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Abstract: Durability evaluation plays an important role in product operation and maintenance during
the design stage. In order to ensure a long life, high reliability, and short development cycle, an
accelerated degradation durability evaluation model for the turbine impeller of a turbine based
on a genetic algorithms back-propagation neural network is established. Based on the proposed
model, we discuss two types of practical problems. One is the matching problem of the component
strengthening test and whole machine system test. The other is the design problem of two kinds of
bench tests. All in all, this work not only proposes a durability evaluation model to effectively solve
the current turbine durability evaluation problems, but it also provides a feasible research idea for
similar problems.

Keywords: accelerated degradation model; durability evaluation; back-propagation neural network

1. Introduction

A turbocharger is a key component of a special vehicle engine. If any part of a
turbocharger fails, there will be serious consequences. Therefore, in the development
stage, the durability assessment and evaluation of a turbocharger are crucial [1,2]. Many
studies have shown that a turbine impeller is an important key component and is an
important link in determining a turbocharger’s durability. At present, for the development
of long-life and high-reliability products, it is difficult to obtain a durability test verification
conclusion within the development cycle according to the traditional test method, which
cannot meet the product development needs. Therefore, it is necessary to speed up the
test process and shorten the test time. Until now, the current durability assessment has
mainly been based on failure data and performance degradation data. Assessment of the
former is too dependent on failure data. In addition, the data is difficult to obtain due
to the limited sample size and limited development cycle. To remedy the problem that
traditional methods have—difficulty analyzing highly reliable products that lack failure
data—scholars began to study the analysis methods based on performance degradation
data, and it gradually become a hot topic [3].

As a study that analyzes methods based on performance degradation data, this re-
search mainly focuses on the regression model, degradation distribution, and stochastic
processes. The regression model uses regression fitting to obtain the product degradation
trajectory through statistical analysis of the degradation data, and it mainly includes the
failure physical model [4–6] and data fitting model [7–9]. The degradation distribution
is used to determine the suitable degradation amount distribution function, such as the
commonly used lognormal distribution [10] and Weibull distributions [11–13]. Based on
these distribution functions, the parameter can be estimated and the degradation trajectory
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model can be determined. Furthermore, the stochastic process can describe the randomness
of the degradation path caused by internal and external influences in the product degrada-
tion process, and the popular stochastic process models include the Wiener process [14–16]
and Gamma process [17–20]. In their studies on the durability evaluations of turbine
impellers, Li et al. [21] and Zhu et al. [22] described the performance degradation processes
of turbine impellers by developing a physical model of their failures. Zhou et al. [23]
and Yue et al. [24] characterized the turbine impeller performance degradation law by the
cumulative damage model and developed a corresponding fatigue life prediction model.
Zhang et al. [25] established a nonlinear degradation model of a turbine impeller through
neural network regression. Zhao et al. [26] used the Wiener process to establish a competi-
tive failure model of an impeller to provide a basis for maintenance and reliability studies
of the related components. Nonetheless, this research evaluates the product design life of a
turbine impeller. In engineering practice, two types of tests are carried out in the process of
turbine development (due to the limitation of the development cycle and cost): one is for
the component-level structure strengthening assessment test of the turbine, and the other
is a performance assessment test for the components installed on the whole machine. A
turbine-related durability assessment has the following practical problems:

Problem I is the matching problem of the component strengthening test and whole
machine system test. According to the component-level structural strengthening test, for
example, in China, the test for a supercharger for special vehicles, the Turbocharger 120-h
Structural Assessment Test Syllabus, is a type of strengthening test. It is also the national
military standard for a 350-h complete test of the whole performance assessment test.
The reinforcement test is a qualitative assessment method used to find the weak link in a
product by rapidly increasing the test stress, while finding a way to using the shortest time
to efficiently stimulate failure. However, it is difficult to meet the quantitative verification
of the durability level of the supercharger, and whether or not the supercharger 120-h
structural assessment test meets the requirements of the 350-h complete test does not have
a clear mathematical explanation.

