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Abstract: Aiming at the application of the overhead transmission line insulator patrol inspec-
tion requirements based on the unmanned aerial vehicle (UAV), a lightweight ECA-YOLOX-Tiny
model is proposed by embedding the efficient channel attention (ECA) module into the lightweight
YOLOX-Tiny model. Some measures of data augmentation, input image resolution improvement and
adaptive cosine annealing learning rate are used to improve the target detection accuracy. The data
of the standard China power line insulator dataset (CPLID) are used to train and verify the model.
Through a longitudinal comparison before and after the model improved, and a cross-sectional
comparison with other similar models, the advantages of the proposed model are verified in terms
of multi-target identification for normal insulators, localization for small target defect areas, and
the parameters required for calculation. Finally, the comparative analysis between the proposed
ECA-YOLOX-Tiny model and YOLOV4-Tiny model is given by introducing the visualization method
of class activation mapping (CAM). The comparative results show that the ECA-YOLOX-Tiny model
is more accurate in locating the self-explosion areas of defective insulators, and has a higher response
rate for decision areas and some special backgrounds, such as the overlapping small target insulators,
the insulators obscured by tower poles, or the insulators with high-similarity backgrounds.

Keywords: overhead transmission lines; self-explosion defects of insulators; unmanned aerial vehicle
(UAV); lightweight ECA-YOLOX-Tiny model; resolution of input images; adaptive learning rate;
class activation mapping (CAM)

1. Introduction

Insulators are the essential insulation safety devices in overhead transmission lines.
Under the effects of long-term climate change, chemical corrosion, strong electrical field
and excessive mechanical load, the insulators are very prone to self-explosion failure, and
damage the safe operation of the whole line. Therefore, it is necessary to regularly inspect
the insulators of overhead transmission lines. At present, UAV is the main way to inspect
overhead transmission lines due to its advantages of small size, low inspection difficulty
and cost, high efficiency and safety, and the ability to adapt to bad weather and natural
disaster conditions [1–4].

The key technologies of UAV regular inspection for overhead transmission lines lie
in two aspects of the working performance of UAV and the automatic detection and
identification of defects. With the development of UAV technologies, the basic technologies
in terms of lightweight structure, continuous working ability, path planning and navigation,
and integrated control, etc., are mature and meet the requirements of overhead transmission
line inspection. What is more, a large number of deep learning algorithms for target
detection are emerging and the proper application effect in the field of object detection are
achieved in recent years.

The deep learning target detection algorithms can be divided into two-stage algo-
rithms and one-stage algorithms according to their characteristics. Based on the principle

Appl. Sci. 2022, 12, 9314. https://doi.org/10.3390/app12189314 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12189314
https://doi.org/10.3390/app12189314
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1231-4309
https://orcid.org/0000-0002-7725-4493
https://doi.org/10.3390/app12189314
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12189314?type=check_update&version=2


Appl. Sci. 2022, 12, 9314 2 of 23

of two-stage algorithms, some candidate boxes are generated first, and their feature in-
formation is extracted, and then the position boxes are generated and the corresponding
categories are predicted. The high detection precision and low detection speed are two
difficult balancing characteristics of two-stage algorithms. The representative models of
two-stage algorithms include R-CNN [5], spatial pyramid pooling networks (SPPNet) [6],
fast R-CNN [7], and faster R-CNN [8], etc. On the contrary, the classification and re-
gression localization are performed directly during the candidate boxes generated in the
one-stage algorithms, and the low detection precision and high detection speed are two
difficult balancing characteristics of one-stage algorithms. The representative models of
one-stage algorithms include You Only Look Once (YOLO, V1–V5 versions) [9–13] and
single shot multibox detector (SSD) [14], etc. The related applications are given as follows:
the CME-CNN was used firstly by Wen et al. to eliminate complex background information
and then the Exact R-CNN was used to detect insulator defects [15]. The faster R-CNN
and SSD-MobileNet were used by Ghoury et al. to identify grapes as well as grape leaves
diseases [16]. The improved YOLOV5 was used by Yan et al. to conduct real-time detection
for robot apple-picking [17].

Based on the application requirements and continuous development of deep learning,
a number of lightweight models are emerging, the lightweight classification models include
SqueezeNet [18], ShuffleNet [19], MobileNet, and MnasNet, etc., and the lightweight
target detection models include YOLOV3-Tiny [20] and YOLOV4-Tiny, etc. The related
applications are given as follows: the lightweight MnasNet was used to replace the feature
extraction network of SSD by Liu et al. and the improved ISSD network was used to
detect insulators and spacers [21]. The lightweight MobileNet was adopted to improve the
YOLOV4 model by Qiu et al. and the defect of insulator images after Laplace sharpening
was detected [22]. The lightweight YOLOV4-Tiny was used by Qiu et al. to detect birds
associated with transmission line faults [23]. In 2021, the YOLOX algorithm was proposed
by Ge et al. which improved the detection accuracy and reduced the model size compared
with other similar algorithms in the YOLO family [24].

In practical applications, the computational capability of UAV is a limiting factor. The
main reasons are listed as follows: the perfect and spectacular results that can be achieved
by deep convolution neural networks (DCNN) rely on expensive computing resources,
which hinders the neural network models which can be applied in small mobile devices
such as UAV. In addition, it is difficult to embed the DCNN into mobile devices due to the
large scale and complex structure of current target detection models. Based on the above
analysis, a high-precision and real-time lightweight ECA-YOLOX-Tiny model is proposed
in this paper and used to detect the self-explosion defect of insulators by UAV. The flow
chart of insulator defect detection based on UAV is shown in Figure 1.

