be integrated to locate the scraper
and improve the positioning accuracy. MaKel A.H. et al. [80] applied a positioning method
combining dead reckoning and laser scanning positioning and determined the position and
driving direction of the scraper by the articulation angle sensor, odometer and gyroscope.
The result from dead reckoning was corrected by the scanning data of the roadway wall
obtained through two laser scanners. The accumulated error was significantly improved
compared to the ordinary dead reckoning method and the installation of other auxiliary
equipment was avoided in the roadway. Wang B. et al. [81] optimized the location and
navigation algorithm based on the combination of the dead reckoning positioning and laser
scanning. The simulation results showed that this method can improve the accuracy and
robustness of the operating system. Chi Hongpeng et al. [82] and Jiang Yong et al. [83] com-
bined the information obtained from both the heading gyroscope and the laser rangefinder
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by Kalman filtering algorithm based on a multi-sensor information fusion model and the
heading angle of the scraper was accordingly determined. Shi Xiaojie et al. [67] proposed
a positioning system, which combined the UWB and laser ranging methods in the view
of the long and narrow characteristics of underground tunnels and the high cost for UWB
positioning systems. Skoczylas A. et al. [84] integrated the inertial measurement unit (IMU)
and dynamic time warping (DTW) algorithms to locate the underground mine LHD and it
was found to have good robust performance.

The characteristics of various positioning technologies are listed for better comparison in
Table 2. To sum up from Table 2 and the above-reviewed text, each single-positioning method
has its own advantages and disadvantages. Even though the limitations of a single-positioning
technology can be overcome and the positioning accuracy can also be improved to a certain
extent when various technologies are jointly applicated in different ways, the technology still
faces the problems of high cost for the equipment and complexity for the calculation. Hence,
how to improve the adaptability of the positioning technologies and cut costs are the key
scientific issues to be considered in future research at home and abroad.

Table 2. Comparison of positioning technologies.

Positioning Method Advantage Disadvantage

Dead Reckoning It can achieve high accuracy with low cost in
the short term

Errors will accumulate over a long period of
time

Inertial Navigation It is unaffected by external factors and shows
good concealment

Errors will accumulate over time and the
equipment are expensive

UWB Positioning It is insensitive to channel fading, with
simple system and high positioning accuracy

Multiple base stations are required, which is
costly

Visual Positioning It shows high positioning accuracy
Roadway dust, light intensity and other

environmental factors affect the positioning
easily

Information fusion positioning It is extensively applied, with high
positioning accuracy The cost and calculating complexity increase

5.2. Path Planning

Path planning technology is important for autonomous navigation of underground
intelligent LHD [3]. When the scraper finishes shoveling the ores, there must be a planned
collision-free path from the starting point to the destination, through which the distance is
short, the transportation is efficient and energy is saved. According to the degree of access
to environmental information, they can be divided into global path planning methods and
local path planning methods [31], as shown in Figure 9 in detail.
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5.2.1. Global Path Planning

Global path planning means searching an optimal route between the origin and
the terminal for the underground intelligent scraper to drive autonomously in a known
environment.

(1) A* algorithm
The A* algorithm is a heuristic search algorithm, which guides and determines the
search direction, mainly through an evaluation function [86]. As long as the optimal
distance from the node to the target point is determined, an optimal path must be
obtained [87]. However, it is necessary to conduct a traversal search around the nodes
on the path to optimize the path and save cost, resulting in large calculation amount,
poor real-time performance and long operation time. Moreover, as the number of
nodes increases, the algorithm search efficiency decreases [12]. In order to improve
the efficiency for the optimal path searching and reduce the searching time, Zheng
et al. [88] used a jumping point search method based on the A* algorithm and in-
troduced the angle evaluation function into the cost function in the A* algorithm.
The number of inflection points on the path obtained by the combined method was
minimized compared with that by the original A* algorithm and quick optimal path
search was achieved with speed faster than that of the traditional A* algorithm. Ma F.
et al. [89] proposed a navigation path planning method for articulating underground
LHD based on the improved A* algorithm, through introducing the collision treat cost
into the evaluation function, in order to avoid the LHD from scraping the narrow road-
way walls. According to the specific requirements of the path planning for unmanned
underground LHD, Qi Yulong et al. [90] proposed an improved A* algorithm mod-
eled with extended nodes and introduced the collision threat cost into the evaluation
function to avoid the scraper from collision onto the tunnel walls. Simulation tests
were also conducted and it was verified that the modified A* algorithm method could
enhance the search process, improve the safety of the scraper and prevent collisions.