Problem II is the design problem of the two kinds of bench tests. The whole engine
bench test time is no longer carried out according to the traditional method, such as when
testing a special engine with a whole bench test from 350 h to 500 h of change, and how
to provide an improved scientific basis for a supercharger structure assessment test has
become an urgent problem.

Therefore, for a special vehicle turbine, this paper aims to establish an accelerated
degradation durability evaluation model to solve the above two types of problems. The
contributions of this paper are as follows:

(1) Based on GA-BP neural network for degradation data (bench test phase), we
first propose a durability assessment model which can effectively avoid the problem of
the complicated process of resolving multi-dimensional equation systems. Furthermore,
the non-linear relationship between multiple stresses and the amount of performance
degradation can be well mapped.

(2) We propose an effective way to solve the above two types of problems, and it can
be used to guide solutions to similar problems.

The remaining structure of the article is as follows: Combined with the turbine-
related bench test, the degradation parameters and sensitive parameters required by the
accelerated degradation model are selected in Section 2. Section 3 proposes a turbine
accelerated degradation durability assessment model based on a GA-BP neural network for
assessing the turbine endurance limit. Section 4 discusses both the validity of the model and
the application of the model, explaining the problems faced by the durability assessment
as described above. Section 5 is the conclusion.
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2. Characterization Parameters of the Turbine Impeller Degradation Failure
Mechanism for a Bench Test
2.1. Failure Mechanism and Sensitive Stress Analysis

The deformation, fracture, and wear of turbine impellers are typical faults of tur-
bochargers, and they will directly affect a turbocharger’s performance and service life. The
failure of a turbocharger turbine impeller has the characteristics of diversification and mul-
tiple parts due to the combined effect of centrifugal load, thermal load, and pneumatic load.
Centrifugal loads make a turbine’s blades subject to tensile stresses. A thermal load makes
a turbine’s blades produce thermal stress. A pneumatic load makes a turbine’s blades’
surface subject to gas pressure. Wang et al. [27] analyzed the effects of the three kinds of
loads on the stress state of turbine blades, and they also analyzed the stress distribution
state of turbine blades under the combined action of loads. From this study, it can be found
that the effect of aerodynamic loads on the stress distribution of turbine blades is small
and can generally be ignored. The major influences on the stress distribution of turbine
blades are centrifugal load and thermal load. This paper takes a type of supercharger
turbine as an example and uses ANSYS Multiphysics simulation software to establish a
three-dimensional analysis model. Then, it analyzes the simulation model through the
thermal–structural coupling module, which divides the mesh for the model, uses PLANE
55 cells to realize the coupling, and loads the temperature and speed conditions. The
stress–strain distribution of the turbine under thermal and centrifugal loads, as shown in
Figure 1, is obtained. From Figure 1, we can see that the maximum stress should be in
the root of the turbine blade. Through the above analysis, and combined with the actual
working environment of the turbine blade, it can be concluded that the root of the turbine
blade is prone to fracturing under the fatigue and persistent loads.
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Figure 1. Stress distribution of turbine blades under centrifugal loads and thermal loads.

2.2. Determining the Sensitive Stress

A turbine is mainly subjected to the 120-h structural strengthening assessment test and
the 350-h complete engine performance assessment test. The former test’s profile is shown
in Figure 2, and the latter is based on the diesel engine durability test profile specified in
the Chinese national military standard. As shown in Table 1, there are 35 cycles every 10 h.

Table 1. The 350-h engine complete test profile.

Sub
Circulation

Calibration
RPM Torque (N·m) Time (min) Requirement

1 Start
Gradually increase the RPM, load, cooling medium,

and oil temperature to meet the
specified requirements.

2 Increase from the lowest no-load RPM to the highest
no-load RPM three times

3 100% By external properties 60
Every 1 h to reduce the amount of oil supply and to

reduce the speed of cooling, and the load switch
remains unchanged and the speed of rotation slows
down to the lowest stable operating speed, which is

timed for 2–3 min (not counted in the
assessment time).

4 85%~90% By external properties 420

5 80% By external properties 100

6 Maximum
torque RPM Maximum torque 20

7 Check minimum no-load RPM 3

8 Cooled parking Gradually cool the diesel engine to the
stopping specifications

9 The parking time is no more than 60 min.
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Figure 2. The 120-h turbocharger standard structure assessment test profile.