Figure 1. The flow chart of insulator defect detection based on UAV.
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2. The Construction of ECA-YOLOX-Tiny Network Model
2.1. The Lightweight Attention Module Introduction

Multiple versions of YOLO target detection algorithms have been proposed after
continuous optimization, and a good balance between detection accuracy and speed has
been achieved. YOLOX-Tiny is a lightweight model of YOLOX, compared with other
versions of YOLOX, the structure size of YOLOX-Tiny is smaller, the required parameters
are fewer, and the requirements for hardware conditions are lower. Therefore, YOLOX-Tiny
is more suitable for UAV with limited calculative ability.

The model’s detection performance will usually be decreased after the network is
lightened. In recent years, the attention mechanism has been widely adopted in deep
learning target detection networks to improve the model performance. The more complex
network structures are designed in attention modules Squeeze and Excitation (SE) [25]
and Convolutional Block Attention Module (CBAM) [26] to improve the performance of
the model. The fully connected layers are adopted in SE and CBAM, which substantially
increases the number of parameters, the complexity of structure and the cost of computation.
The Efficient Channel Attention (ECA) [27] is a lightweight improvement module based on
SE. In the ECA module, the two fully connected layers of the SE module are replaced by
a kind of 1D convolution with adaptive kernel size, which improves the attention of the
original model and only adds a small number of parameters, and the contradiction between
model performance and structure complexity is commendably solved. The structures of SE
and ECA are respectively shown in Figure 2a,b.

Figure 2. The structure diagrams of SE and ECA: (a) SE module (b) ECA module.

In Figure 2, χ ∈ RW×H×C is the output of the convolution module. W, H, and C are
the width, height, and channel dimension of feature maps, respectively. The kernel size k
of 1D convolution represents the coverage of cross-channel interaction, which indicates
how many neighboring channels are involved in the attention prediction of a channel. The
kernel size k is proportional to the channel dimension C and can be determined adaptively
by a nonlinear mapping of channel dimensions. r is the down-scaling rate, and σ is the
sigmoid function, ⊗ represents the element-wise product.
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In ECA, the global average pooling (GAP) without channel dimension decline is used
to polymerize the global features of images, the 1D convolution is used to learn directly,
and then the weight coefficients of the channels are fixed between 0 and 1 by one-time
calculation of the sigmoid function. Finally, the weighted multiplication between these
coefficients and input features is carried out to increase the interest of important features
and suppress the interest of unimportant features.

Compared with SE, ECA uses 1D convolution to replace fully connected layers to
avoid significantly increasing the model parameters and thereby improving the nonlinear
capability of the model. The negative impact of dimension decline on the model perfor-
mance is avoided and the local cross-channel information interaction strategy is used to
improve the performance of the ECA model.

Based on the above analysis, an efficient channel attention module is embedded into
the YOLOX-Tiny to enhance the model learning capability and improve the defect detection
accuracy for insulators.

2.2. Adjustment of Input Image Resolution

In general, a lot of detailed information on small targets can be retained in high-resolution
images. In order to further improve the detection accuracy of the YOLOX-Tiny model for
small target defect areas of insulators and multi-scale multi-target insulators, the input
image resolution of the YOLOX-Tiny model is adjusted appropriately. The input image
resolution of the original YOLOX-Tiny model is reshaped from 416 × 416 to 640 × 640.

2.3. Optimization of the YOLOX-Tiny Model

The YOLOX-Tiny model mainly consists of a backbone feature extraction network
(Backbone), an enhanced feature extraction network (Neck) and a prediction module
(Precision). The ECA-YOLOX-Tiny model with ECA attention mechanism and high input
image resolution is shown in Figure 3. The ECA module is added into three different scales
of preliminary effective feature output layers from the YOLOX-Tiny backbone network,
meanwhile, the ECA module is also added into the second down-sampling results of the
Neck module.

Figure 3. The network structure of improved ECA-YOLOX-Tiny.
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In Figure 3, Cls is the object category contained in the determine feature point
(H ×W × C), Reg is the regression parameters of the determine feature point (H ×W × 4),
and Obj is used to judge whether the object is contained in feature point (H ×W × 1). CBS
is the combination of convolution layer (Conv2D), batch normalization (BN) layer and
SiLU activation function.

The detailed description of the model from the backbone feature extraction network
to the prediction section is provided in Appendix A.

3. The Construction of the Dataset

The standard China power line insulator dataset (CPLID) [3] is used for model training
and testing in the paper. CPLID includes 248 images of self-explosion insulators and
600 images of normal insulators with 1152 × 864 image resolution. If the insulator sample
is insufficient, the characteristic information of the insulators cannot be fully learned by the
network model, and the detection accuracy of the model for small target defect areas and
multi-target insulators at different scales is low. Based on the original images of CPLID, the
methods of mirroring, rotation, cropping and scaling, contrast adjustment and brightness
adjustment are used to enhance the sample data according to the flight shooting conditions
of UAV (such as shooting location, angle, weather conditions, light intensity, distance, etc.).
Through the data augmentation methods, 2232 images of self-explosion insulators and
3600 images of normal insulators are obtained. The data augmentation effect is shown in
Figure 4.