(2) Fast Random Search Tree Algorithm
The fast search random tree algorithm is an incremental search algorithm based on
probability sampled data. The basic idea is to take the starting point of the automatic
LHD as the root node of the random tree, then find a tree node closest to the root
one and expand a step length. If collision occurs, the node is discarded and a new
expanding direction is set randomly from the current tree node to find the next tree
node. The cycle is repeated until a new direction is found. The advantages of this
method include high search efficiency, strong search ability, wide search range and
no specific requirements for the scene. However, it faces the following shortcomings:
nonautonomous search, low utilization rate for the evenly allocated random sampling
points, irregular and time-consuming planned path and easily falling into dead zones
and causing local minima for searches in complex maps [12,86].

(3) Bioinspired Intelligent Algorithm
Compared with traditional algorithms, the advantages of bioinspired intelligent algo-
rithms are mainly reflected in the ability to solve multi-objective optimization problems
effectively, anti-interference strongly, obtain the global optimal value quickly without
limitation of local optimal value and the initial value, etc. [91]. It can be mainly divided
into genetic algorithm, particle swarm algorithm, ant colony algorithm, etc. [85].

a. Genetic Algorithm
Genetic algorithm is an intelligent optimized algorithm based on biological
genetic evolution theory in nature. It is the mainstream of robot path planning
research and has great research prospects [92]. This algorithm shows good
compatibility with other intelligent algorithms, attributed to easy improvement
and excellent iterative evolution. The method is flexible in search with the
generation of initial population and introduction of crossover and mutation
operators and also capable for global optimal path determination. However, at
the same time, the calculation speed is slowed down with relative low searching
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efficiency. In addition, too many inflection points in the path result in the
generation of some meaningless populations during iterative evolution of the
algorithm, which slows down the subsequent calculation process. Thus, this
method is not suitable for online path planning.

b. Neural Network Algorithm
Neural networks are intelligent systems composed of many simple but highly
interconnected processing elements that transmit information through dynamic
responses to external inputs [93]. Neural networks have the characteristics
of high fault tolerance, distributed representation, extensive parallelism and
generalization. Afifi et al. [94] proposed a multi-level system built with a
deep reinforcement policy gradient algorithm, which can collaboratively plan
multi-vehicle collision-free travel paths through motion planning. Luviano
et al. [95] proposed a multi-agent reinforcement learning algorithm to solve
the problem that unmanned vehicles learn slowly or even fail to learn in a
completely unknown environment. By ensuring the corresponding reward
methods and completing the training process, the optimal path can be found.
Pang Ke et al. [96] reported a route search strategy for unmanned vehicles that
integrates the reinforcement learning algorithm and the deep learning algo-
rithm. It determines the driving path by driving comfort constraints together
with the function about reward and punishment of obstacle information and
traffic regulations.

c. Ant Colony Algorithm
The ant colony algorithm has good comprehensive performance and strong
global optimization ability, which can complete the scraper path planning
in complex mining environments, but it is easy to reach a stalemate of only
local optimal. Long Zhizhuo et al. [97] proposed global path planning for
underground intelligent LHD through an improved ant colony algorithm to
solve the problems of slow convergence speed and easy stagnation due to local
optimum in the traditional ant colony algorithm.

d. Particle Swarm Algorithm
Particle swarm optimization is also a probabilistic global path planning algo-
rithm. Because of its multi-possibility of the iteration, it is much more possible
to cover the global map during the path searching process with this algorithm.
Correspondingly, the global optimal solution is easier to be obtained [98]. The
particles adapt well to complex situations through the interconnection of infor-
mation. Hence, this method is highly adaptable, even in a high-dimensional
environment.