Combined with the analysis of the above test profiles, it is known that:
(1) Supercharger turbines often operate under high-speed and high-temperature load-

ing conditions. These time-varying loads subject the turbine to various constraints all the
time. One of the most important constraints in the optimization of a turbine’s aerodynamic
performance is fatigue. Durable performance and fatigue life are the essential properties of
engineered parts. The former is assessed by the endurance limit, generally throughout the
assessment test cycle, while the latter is measured by the number of cycles of experience
before it fails. High-period fatigue of a turbocharger is fatigue damage caused by the
accumulation of alternating stresses caused by resonance. The resonance frequency range
is from thousands of Hz to tens of thousands of Hz, but its design cycle life requirement
is greater than 1010. Therefore, the resonance problem has been solved by some effective
methods. A specific analysis is as follows:
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• As shown in Figure 2, the 120-h turbocharger standard structure assessment test
includes three stages: (i) The first stage is the 100-h endurance performance test
under constant stress. (ii) The second stage is the 5-min over-temperature and over-
velocity test. (iii) The third stage is the 20-cycle alternating stress test. The endurance
performance is assessed throughout the whole test cycle. However, the 20 cycles of the
alternating stress test are very limited for fatigue performance assessment. Therefore,
the assessment of endurance performance for a turbine impeller is more important in
this case.

• As can be seen in Table 1, the test profile of the 350-h complete machine test for a diesel
engine is mainly composed of four working conditions. Condition 1 is the calibration
speed, and the torque is in accordance with the external characteristics. Condition 2
is 85–90% of the standard speed, and the torque is in accordance with the external
characteristics. Condition 3 is 80% of the standard speed, and the torque is per the
external characteristics. Condition 4 is the maximum torque speed, and the torque is
the maximum torque. Condition 1–Condition 3 account for a high percentage of the
entire test cycle, and the supercharger speed is generally not high during the no-load
operation. In addition, the test is conducted in one cycle of 10 h, with 35 cycles in total.
For a turbine impeller, the alternating stress test is very limited for fatigue performance
assessment. Therefore, the test also mainly assesses the endurance performance of a
turbine impeller.

(2) From the whole test profile, turbine impeller failure is mainly caused by the cen-
trifugal load action associated with the speed of a supercharger. In addition, the material of
a turbine impeller is the cast high-temperature alloy K418. The effect of high temperature
causes the lasting limit (lasting strength) of the blade root to decrease continuously. From
the point of view of material damage principles, this reduction in strength can be quanti-
tatively described by the amount of damage and is monotonic with time. Therefore, the
strength damage at the endurance limit or endurance stress can be used as the degradation
parameter when analyzing the performance degradation trend of turbine impellers, as well
as when evaluating the durability of superchargers. The endurance limit data of K418 at dif-
ferent temperatures and times are shown in Table 2. In this table, the relationship between
the temperature, endurance limit, and life (duration) is indicated, and the relationship
between the accumulated load, temperature, endurance limit, and life (duration) is implied.
From Figure 1, we can see that the main stresses affecting the turbocharger turbine blade
roots are the centrifugal and thermal loads. According to Table 2, temperature directly
affects the material’s endurance limit, while rpm is directly linked to the endurance limit.
The endurance limit is the main index for a durability assessment, and so temperature and
rpm can be selected as the two sensitive stresses for the assessment test.

Table 2. Persistence limits of the K418 alloy at different temperatures and times [28].