Figure 4. Data augmentation: (a) original image, (b) mirroring, (c) rotation 180◦, (d) cropping and
scaling, (e) adjust contrast, (f) adjust brightness.

The Labelimg annotation tool is used to annotate the dataset, and 90% of the dataset is
randomly selected as the training set (4723 images), 10% of the dataset is randomly selected
as the testing set (525 images), and then 10% of the training set is randomly selected as the
validation set (584 images).

4. Case Verification and Analysis
4.1. Running Environment and Parameter Settings

At present, small mobile devices such as UAV mostly employ CPU processors. In
order to simulate the hardware environment of UAV, the case analysis in the paper is
carried out on the PC terminal, and the hardware configuration and software development
environment are shown in Table 1.
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Table 1. The hardware configuration and software development environment.

Hardware Configuration Version or Value Software Development Environment Version

Operating system Windows 10–64 bit PyCharm Community Edition 2020.3.5
Graphics card NVIDIA GeForce GTX 1050 Anaconda3 2020.11

Processor Intel(R) Core (TM) i5–8300H CPU ∼= 2.30 GHz Python Python 3.6
Operating memory 8 GB Keras Keras 2.2.4

The network training parameters are set out in Table 2.

Table 2. The parameters settings for network training.

Parameters Value Parameters Value

Input shape 640 × 640 Momentum 0.937
Optimizer Adam Freeze batch size 32

Freeze epochs 0~50 Unfreeze batch size 16
Unfreeze epochs 50~100 Maximum value of learning rate 1 × 10−3

Confidence 0.5 Minimum value of learning rate 1 × 10−5

The descriptions of the adaptive cosine annealing learning rate (ACLR) and freeze
training are given below.

The learning rate (LR) is a very important hyperparameter at the model training stage,
which directly controls the pace of the parameters’ updating process. The gradient descent
algorithm is usually used to optimize objective function, the learning rate should become
smaller so as to make the model as close as possible to the minimum when the loss value is
nearing the global minimum. According to this principle, the learning rate can be reduced
by the cosine function of the cosine annealing method, and a good effect can be obtained
by combining this descent pattern with the learning rate [28]. The adaptive learning rate
training method can monitor and adaptively adjust the learning rate according to the
change of a certain parameter (batch size). Therefore, on the basis of the cosine annealing
learning rate, the model training method of adaptive learning rate is introduced, and the
learning rate is adjusted adaptively according to the batch size (batch size/64 × LR). The
learning rate updates will be adjusted at a high pace when the batch size is large (freeze
training), and the learning rate updates will be adjusted at a low pace when the batch size
is small (unfreeze training).

At the model training stage, the input image size is large and the large parameters
need to be updated, so the freeze training method is adopted to improve the training speed
of the ECA-YOLOX-Tiny model. At the freeze training stage, the first 125 layers of the
backbone feature extraction network are frozen, and the weights are unchanged, but the
later 142 layers are not frozen and the weights are optimized iteratively. Therefore, the
number of parameter variations is small, and the hardware requirements are low at the
freeze training stage. At the unfreeze stage, the whole network is fine-tuned and the whole
network parameters are changed, so the hardware requirements are high and the training
time is long. The freeze training method avoids the too-random phenomenon of network
weights initialization in the case of small sample insulator datasets, which significantly
improves the training efficiency of the model, and accelerates the model convergence speed
and shortens the training time.

4.2. The Evaluation Index

The indexes of mean average precision (mAP), precision (Pr), recall (Re) and F1
score, and frames per second (FPS) are adopted to evaluated the performance of the
ECA-YOLOX-Tiny model. Pr represents the proportion of correct predictions among all
targets predicted by the model, Re represents the proportion of correct predictions among
all real targets, F1 score is the harmonic average of Pr and Re. The formulas of Pr, Re and F1
score are shown in (1), (2) and (3), respectively. In (1) and (2), TP is the number of samples
whose ground truth and prediction value are positive, FP is the number of samples whose
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ground truth is negative and prediction value is positive, FN is the number of samples
whose ground truth is positive and prediction value is negative.

Pr =
TP

TP + FP
(1)

Re =
TP

TP + FN
(2)

F1 =
2Pr × Re

Pr + Re
(3)

The average precision (AP) is the contained area under the PR curve. The mAP is the
average value of all categories AP for multi-target detection. The formula of mAP is shown
in (4). In (4), C represents the number of insulator categories, N represents the number of
IoU thresholds (T), and P(x) and R(x) represent the precision and recall, respectively.

mAP =
1
C

N

∑
T=i

P(x)×R(x) (4)

In order to compare the detection speed of different models and reflect the real-time
detection ability of models, FPS is introduced as an evaluation index. FPS value is greatly
influenced by the performance of the computer device, so FPS is only used for comparative
analysis between different models on the same computer condition.

4.3. Training Model

The training loss curve of the ECA-YOLOX-Tiny model is shown in Figure 5. In
the first 50 epochs of the freeze training phase, the training loss and validation loss both
decrease rapidly, and the model converges quickly, and the loss value decreases rapidly
as the number of training iterations increases. In the second 50 epochs of the unfreeze
training, the training loss and the validation loss both decrease slowly, and the loss value
on the validation set is smaller than that of the training set. Finally, the loss curve tends to
be smooth and reaches a better convergence state, which indicates that the model is well
trained.

