A Novel Approach for Micro-Antenna Fabrication on ZrO2 Substrate Assisted by Laser Printing for Smart Implants
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Methods
- (a)
- Zirconia substrates preparation
- (b)
- Antenna production
- i.
- Micro-cavity creation through laser machining;
- ii.
- Silver powder deposition into the cavity;
- iii.
- Laser sintering of the silver powder.
- i.
- Micro-cavity creation through laser machining
- ii.
- Silver powder deposition into the cavity
- iii.
- Laser sintering of the silver powder
- (c)
- Antenna test configuration
3. Results and Discussion
3.1. Antenna Manufacturing
3.2. Antenna Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Connor, C.; Kiourti, A. Wireless Sensors for Smart Orthopedic Implants. J. Bio-Tribo-Corros. 2017, 3, 20. [Google Scholar] [CrossRef]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. Ser. A 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Lewallen, E.A.; Riester, S.M.; Bonin, C.A.; Kremers, H.M.; Dudakovic, A.; Kakar, S.; Cohen, R.C.; Westendorf, J.J.; Lewallen, D.G.; van Wijnen, A.J. Biological strategies for improved osseointegration and osteoinduction of porous metal ortho- pedic implants. Tissue Eng. Part B Rev. 2015, 21, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lakes, R.S. Biomaterials: An Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ruff, C.; Holt, B.; Trinkaus, E. Perspectives Who’ s Afraid of the Big Bad Wolff ?: “Wolff’s Law” and Bone Functional Adaptation. Am. J. Phys. Anthropol. 2006, 498, 484–498. [Google Scholar] [CrossRef]
- Diamanti, M.V.; Pedeferri, M.P.; Milano, P. The Anodic Oxidation of Titanium and Its Alloys. J. Mater. Sci. 2018, 3, 41–54. [Google Scholar]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Osman, R.B.; Swain, M.V.; Atieh, M.; Ma, S.; Duncan, W. Ceramic implants (Y-TZP): Are they a viable alternative to titanium implants for the support of overdentures? A randomized clinical trial. Clin. Oral Implant. Res. 2014, 25, 1366–1377. [Google Scholar] [CrossRef]
- Osman, R.B.; Morgaine, K.C.; Duncan, W.; Swain, M.V.; Ma, S. Patients’ perspectives on zirconia and titanium implants with a novel distribution supporting maxillary and mandibular overdentures: A qualitative study. Clin. Oral Implant. Res. 2014, 25, 587–597. [Google Scholar] [CrossRef]
- Hashim, D.; Cionca, N.; Courvoisier, D.S.; Mombelli, A. A systematic review of the clinical survival of zirconia implants. Clin. Oral Investig. 2016, 20, 1403–1417. [Google Scholar] [CrossRef]
- Depprich, R.; Zipprich, H.; Ommerborn, M.; Naujoks, C.; Wiesmann, H.-P.; Kiattavorncharoen, S.; Lauer, H.-C.; Meyer, U.; Kübler, N.R.; Handschel, J. Osseointegration of zirconia implants compared with titanium: An in vivo study. Head Face Med. 2008, 4, 30. [Google Scholar] [CrossRef]
- Ozkurt, Z.; Kazazog, E. Zirconia Dental Implants: A Literature Review. J. Oral Implantol. 2011, 37, 367–376. [Google Scholar] [CrossRef]
- Reveron, H.; Fornabaio, M.; Palmero, P.; Fürderer, T.; Adolfsson, E.; Lughi, V.; Bonifacio, A.; Sergo, V.; Montanaro, L.; Chevalier, J. Towards long lasting zirconia-based composites for dental implants: Transformation induced plasticity and its consequence on ceramic reliability. Acta Biomater. 2017, 48, 423–432. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Cionca, N.; Hashim, D.; Mombelli, A. Zirconia dental implants: Where are we now, and where are we heading? Periodontol. 2000 2017, 73, 241–258. [Google Scholar] [CrossRef]
- Bergschmidt, P.; Bader, R.; Ganzer, D.; Hauzeur, C.; Lohmann, C.H.; Krüger, A.; Rüther, W.; Tigani, D.; Rani, N.; Esteve, J.L.; et al. Prospective multi-centre study on a composite ceramic femoral component in total knee arthroplasty: Five-year clinical and radiological outcomes. Knee 2015, 22, 186–191. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, K.; Deng, J.; Ye, J.; Ai, F.; Ouyang, H.; Wu, T.; Jia, J.; Cheng, X.; Wang, X. 3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties. Int. J. Nanomed. 2019, 14, 5977–5987. [Google Scholar] [CrossRef]
- Roy, T.; Choudhury, D.; Ghosh, S.; Bin Mamat, A.; Pingguan-Murphy, B. Improved friction and wear performance of micro dimpled ceramic-on-ceramic interface for hip joint arthroplasty. Ceram. Int. 2015, 41, 681–690. [Google Scholar] [CrossRef]
- Rupp, F.; Liang, L.; Geis-Gerstorfer, J.; Scheideler, L.; Hüttig, F. Surface characteristics of dental implants: A review. Dent. Mater. 2018, 34, 40–57. [Google Scholar] [CrossRef]
- Antonio Scarano Carlo FDi Manlio Quaranta, A.P. Bone Response To Zirconia Ceramic Implants: An Experimental Study In Rabbits. J. Oral. Implantol. 2003, 4, 18–27. [Google Scholar]