Sampling θ/◦C
σt/h/MPa

σ50 σ100 σ200 σ300 σ500 σ1000 σ2000 σ5000 σ10,000

Precision cast test rod

650 — — 833 820 810 804 1© 774 1© — — — — — —
700 810 725 720 710 666 627 1© 610 1© — — — —
732 710 666 650 630 588 549 530 1© 470 1© 441 1©

750 680 617 610 600 539 510 480 412 1© 372 1©

800 560 480 470 460 412 363 340 294 255 1©

816 540 441 430 400 363 323 300 1© 255 1© 235 1©

850 410 372 350 310 294 265 240 1© 206 1© 167 1©

900 300 274 250 230 216 176 160 137 108 1©

930 250 216 190 180 167 1© 137 1© — — — — — —
950 230 167 155 150 137 118 1© 100 1© — — — —
982 170 137 125 120 108 1© 88 1© — — — — — —
1000 140 118 113 110 88 1© — — — — — — — —

1© Data derived from the integrated curve of thermal intensity parameters.
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3. The Performance Degradation Model Based on a BP Neural Network
3.1. Data Process

In accordance with the supercharger 120-h test (Table 3) and the complete engine
350-h test (Table 4), the results of the turbo–solid coupling simulation test are as shown in
Tables 5 and 6.

Table 3. Data for the 120-h assessment test.

RPM The Total Temperature at the Outlet Total Pressure at the Outlet Total Pressure at the Inlet

r/min K KPa KPa
46,000 969 100 54
80,000 959 100 272
88,000 919 100 389
96,000 1050 100 495

Table 4. Data for the 350-h assessment test.

RPM Total Temperature at the Outlet Total Pressure at the Outlet Total Pressure at the Inlet

r/min K KPa KPa
72,000 923 100 250
64,000 923 100 220

Table 5. Fluid–solid coupling simulation results of the 120-h turbine test.

RPM Turbine Blade Root Stress/MPa Turbine Blade Root Temperature/K

46,000
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Table 5. Cont.

RPM Turbine Blade Root Stress/MPa Turbine Blade Root Temperature/K

88,000
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Table 6. Cont.

RPM Turbine Blade Root Stress/MPa Turbine Blade Root Temperature/K

64,000
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3.1.1. Data Expansion

The accuracy of the nonlinear fitting of BP neural networks requires large numbers of
valid data. However, the data sample size of this test is small. To solve the problem, we
first need to establish the mathematical relationship between the amount of degradation
and the sensitive stress according to the material property data (Table 2). Then, combining
the above established mathematical function with the test date, the degradation model
under each test condition can be derived.

The endurance performance is assessed throughout the life cycle of the whole test.
The cumulative amount of stress σ at the action time t is recorded as the accumulated load
L(t). The relationship between the three can be expressed as follows:

σt = f (L(t), θ) (1)

where θ is the temperature and L(t) = σit or σi is the persistence limit.
The model accuracy of the neural network greatly depends on the sample data. To

reduce the influence of the randomness of the original data, the information of regularity
in the data is highlighted and improves the model’s stability. The Larson–Miller formula is
used to expand the existing data, and is given as follows:

P(σ) = T(C + lgt)× 10−3 (2)

where σ(MPa) is the stress on the material, T(K) is the temperature, t(h) is the time, C is
the material constant, and P(σ) is the Larson–Miller parameter, in which the relationship
between P and σ is given as follows:

lgσ = a2P2 + a1P + a0 (3)

where ai(i = 0, 1, 2) is the coefficient.
For the selection of C, we use TAE (trial-and-error) to take values in the appropriate

range. Using the data in Table 2 and combining Equations (2) and (3), the variation
relationship between the GOF (goodness-of-fit) of R2 and C is as shown in Figure 3.
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When C = 20.3, we can obtain MAX
{

Ri
2} = 0.9962 and RMSE = 0.01708 (root mean

square error). We can see the GOF of this model is very close to 1 and the RMSE is small,
which can better reflect the relationship between the parameter P and the stress σ. Then,
from Equations (2) and (3), we can derive:

lgσ = −0.007822P2 + 0.2744P + 0.6002 (4)

P(σ) = T(20.3 + lgt)× 10−3 (5)

Because test results rely on low-temperature data, the temperature is expanded toward
the lower range. Taking T/◦C = [500, 1000] and t/h = [50, 1000], and keeping the initial
data and the step size as 10, we then combine Equation (4) with Equation (5), and the data
can be expanded. The expanded sample has 3492, which is approximately 50 times the
original data. We choose these data as the neural network training data.