Figure 5. The training loss curve of the ECA-YOLOX-Tiny model.

The precision–recall (PR) curves and AP values of defective insulators and normal
insulators are shown in Figure 6. The PR curve can be used to judge the performance of
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the model, and the model performance will be better when the PR curve is closer to the
upper right corner. In Figure 6a,b, the blue shaded area below the curve represents the AP
value of the defective insulators and normal insulators, and the larger area means the larger
AP value of the model. It can be seen from the test results that the AP value of defective
insulators is 100% and AP value of normal insulators is 99.87%. The higher AP value means
higher recognition accuracy and the better performance of the model. After introducing
multiple methods of data augmentation, lightweight attention module (ECA), input image
resolution expansion and multi-scale feature fusion, etc., excellent detection results have
been achieved by the ECA-YOLOX-Tiny model, and the problem of low accuracy in the
classification and localization of small target defective insulators due to the lack of defect
insulators training samples is overcome.

Figure 6. The PR curve and AP value of defective and normal insulators: (a) PR curve and AP value
of defective insulators (b) PR curve and AP value of normal insulators.

The recall curves of defective insulators and normal insulators are shown in Figure 7.
Figure 7 indicates that the recall curves of insulators tend to decrease slightly with the
increase in score threshold. The recall curve of defective insulators decreases tempestuously
when the score threshold reaches 0.9, and the recall curve of normal insulators decreases
significantly when the score threshold reaches 0.8. The recall of defective insulators is 100%
and the recall of normal insulators is 99.26% when the score threshold is 0.5, which reflects
the fact that the ECA-YOLOX-Tiny network has a high prediction accuracy.

Figure 7. The recall curve of defective and normal insulators: (a) recall curve of defective insulators,
(b) recall curve for normal insulators.
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The F1 scores of defective insulators and normal insulators are shown in Figure 8. It
can be seen from the figure that the F1 scores display a dramatically rising trend when the
score threshold approaches 0. With the increase in score threshold, F1 scores tend to be
stable, and the decreasing trend of F1 scores is obvious when the score threshold reaches
0.9. When the score threshold is 0.5, the F1 score of defective insulators is 100% and the
F1 score of normal insulators is 99%, which indicates that the accuracy and recall of the
ECA-YOLOX-Tiny algorithm are high for both defective and normal insulators.

Figure 8. The F1 score curve of defective and normal insulators: (a) F1 score curve of defective
insulators, (b) F1 score curve of normal insulators.

4.4. The Analysis of Detection Effect before and after the Model Improved

The original YOLOX-Tiny model with an input image resolution of 416 × 416 is
denoted as YOLOX-Tiny_416, the YOLOX-Tiny model with 640 × 640 image resolution
is denoted as YOLOX-Tiny_640, the model with 640 × 640 image resolution and em-
bedded ECA lightweight attention module is denoted as ECA-YOLOX-Tiny, and the
ECA-YOLOX-Tiny model with adaptive cosine annealing learning rate is denoted as
ECA-YOLOX-Tiny (ACLR). The training results of different models are shown in Table 3,
where TT represents the training time of the model.

Table 3. The training results of different model.

Model mAP (%) Pr (%) Re (%) F1 (%) TT (h) FPS (Pictures s−1)

YOLOX-Tiny_416 99.54 98.525 98.6 98.5 82.5 4.89
YOLOX-Tiny_640 99.61 98.825 98.97 99.0 175.0 2.17
ECA-YOLOX-Tiny 99.72 98.82 98.895 99.0 198.5 2.17

ECA-YOLOX-Tiny (ACLR) 99.94 98.98 99.63 99.5 215.0 2.10

It can be seen from Table 3 that the accuracy indexes (mAP, Pr, Re and F1 score) of low
input image resolution are lower than those of high input image resolution, but the speed
indexes (TT, FPS) of low input image resolution is better than those of high input image
resolution. Compared with YOLOX-Tiny_640, the mAP can be improved and obtained
equivalent detection values of Pr, Re and F1 score with the introduction of the lightweight
ECA module. The training pattern of decaying learning rate with equal intervals of “step”
is adopted in YOLOX-Tiny_416, YOLOX-Tiny_640 and ECA-YOLOX-Tiny, and the training
strategy of adaptive cosine annealing learning rate is employed in ECA-YOLOX-Tiny
(ACLR). Comparing the two training methods, the accuracy indexes (mAP, Pr, Re and F1
score) of ECA-YOLOX-Tiny (ACLR) have been improved by different degrees, and the
speed indexes (TT, FPS) of ECA-YOLOX-Tiny (ACLR) can be accepted for UAV detection
application although these indexes decreased at a certain level.



Appl. Sci. 2022, 12, 9314 10 of 23

The pictures in Table 4 show the detection effect of the three models in different
weather environments, backgrounds, brightness and angles, respectively. It can be seen
from the pictures in Table 4 that the ECA-YOLOX-Tiny model shows a much better detection
accuracy for small target defect areas in different weather, backgrounds, brightness and
angle conditions, and the model generalization ability and robustness are good.

Table 4. The detection results of defective insulators before and after the model improved.