5.2.2. Local Path Planning

Local path planning refers to obtaining real-time environmental obstacle information
in an unknown or partially known environment according to various sensors and planning
correspondingly to ensure that no collision happens between the outer contour of the
vehicle body and the roadway wall or obstacles.

(1) Artificial Potential Field Method

The artificial potential field (APF) method regards the task area as a charged potential
field. The target point will generate a gravitational field for the underground intelligent
scraper, while the obstacles will generate a repulsive field adversely; both fields together
compose the potential field distribution. In the mission area, the underground intelligent
LHD moves in the direction of combined potential field force, to reach the destination
without collision with the obstacles [99–101]. Gu Qing et al. [102] proposed a real-time
trajectory planning method based on two-dimensional search, which mainly focused on
the difficulties in underground turning for intelligent LHD. It was demonstrated that the
scraper could turn steadily in a short time.
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(2) Fuzzy Logic Algorithm

The fuzzy logic algorithm takes the environmental information obtained by the sensor
as the input data, carries out the path planning through the fuzzy reasoning and outputs
the calculated accurate result. This method can overcome the problems of uncertainty
and ambiguity in the data processing process, eliminate noise and errors and can quickly
and accurately plan the local path for even unknown or dynamic situations. Thus, it can
perform well in real time. However, the rules for fuzzy control are mainly formulated by
human experience. Once the rules are determined, it is difficult to adjust them online in real
time and they are inadaptable to the changes in the roadway. Moreover, local minimum
value would be attained as it responds rapidly to the input local information [70]. The
characteristics of the above-mentioned path planning methods are summarized in Table 3.

Table 3. Characteristics of path planning methods.

Algorithm Advantage Disadvantage

A* algorithm It responds quickly to the environment
It has large amount of computation, poor

real-time performance and long
operation time

Fast Random Search Tree Algorithm The search is highly efficient and is adaptable
to different scenes

It is nonautonomous and time consuming
for the path planning

Genetic Algorithm Easy to plan for the global optimal path The calculating speed is slow with low
search efficiency

Neural Network Algorithm high fault tolerated and generalization ability
Huge training data is required and there
may be some unexpected data which is

difficult to be handled

Ant Colony Algorithm The optimal path can be searched at multiple
points in the global area at the same time

Easy to fall into local optimum and slow
convergence

Particle Swarm Algorithm Fast search speed and good environment
adaptability

Easy to result in local optimum and low
convergence accuracy

Artificial Potential Field Simple structure, convenient for bottom
real-time control

Easy to simply obtain a local optimal
solution and “chattering” phenomenon

would occur

Fuzzy Logic Algorithm
The uncertainty and ambiguity for data

processing can be overcame, exhibiting good
real-time performance

It is expert in experience and requires
large amount of calculation for

complicated situations

In a word, both the global path planning and the local path planning methods have
certain defects. How to quickly find a method that can plan a path in the shortest time, be
real-time adjustable to the environmental information and can avoid obstacles make up the
main research direction in the future.

6. Real-Time Monitoring and Fault Diagnosis Technology

By monitoring the operating status of the scraper in real time, possible faults can be
predicted, so that proper solutions can be prepared to reduce the rate of failure, ensuring
efficient, safe and reliable operation of the scraper.

6.1. Real-Time Monitoring

Condition-based maintenance (CBM), which can grasp the working conditions of
equipment in real time, is welcomed by more and more manufacturers [103]. The Optimine
system in the Sandvik company collects the real-time operating information of the scraper
and integrates all the data into one platform to make them visualized and under control.
The intelligent monitoring system for an underground LHD with bucket volume of 8 m3,
which was developed by the Jinchuan Group in China, could achieve the operation status
monitoring in real time and record, save and transmit the running data as well. Moreover, it
was also reported to have the functions of fault alarming and maintenance prompting [104].
Academically, Loughborough University’s NG et al. [105] monitored the dynamic data in
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the hydraulic system for mobile machinery through embedded particle pollution sensors
academically and determined the wear and tear degree of the machine and corresponding
locations according to the size and shape of metal particles in the hydraulic oil. Pawel
Stefaniak et al. [106] proposed an algorithm for detecting the technical state change in the
scraper based on temperature data. It was proved by tests that the algorithm can describe
the condition of the scraper’s cooling system well and is suitable for various types of LHD.