3.1.2. Data Normalization

The three types of data included in the training data have different magnitudes
and large differences in values. These are not suitable for direct use in nonlinear fitting.
To keep these different magnitudes in the same order of magnitude and improve the
convergence of the algorithm, the available data are normalized to the interval [−1, 1] using
the following equation:

xmid =
xmax + xmin

2
, xi =

xi − xmid
1
2 (xmax − xmin)

(6)

3.2. Construction of a Turbine Performance Degradation Model Based on the Material
Endurance Limit

Before constructing the model, we need to determine the basic parameters and al-
gorithms for training the model. This mainly includes determining the neural network
structure and selecting the learning parameters, excitation function, and transfer function,
and then setting the basic elements in the genetic algorithm.
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3.2.1. Define the Network Structure

The model takes the temperature and accumulated load as inputs in which the node
n = 2, and it takes the lasting strength as an output in which the node m = 1. The input
layer, hidden layer, and output layer of the network are all single-layer structures. Too few
nodes in the hidden layer will reduce the accuracy of the model, and too many nodes will
cause overfitting. An empirical formula is adopted in this paper, as follows:

k = 2n + 1 (7)

where n is the number of input layer nodes. The number of hidden layer nodes determined
by Equation (7) is 5; therefore, the neural network structure used in this paper is 2-5-1.

3.2.2. Determine the Network Parameter

The proportion of training set, verification set, and test set in the sample data are
75%, 15%, and 15%, respectively. The initial weights and thresholds of the network are
first chosen randomly at [−1, 1]. The optimal weights will be determined later by the
genetic algorithm. The maximum number of iterations is 2000, the expected error is 0.00001,
and the learning rate is 0.1. The performance metric of the network is the MSE (mean
squared error).

3.2.3. Select the Excitation Function

The three commonly used excitation functions in MATLAB’s Neural Net Fitting
toolbox are the logsig, tansig, and purelin functions. The logsig function is a unipolar
S-type nonlinear transfer function with an unlimited input range and an output range of
(0, 1). The tansig function is a bipolar S-type nonlinear transfer function with an unlimited
input range and an output range of (−1, 1). The purelin function is a linear transfer function
with an unlimited range of inputs and outputs. In this paper, all data have been normalized
to [−1, 1]. To ensure the output range, tansig and purelin are selected as the transfer
functions for the neurons in the implicit and output layers, respectively.

3.2.4. Select the Training Algorithm

The commonly used training algorithms in MATLAB are trainlm, trainbr, and trainscg.
Using the trial-and-error method, we combine different statistical criteria to select the
training algorithm which is more suitable for the model. These criteria include iterations,
the mean square error (MSE), the goodness of fit (GOF-R2), and the root mean square error
(RMSE). The calculation formulas are as follows:

MSE =
1
n

n

∑
i=1

( fANN,i − fi)
2 (8)

R2 = 1 −

n
∑

i=0

(
ˆ
f ANN,i − fi

)2

n
∑

i=0

(
f − fi

)2 (9)

RMSE =

√
1
n

n

∑
i=1

( fANN,i − fi)
2 (10)

The results are shown in Table 7.
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Table 7. Training results of the three algorithms.

Training Algorithm Iterations MSE GOF-R2 RMSE

trainlm 19 0.996 × 10−5 0.99994 3.155 × 10−3

trainbr 106 0.977 × 10−5 0.99994 3.126 × 10−3

trainscg 189 0.983 × 10−4 0.99937 9.915 × 10−3

From the Table, it can be seen that the GOF and MSE of the three algorithms have no
significant differences, while trainlm has the least iterations and the fastest convergence
speed. To improve the learning efficiency of the network, this paper chooses trainlm as the
training algorithm.

3.2.5. Determine the Basic Elements of the GA

The structure of the BP neural network in this paper is 2-5-1. The weight and threshold
are shown in Table 8.

Table 8. Numbers of the weight and threshold.

Connection Weights of the Input
Layer and the Implied Layer

Threshold of the
Implied Layer

Connection Weights of the Implicit
Layer and the Output Layer

Threshold for the
Output Layer

10 5 5 1

In this paper, individuals are coded in real numbers. Each encoding consists of weights
and thresholds, and the length is 21. The iteration of the algorithm is 30, the population
size is 20, the crossover probability is 0.7, and the variance probability is 0.1.