ECA-YOLOX-Tiny YOLOX-Tiny_640 YOLOX-Tiny_416

The pictures in Table 5 show the detection effect of the three models for multi-scale
and multi-target normal insulators in different backgrounds. The following conclusions
can be obtained by comparative analysis: the detection accuracy for multi-scale insulators
in all of the three models is high when the insulators occupy a larger proportion in an
image, and the detection accuracy is low in the inverse conditions. Compared with the
other two models, the overall performance of the ECA-YOLOX-Tiny model is the best
and achieves the highest comprehensive detection accuracy, a perfect goodness-of-fit
between the predicted bounding boxes and insulators, and almost no missed detection.
The ECA-YOLOX-Tiny shows powerful target recognition and localization ability.
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Table 5. The multi-target detection results of normal insulators before and after the model improved.

ECA-YOLOX-Tiny YOLOX-Tiny_640 YOLOX-Tiny_416

4.5. The Analysis of Detection Effect before and after the Model Improved

To further verify the advantages of lightweight ECA-YOLOX-Tiny, the similar models
of lightweight YOLOV4-Tiny and SSD-MobileNet are selected for comparative analysis, and
the parameter settings of the three models are kept consistent. The training results of the
three models are shown in Table 6. It can be seen from Table 6 that the indexes of mAP, Re
and F1 of ECA-YOLOX-Tiny are significantly improved compared with YOLOV4-Tiny and
SSD-MobileNet, the Pr of ECA-YOLOX-Tiny is higher than YOLOV4-Tiny but lower than
SSD-MobileNet, the number of parameters in ECA-YOLOX-Tiny is the lowest. In terms
of detection accuracy and parameter number indexes, ECA-YOLOX-Tiny has the obvious
advantage. In addition, caused by the high resolution of input images, the training time
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and FPS of ECA-YOLOX-Tiny is lower than the other two models. The model training is
carried out offline and has no effect on the real-time UAV defect detection, and the training
time problem can be solved by improving the hardware condition of training device. In
practical application, the detection speed of 2.10 FPS meets the real-time requirements of
the UAV defect detection for insulators.

Table 6. The training results of similar network models.

Model Backbone mAP (%) Pr (%) Re (%) F1 (%) Parameters
(106)

Training
Time (h) FPS (Pictures s−1)

ECA-YOLOX-Tiny CSPDarknet 99.94 98.98 99.63 99.5 5.1 215.0 2.10
YOLOV4-Tiny CSPDarknet53-Tiny 98.75 95.93 96.12 96.0 5.9 64.5 4.87

SSD-MobileNet MobileNetV1 96.95 99.905 62.77 76.0 6.4 52.5 6.53

Table 7 provides the detection results of the three models on the test set. Compared
with the other two models, the detection accuracy (Acc) of the ECA-YOLOX-Tiny model
is obviously higher than the other two models, and the number of missed detections and
false detections is the lowest. The cost of the detection accuracy improvement, however, is
the long testing time.

Table 7. The detection results of different models on the test set.

Model Test Images Successful Detection Missed Detection False Detection Acc (%) Test Time (s)

ECA-YOLOX-Tiny 584 578 6 0 98.97 418
YOLOV4-Tiny 584 561 18 5 96.06 127

SSD-MobileNet 584 371 213 0 63.53 122

The detection effect pictures of three models for defective insulators with differ-
ent complex backgrounds are shown in Table 8. In terms of insulator defect detection,
ECA-YOLOX-Tiny has the highest detection accuracy, although the accuracy is only slightly
lower than YOLOV4-Tiny, the final predicted bounding boxes of ECA-YOLOX-Tiny are
more consistent with the real insulator boundaries and the location of the predicted bound-
ing boxes for insulator defect are more accurate. Compared with SSD-MobileNet, the
ECA-YOLOX-Tiny model has almost no missed or false detection for insulator defects in
different complex backgrounds, while SSD-MobileNet has missed detections for insulator
defects with background interference and images rotated 180◦. The powerful location
and identification abilities of ECA-YOLOX-Tiny for small target defective insulators were
verified by analyzing the pictures in Table 8.

Table 8. The detection effect of different models for defective insulators with complex backgrounds.

ECA-YOLOX-Tiny YOLOV4-Tiny SSD-MobileNet
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Table 8. Cont.

ECA-YOLOX-Tiny YOLOV4-Tiny SSD-MobileNet

The detection effect pictures of three models for normal insulators with different com-
plex backgrounds are shown in Table 9. Comparative analysis shows that ECA-YOLOX-Tiny
maintains high detection accuracy, and a high coincidence degree between the predicted
bounding boxes and insulators. ECA-YOLOX-Tiny still has good positioning and recogni-
tion ability for overlapping insulators, small target insulators, insulators with high color
similarity to the land and insulators shielded by tower poles, etc. On the contrary, dif-
ferent degrees of missed detection and predicted bounding box mismatches emerge in
YOLOV4-Tiny and SSD-MobileNet in different complex backgrounds.

Table 9. The detection effect of three models for multi-target normal insulators with different
complex backgrounds.

ECA-YOLOX-Tiny YOLOV4-Tiny SSD-MobileNet
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Table 9. Cont.