6.2. Failure Prediction and Diagnosis

With the rapid development of computer technology, big data and artificial intelligence
technology, the fault prediction and diagnosis technology of mechanical equipment is also
developing in the direction of intelligence. Huan Shuangyu et al. [107] proposed a method
combining the least square support vector machine (LSSVM) and hidden Markov model
(HMM) into an artificial fish swarm algorithm for fault prediction, in order to solve the
problem that the fault of the LHD electrical system cannot be predicted accurately by
the single traditional diagnosis method. It was found that the accuracy rate of the new
combined method could reach 91.1%, accurately predicting the failure and the change trend
in the electrical system for the hybrid scraper. Caterpillar’s intelligent information system
(Cat productlink) could help the customers monitor and manage the equipment in real time
and also predict potential faults by collecting key performance indicators and running data
from the excavators. The Clear Sky system in JLG of America could accurately find the fault
point, guiding the maintenance man to go directly to the site. It also had the ability to enter
the monitoring system to find and eliminate faults, effectively shortening the maintenance
time and costs.

To sum up, the technology of real-time monitoring and fault diagnosis for the under-
ground intelligent LHD still faces the following problems:

(1) The data for the underground LHD real-time status are not fully utilized. Excavation
on the collected data is not deep enough for fault prediction and diagnosis.

(2) Fault prediction and diagnosis are mainly targeted on the engine and hydraulic system
of the scraper and few studies have been conducted on other systems.

(3) Even deep learning has attracted the attention of many researchers as a new method
in the field of intelligent fault diagnosis, though few studies have been conducted on
fault diagnosis for LHD to date.

7. Summary

This paper is a systematic description and review on the research status and devel-
opment of underground intelligent LHD, based on the relevant literature collected by
the mainstream literature database in domestic and foreign countries. Through the litera-
ture statistics, it is found that the research history for the reviewed vehicle has been over
20 years. Foreign countries kept ahead in either industry or theory, while China started
late and developed slowly. Through arranging and reviewing the mainstream technologies
from four aspects as the mine pile perception and modeling technology, bucket loading
trajectory planning methods, autonomous navigation technology, real-time monitoring and
fault diagnosis technology, it can be concluded that even though those technologies for
underground intelligent LHD have developed rapidly in recent years, there still needs to be
further progress both domestically and overseas; the research directions can be proposed
as follows:

(1) For better mile pile perception in the future, how to complement and optimize the
information of multi sensors in a multi-level and multi-dimensional manner, im-
prove the data processing speed and establish the three-dimensional model would
be the critical scientific issues, as a single sensor perceives poorly for the heaps in
underground roadways that are dark, dusty and face field interference.

(2) In the research for bucket shovel loading trajectory plan and optimization, the plan-
ning method based on reinforcement learning will be one of the mainstream directions
under the background of artificial intelligence, big data and cloud computing in the
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future, while how to complete the shoveling most efficiently with the least energy
consumption is the key goal for this method.

(3) As for autonomous navigation technology, it is one of the key researched technologies
for underground intelligent LHD, both at home and abroad, and it directly determines
whether the transport of the ore will succeed or not. Thus, the research on multi-
sensing information fusion technology and the positioning accuracy improvement
and speeding should be focused on. The combination of the global path planning
with the local path planning methods to plan a travel path, which is without collision
and has shortest time consumption, will be the mainstream direction in the future.

(4) With the introduction of digital twin technology into the intelligent mine construction
field, synchronous mapping and real-time interaction between physical equipment
and virtual equipment can be achieved. By building digital twin models for the
intelligent LHDs in the coming future, remote monitoring, fault diagnosis, control op-
timization and health prediction for the physical machine are expected to be attained
through modeling on the extracted feature from the faults and the corresponding
process and analyzing the interference factors.
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