The fitness function is determined by the absolute value of the sum of the errors
between the predicted and expected outputs of the neural network prediction model
outputs. The calculation formula is as follows:

F =
n

∑
i=1

abs(yi − di) (11)

where F is the fitness value, yi is the predicted output of the neural network, and di is the
expected output.

According to the above formula, the lower the fitness is, the smaller the prediction
error is, and the higher the probability of its selection should be. The calculation formula is:

Pi =
1
Fi

n
∑

j=1

1
Fi

(12)

3.2.6. Modeling

Modeling is established based on the above model information. It can obtain the
nonlinear model f (net) that can effectively reflect the accumulated load, temperature, and
action time, which can be expressed as:

σ = f (L(t), θ) (13)

3.3. Turbine Endurance Limit Calculation Model

The two types of test data obtained from Tables 5 and 6 are shown in Tables 9 and 10,
respectively.
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Table 9. The 120-h test data.

Number n/r·min−1 Time t/h Temperature T/K Turbine Hazardous Area Stress σ/MPa

1 80,000 100 835 462
2 96,000 0.0833 855 971
3 88,000 20 792 537

Table 10. The 350-h test data.

Number n/r·min−1 Time t/h Temperature T/K Turbine Hazardous Area Stress σ/MPa

1 95,500 60 756 538
2 87,000 420 771 434
3 81,800 100 798 371
4 76,200 20 824 303

If we denote the stress in each stage as σi(i = 1, 2, . . .), then the corresponding cumu-
lative load Li(t) can be expressed as:

Li(t) =
n−1

∑
i=1

σiti + σn(tn − tn−1) (14)

Combining the test temperature θi at each stage and substituting it into Equation (13),
we can obtain the calculation model of the endurance limit for each test process, respec-
tively, as:

σ120 = f (L120(t), θ120) (15)

σ350 = f (L350(t), θ350) (16)

The relationship between the endurance limit and time during the test is respectively
fitted, as shown in Figures 4 and 5.
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From the above figures, it can be concluded that the endurance limit tends to decay
slowly with time during the test, and after the test, the endurance limits are σ120 ≈ 778 MPa
and σ350 ≈ 1023 MPa.

4. Results Analysis
4.1. Model Validity

The variation of the fitness of the optimal individual during the calculation of the
genetic algorithm is shown in Figure 6. The optimal solution or local optimal solution is
derived after approximately 17 iterations.
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Taking the optimized data as the initial weights and thresholds of the BP neural
network, after 76 iterations, the EE (expected error) is determined and we can obtain
MSE = 0.999 × 10−5 and R2 = 0.99994. The results are shown in Figures 7 and 8.
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The final error of the model is small and the GOF is close to 1. We can conclude that
the model can effectively reflect the nonlinear relationship between the accumulated load,
temperature, and action time.

4.2. Model Application

Based on the above-mentioned performance degradation model of the turbine impeller
studied for the bench test, this paper discusses the above Problem I and Problem II.

4.2.1. Discussion of Problem I

Problem I is a mathematical explanation of why the 120-h structural test of the super-
charger meets the 350-h test of the engine. Based on the degradation model of the endurance
limit of the 120-h and 350-h tests, we obtained σ120 = 778 MPa and σ350 = 1023 MPa at the
end of the tests. The analysis suggests that the true stress undergone during the 120-h cali-
bration parameter test is assumed to be P120. If the 120-h assessment test is passed, it means
that the true stress P120 should be less than σ120, i.e., P120 < σ120 = 778 MPa. According to
the design and simulation results of the 350-h test, the RPM and temperature of this test
are less than those of the 120-h structural test. In theory, the real stresses in the 350-h test
should be less than those of the 120-h test, i.e., P350 < P120. It is concluded that when the
120-h structural assessment test is passed, the endurance limit of both has the following
relationship: P350 < P120 < σ120 = 778 MPa. After the 350-h test, σ350 = 1023 MPa and the
following relationship exists: P350 < P120 < σ120 < σ350. This indicates that the real stress
on the supercharger during the 350-h complete test must be less than that of the endurance
limit under the current test conditions, and the test must pass.