ECA-YOLOX-Tiny YOLOV4-Tiny SSD-MobileNet

4.6. Visual Analysis of Model Decision Areas

Generally, convolution neural network (CNN) is a kind of dark box technique, the
global optimal solution is constantly approximated through theoretical derivation and gra-
dient propagation methods. In order to visualize the learning progress of CNN, Zhou et al.
proposed a class activation mapping (CAM) [29–31] visualization tool, which introduces a
kind of CNN to generate heatmaps of input images. Using the visualization tool, the high-
activation areas, which have significant impact on the classification and localization results,
are shown, and it is possible to visualize whether the high-response areas of the model
lie in the core of the target. Taking insulators as an example, the image class activation
mapping process is shown in Figure 9.

Figure 9. The class activation mapping process of an insulator image.

According to Figure 9, the insulator image is input to the CNN and many feature
maps are extracted through multiple convolution layers (Conv). The last convolution layer
is connected to the global average pooling (GAP) layer and the visual CAM heatmaps of
insulators are generated by weighting and summing the feature maps. The softmax layer is
used to output results.
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Combined with corresponding network models, insulator images can be input into
the detection model, and then the CAM heatmaps are adopted to visualize and analyze
the decision areas of each model. Based on the above process, the internal representation
learned by the CNN can be visualized to identify the largest activation areas in the images
for target localization. In the CAM heatmaps, the darker color areas have a greater influence
on the network determination results. The reliability of the defect detection model can be
evaluated by comparing the output results of the high-response decision areas with the
actual boundary situation of the insulator defect areas and the multi-target insulators.

The YOLOV4-Tiny model is compared with ECA-YOLOX-Tiny, and the CAM heatmaps
of two models are shown in Table 10 (for defective insulators) and Table 11 (for normal
insulators). Comparing the pictures of YOLOV4-Tiny in Table 10, the ECA-YOLOX-Tiny
model is more accurate in locating the defect areas of defective insulators, and its decision
areas have a higher response level, while the YOLOV4-Tiny model has a certain location
offset. It can be seen from the pictures in Table 11 that the high-response areas of clas-
sification and localization lie in the core of the insulators in these two models, and the
high-response areas are basically consistent with the geometric center of the insulators.
Usually, the target response degree is consistent with the model detection results. In com-
parison, the high-response areas of ECA-YOLOX-Tiny are larger and more responsive than
YOLOV4-Tiny, especially for the insulators with small overlapping targets, obscured by
tower poles and with high-similarity backgrounds.

Table 10. The heatmap visualization of different models for defective insulators.

ECA-YOLOX-Tiny YOLOV4-Tiny

Table 11. The heatmap visualization of different models for multi-target normal insulators.

ECA-YOLOX-Tiny YOLOV4-Tiny
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Table 11. Cont.

ECA-YOLOX-Tiny YOLOV4-Tiny

5. Conclusions

We took UAV as the carrier to achieve inspection and self-explosion defect detection
for overhead transmission line insulators. Based on the lightweight YOLOX-Tiny model,
the measures of lightweight attention module, data augmentation, input image resolution
improvement, adaptive cosine annealing learning rate, and class activation mapping (CAM)
visualization tool are introduced, and the lightweight ECA-YOLOX-Tiny model is proposed
in the paper. The actual inspection insulators’ case database is used to comprehensively
verify and analyze the model performance, and the following conclusions are drawn.

(1) Aiming at the problem of insufficient defective samples in the insulator data set, the
original data are enhanced by various methods according to the flight shooting condi-
tions of UAV. Through the data enhancement measures, the generalization capability
of the network is improved and the characteristic information of the insulators can be
fully learned by the model, and then the detection accuracy of the model is improved
for small target defective regions and multi-target insulators with different scales.

(2) The higher resolution images are adopted as the network model inputs, so that the
feature information of the insulator defect regions as well as small target insulator
strings can be better learned by the network model. The examples prove that the de-
tection accuracy indexes of mAP, Pr, Re and F1 score are improved after the resolution
of the input images is improved from 416 × 416 to 640 × 640.

(3) By introducing the lightweight attention module (ECA) in the ECA-YOLOX-Tiny
model, the semantic information of the feature maps is further enhanced, the nonlinear
capability of the network is improved, and the redundant information is reduced.
Compared with YOLOX-Tiny_640 model, the mAP of the ECA-YOLOX-Tiny model
has been improved by 0.11% due to the introduction of the ECA module, and the
mAP is further improved by 0.22% when the model training method of equal interval
“step” decay learning rate is replaced by the adaptive cosine annealing learning rate.
Compared with the similar models YOLOV4-Tiny and SSD-MobileNet, the mAP of
ECA-YOLOX-Tiny has been improved by 1.19% and 2.99%, respectively, and the
number of parameters of the ECA-YOLOX-Tiny model can be compressed to best
meet the hardware conditions of the UAV.

(4) With the improvement of detection accuracy, the speed indexes of training time and
FPS value are certainly decreased, however, it is necessary to improve the model
detection accuracy at the cost of less training time and FPS value in the face of high
precision detection requirements. The testing results show that the detection speed
of the ECA-YOLOX-Tiny model reached 2.10 pictures s−1, which basically meets the
requirements of real-time insulator detection.

(5) In order to further verify the superiority of the ECA-YOLOX-Tiny model, the class
activation mapping is introduced to visualize the prediction results of different models.
Compared with the YOLOV4-Tiny model, the ECA-YOLOX-Tiny model is more
accurate in locating the self-explosion areas of defective insulators and has a higher
response degree for decision areas. Moreover, the ECA-YOLOX-Tiny model has
a higher response to complex backgrounds of overlapping small target insulators,
insulators obscured by tower poles, and high similarity background insulators, etc.



Appl. Sci. 2022, 12, 9314 17 of 23

Author Contributions: Conceptualization, C.R. and S.Z.; methodology, C.R. and S.Z.; software,
C.Q.; validation, C.R. and S.Z.; formal analysis, Z.Z.; investigation, Z.Z. and C.Q.; resources, S.Z.;
data curation, C.R. and S.Z.; writing—original draft preparation, C.R. and S.Z.; writing—review
and editing, C.R., S.Z. and C.Q.; supervision, Z.Z.; visualization, C.R.; project administration, S.Z.;
funding acquisition, S.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Tianjin Natural Science Foundation Project (No. 19JC-
QNJC04200); Tianjin Jinnan District Science and Technology Plan Project (No. 20210101).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Based on the YOLOX-Tiny model, the key techniques of backbone feature extraction
network (Backbone), enhanced feature extraction network (Neck), and prediction sections
of ECA-YOLOX-Tiny (decoupled head, anchor-free, and simplified dynamic label matching
strategy SimOTA) are described in the following.

1. Backbone Feature Extraction Network (Backbone)

The backbone network is used to preliminarily extract the feature and obtain three
initial effective feature layers for multi-scale feature fusion. The backbone network of
ECA-YOLOX-Tiny in Figure 3 is CSPDarknet, for which the CSP structure (CSPLayer)
of cross-stage partial network (CSPNet) is adopted. A series of small residual units (Res
Units) in a stacked structure are adopted in the backbone branch of CSPLayer, and the
larger residual edges are built on the side branches. Through the large residual edges, the
input and output of the backbone branch are directly connected by the simple channel
dimension adjustment method. The main branch of the residual unit is a 1 × 1 convolution
connected to a 3 × 3 convolution, and there is no special treatment for residual edges and
the direct addition operation between inputs and outputs of the main branch is designed.
The structure of the CSPLayer as well as the Res Unit is shown in Figure A1a,b.

Figure A1. The structure diagram of CSPLayer and Res Unit: (a) CSPLayer structure (b) Res Unit.

The abundant gradient combination can be achieved by using cross-stage splitting
and merging strategies in the CSPLayer module, and the excessive and repetitive gradient
information can be prevented by the method of gradient flow truncation. The CSPLayer
module not only has a small amount of calculation and memory consumption, but also
enhances the learning ability of the network. In the CSPLayer module, the residual units are
easy to optimize, and the shortcut connections are used to improve the feature extraction
ability of the model, by which the problems of gradient disappearance, gradient explosion
and model degradation caused by the increase in network depth can be alleviated.

Similar to the neighboring down-sampling, a special down-sampling method (focus
network structure) is introduced in YOLOV5, for which four independent low-resolution
feature maps are firstly reconstructed from a high-resolution image by taking a value every
other pixel, and then four independent feature maps are stacked. Additionally, the number
of feature map channels increases four times, the length and width of the feature maps are
half that of the original feature maps, the width and height information of the feature points
are stacked on the channel space, and the receptive field of the feature points is improved.
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The problem of information loss caused by down-sampling of the original images can be
solved by the special down-sampling method, and two-fold down-sampling feature maps
without information loss can finally be obtained. The focus network structure is borrowed
in ECA-YOLOX-Tiny to reduce model computation and memory occupation as well as
improve model speed. The focus network structure and its corresponding feature map
transformations are shown in Figure A2a,b.

Figure A2. The focus network structure and its feature map transformations: (a) focus network
structure, (b) the transformation of feature maps.

A new SiLU activation function [32] expressed in (A1) is employed in ECA-YOLOX-Tiny.

SiLU(x) = x · sigmoid(x) (A1)

where x is the inputs of model.
Compared with ReLU, the smooth output of SiLU is more ergodic, and the sensitivity

of model initialization and learning rate is reduced. The non-monotonicity of SiLU increases
the model expressiveness and improves the gradient flow, the robustness can be provided
in light of the different initialization and learning rate. When the function lies in the
saturation region, the training is very slow due to the small gradient, but the loss function
saturation condition can be avoided because there is no compression gradient of SiLU.

In ECA-YOLOX-Tiny model, the SPPBottleneck module is applied to the end of the
backbone network, and the different scales’ feature information is mixed together through
the parallel maximum pooling layers with different kernel sizes. The kernel sizes of
four parallel branches are 1 × 1, 5 × 5, 9 × 9 and 13 × 13, respectively. Through the
SPPBottleneck module, the information dimension of the feature maps is increased from
1024 to 4096 without changing the size of the feature maps, by which the receptive field
of the network is expanded and the global information of the target can be captured
more effectively. In addition, the multi-stage pooling operation is more robust, aiming at
different sized targets and improving the accuracy of target identification. The structure of
SPPBottleneck is shown in Figure A3.

Figure A3. The structure diagram of SPPBottleneck.

2. Enhanced Feature Extraction Network (Neck)
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In practice, the detection effect of small target defect areas is poor through the con-
volution neural network model, the main reasons are analyzed as follows. Firstly, small
targets have the characteristics of low-resolution and small pixel proportion, so the effective
information extracted by the target detection network is limited. Secondly, the information
loss situation of the small targets is serious after the input images are down-sampled several
times. In addition, the large-scale datasets of small target defects are inadequate. At present,
the small target detection accuracy can be improved by data augmentation, multi-scale
features fusion, and super-resolution techniques, etc.