4.2.2. Discussion of Problem II

Problem II is the design suggestions for the structural assessment test of the super-
charger for a turbine impeller. As can be seen from the test protocols for the 120-h structural
test and the 350-h complete test of the supercharger, the sensitive parameters (temperature
and speed) are different for both tests, and thus the cumulative load is different. Firstly, we
should calculate the cumulative load ratios for the 350-h test and 120-h test. Secondly, we
should calculate the cumulative load for the new complete engine test and use the load
ratios to obtain the cumulative load required for the new test of the supercharger. Then,
we will need to improve the test profile based on the 120-h calibration parameters. Finally,
based on the above degradation model, we can verify that the new assessment test of the
supercharger meets the new complete engine test requirements. We can take the change of
the complete engine assessment test to 500 h as an example:

• Calculate the cumulative load ratio. According to the 120-h structural test and
350-h complete machine test, it can be calculated that the cumulative load ratio is:
L120/L350 = 0.4467.

• Calculate the cumulative load required for the new structural assessment test. Accord-
ing to the ratio 0.4467, when the complete engine test reaches 500 h, the 350 h test is
designed to do 50 cycles. Then, one can calculate the cumulative load of the required
supercharger structure assessment experiment.

• Design the new supercharger assessment test. The 120 h calibration parameter assess-
ment test is roughly divided into two stages. The first stage (5/6) is the uniform speed
rotation. The second stage (1/6) applies the alternating stress. Based on the rotation
speed, it is calculated that the test time of the supercharger structure assessment
required to pass the 500 h complete engine test is 172 h.

• Validation based on the degradation model. According to the method in Section 3
of this paper, σ172 = 767 MPa < σ500 = 1014 MPa; that is, the supercharger’s 172 h
of structural assessment can meet the requirements of the 500 h complete machine
test assessment.
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• Suggestions for the design of the 500-h assessment test: to facilitate the actual operation
of the project, it is recommended to use a multiple of 10 as the actual intensive
assessment time, i.e., take the assessment time of 180 h.

5. Conclusions

In this paper, combining the characteristics of accelerated life test data analysis and
intensive testing to quickly achieve performance degradation or to expose failures, we
proposed an accelerated degradation durability evaluation model for the turbine impeller
of a turbine based on a GA-BP Neural Network. The specific work is summarized as follow:

• Firstly, in terms of model-building ideas, we combined the failure mechanism and
bench test analysis, and the endurance limit was determined as the degradation
quantity, which could effectively avoid the difficulty of observing and measuring
the degradation quantity of the traditional method, which selects the wear quantity
and wear size for the degradation analysis of mechanical products. Meanwhile, the
temperature and RPM were selected as the sensitive monitoring parameters.

• Then, in terms of modeling methods, based on the turbine material endurance limit
data, we obtained a large amount of sample data by resampling as the input quantity
and target quantity for training, which helped to ensure the model’s accuracy. Based
on the GA-BP neural network, the nonlinear relationship between the endurance
limit and the cumulative load temperature was fitted, which effectively avoided the
problem that the traditional method needs to solve a complex system of likelihood
equations, and it could map the mathematical relationship between variables well.
Then, the performance degradation model of the turbine impeller during the test was
provided to realize the evaluation of the endurance limit.

• Finally, in terms of model applications, we analyzed the validity of the model, and
based on the model calculation results, we reasonably explained whether the cur-
rent structural assessment test for turbochargers (according to the component level)
could meet the requirements of the complete engine assessment test. Meanwhile,
we illustrated how the corresponding component-level assessment test time should
be adjusted when the whole engine test time is adjusted. In other words, using the
proposed model for the scientific explanation of the above two types of problems
can provide technical support for the design of the critical component-level assess-
ment test in a turbocharger durability assessment, thus effectively controlling the
cost of a turbocharger durability assessment test and providing guidance for other
similar problems.
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