In the ECA-YOLOX-Tiny model, three enhanced effective feature layers are obtained
through enhanced feature extraction of the Neck module. The enhanced feature extraction
module is composed of FPN (feature pyramid networks) up-sampling and PAN (path aggre-
gation network) down-sampling. Through FPN up-sampling, the shallow high-resolution
information is fused with deep high semantic information features, and the detection
accuracy of the model for small target defective insulators can be improved. Through PAN
down-sampling, the feature information is extracted repeatedly, and the different scales’
extraction feature information is fully exploited so as to improve the accuracy of model
detection. The enhanced feature extraction module fixed by FPN and PAN is shown in
Figure A4.

Figure A4. The enhanced feature extraction module fixed by FPN and PAN.

3. Prediction

In order to classify and regression localize the effective feature layers of three different
scales, the original coupled head is discarded in the precision part of ECA-YOLOX-Tiny,
meanwhile, the decoupled head, anchor-free mechanism and simplified optimal transport
assignment (SimOTA) strategy are introduced innovatively.

(a) Decoupled Head

In the past YOLO series, the classification and regression are realized by a 1 × 1 con-
volution layer in the detection head (coupled head). However, there is a difference between
classification and regression, the classification problem mainly considers the difference
between each target object, and the regression problem mainly considers the characteristics
of object contour boundary. Compared with coupled head (shown in Figure A5), the
1 × 1 convolution layer is used to reduce the channel dimension in decoupled head, and
two parallel branches are added behind the 1 × 1 convolution layer for classification and
regression, respectively, by which the convergence speed and model detection accuracy
can be effectively improved at a lower computational cost.
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Figure A5. The comparison between coupled head and decoupled head.

(b) Anchor-free

The target detection networks based on the anchor-free mechanism are at present
considered as a new type and friendly networks for industrial applications. Compared
with the anchor-based mechanism, the anchor-free mechanism detects targets through
key points without anchor boxes, by which the number of model parameters and the
computational complexity can be significantly reduced, meanwhile, the work of model
training and detection phases is quite simple and the same performance as the anchor-
based mechanism is obtained. Therefore, the anchor-free mechanism is adopted in the
ECA-YOLOX-Tiny model to reduce the prediction quantity of each position from three
(coordinate offset, confidence, and classification) to one (coordinate offset), and the four
parameters of predicted bounding boxes (the offsets of the x and y axes, height and width)
are directly predicted.

(c) SimOTA

In the convolution neural network model, the intersection over union (IoU) between
the truth bounding boxes and the predicted bounding boxes is used to divide the positive
and negative samples. Under the different condition of sizes, shapes and occlusions, etc.,
the assignment of positive and negative samples needs to be considered globally. Generally,
the predicted bounding boxes assignment problem is regarded as an optimal transport
problem of linear programming. The optimal transport assignment (OTA) solves the
predicted bounding boxes allocation problem from the global perspective so as to match
the truth bounding boxes with the predicted bounding boxes at the lowest overall cost.
Supposed that there are K truth bounding boxes and M predicted bounding boxes, the
cost matrix size is K ×M, and the elements in the matrix are the loss values of the truth
bounding boxes and predicted bounding boxes. The smaller the loss is, the smaller the
cost of selecting the truth bounding boxes and predicted bounding boxes. Based on OTA,
the Sinkhorn–Knopp algorithm is eliminated in the dynamic label assignment strategy
(SimOTA), which not only reduces the training time of the model and makes the distribution
of positive and negative samples more balanced, but also avoids the extra hyperparameters
problem brought by the Sinkhorn–Knopp algorithm.

Appendix B

Based on the proposed model in the paper, the missing images are further analyzed
and the following typical missing cases are founded.
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The defective areas of insulators are obscured by stronger and similar background
information and leads to detections being missed, as shown in Figure A6a. The missed
detections are caused by the too-small insulator targets, excessive overlap, highly similar
backgrounds, and darker light, etc., as shown in Figure A6b,c. The missed detections are
caused by serious target occlusion as shown in Figure A6d. The above typical missed
detection situations are given in Appendix B, and the missed detection targets are marked
by red boxes in the figure.
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In order to enable readers to have a clearer understanding of the research on lightweight
target detection models, the current mainstream lightweight models and their characteris-
tics are analyzed and summarized in Table A1.

Table A1. Summary of mainstream lightweight models and their characteristics.

Models Characteristics Who and When References

SSD-MobileNetV1 The accuracy was 59.29%, which was relatively low Ghoury, S. et al. (2019) [16]

SSD-MnasNet
The accuracy was 93.8%, which was high. The model
size was 43.73 MB, FPS reached to 36.85 on Server, and

the FPS reached to 8.27 on TX2.
Liu, X. et al. (2020) [21]

YOLOV3-Tiny The accuracy was 92.10%, the recall rate was 92.20%,
and FPS reached 30. Han, J. et al. (2020) [33]

YOLOV4-Tiny The mAP was 92.04%, and FPS reached 40. Qiu, Z. et al. (2021) [23]
YOLOV4-MobileNetV1 The mAP was 97.26%, and FPS reached 53. Qiu, Z. et al. (2022) [22]
YOLOV4-MobileNetV3 The mAP was 91.3%, and the model size was 116 MB. Wu, J. et al. (2022) [34]
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