- Kohal, R.J.; Schwindling, F.S.; Bächle, M.; Spies, B.C. Peri-implant bone response to retrieved human zirconia oral implants after a 4-year loading period: A histologic and histomorphometric evaluation of 22 cases. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 1622–1631. [Google Scholar] [CrossRef]
- Ledet, E.H.; Liddle, B.; Kradinova, K.; Harper, S. Smart implants in orthopedic surgery, improving patient outcomes: A review. Innov. Entrep. Health 2018, 5, 41–51. [Google Scholar] [CrossRef]
- Hassani, F.A.; Shi, Q.; Wen, F.; He, T.; Haroun, A.; Yang, Y.; Feng, Y.; Lee, C. Smart Materials for Smart Healthcare—Moving from Sensors and Actuators to Self- sustained Nanoenergy Nanosystems Faezeh Arab Hassani. Smart Mater. Med. 2020, 1, 92–124. [Google Scholar] [CrossRef]
- Sehrawat, D.; Gill, N.S. Smart sensors: Analysis of different types of IoT sensors. In Proceedings of the 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019; pp. 523–528. [Google Scholar] [CrossRef]
- Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric Biomaterials for Sensors and Actuators. Adv. Mater. 2019, 31, e1802084. [Google Scholar] [CrossRef]
- Andreu-Perez, J.; Leff, D.R.; Ip, H.M.D.; Yang, G.Z. From Wearable Sensors to Smart Implants-Toward Pervasive and Personalized Healthcare. IEEE Trans. Biomed. Eng. 2015, 62, 2750–2762. [Google Scholar] [CrossRef]
- Wachs, R.A.; Ellstein, D.; Drazan, J.; Healey, C.P.; Uhl, R.L.; Connor, K.A.; Ledet, E.H. Elementary Implantable Force Sensor: For Smart Orthopaedic Implants. Adv. Biosens. Bioelectron. 2013, 2, 12477. [Google Scholar]
- Bartolomeu, F.; Costa, M.M.; Alves, N.; Miranda, G.; Silva, F. Additive manufacturing of NiTi-Ti6Al4V multi-material cellular structures targeting orthopedic implants. Opt. Lasers Eng. 2020, 134, 106208. [Google Scholar] [CrossRef]
- Schwiebert, L.; Gupta, S.K.S.; Weinmann, J. Research challenges in wireless networks of biomedical sensors. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, Rome, Italy, 16–21 June 2001; pp. 151–165. [Google Scholar] [CrossRef]
- Yazdandoost, K.Y.; Kohno, R. Wireless Communications for Body Implanted Medical Device. In Proceedings of the Asia-Pacific Microwave Conference, Bangkok, Thailand, 11–14 December 2007. [Google Scholar]
- Anacleto, P.; Mendes, P.M.; Gultepe, E.; Gracias, D.H. Micro antennas for implantable medical devices. In Proceedings of the IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG), Braga, Portugal, 20–23 February 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Moura, C.G.; Faria, D.; Carvalho, O.; Pereira, R.; Cerqueira, M.; Nascimento, R.; Silva, F. Laser printing of silver-based micro-wires in ZrO2 substrate for smart implant applications. Opt. Laser Technol. 2020, 131, 106416. [Google Scholar] [CrossRef]
- Anacleto, P.; Mendes, P.M.; Gultepe, E.; Gracias, D.H. 3D small antenna for energy harvesting applications on implantable micro-devices. In Proceedings of the Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 12–13 November 2012; Volume 1, pp. 1–13. [Google Scholar] [CrossRef]
- Panyala, N.R.; Peña-méndez, E.M.; Havel, J. Silver or silver nanoparticles: A hazardous threat to the environment and human health? J. Appl. Biomed. 2008, 6, 117–129. [Google Scholar] [CrossRef]
- Moura, C.G.; Carvalho, O.; Magalhães, V.H.; Pereira, R.; Cerqueira, M.; Gonçalves, L.; Nascimento, R.; Silva, F. Laser printing of micro-electronic communication systems for smart implants applications. Opt. Laser Technol. 2020, 128, 106211. [Google Scholar] [CrossRef]
- Abid, A.; O’Brien, J.M.; Bensel, T.; Cleveland, C.; Booth, L.; Smith, B.R.; Langer, R.; Traverso, G. Wireless power transfer to millimeter-sized gastrointestinal electronics validated in a swine model. Sci. Rep. 2017, 7, srep46745. [Google Scholar] [CrossRef]
- Agarwal, A.; Shapero, A.; Rodger, D.; Humayun, M.; Tai, Y.-C.; Emami, A. A wireless, low-drift, implantable intraocular pressure sensor with parylene-on-oil encapsulation. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Aldaoud, A.; Redoute, J.M.; Ganesan, K.; Rind, G.S.; John, S.E.; Ronayne, S.M.; Opie, N.L.; Garrett, D.J.; Prawer, S. Near-field wireless power transfer to stent-based biomedical implants. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 193–200. [Google Scholar] [CrossRef]
- ISO 13356:2015; Implants for Surgery—Ceramic Materials Based on Yttria-Stabilized Tetragonal Zirconia (Y-TZP). Technical committee ISO/TC 150/SC 1. 2015.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, C.G.; Dinis, H.; Carvalho, O.; Mendes, P.M.; Nascimento, R.M.; Silva, F.S. A Novel Approach for Micro-Antenna Fabrication on ZrO2 Substrate Assisted by Laser Printing for Smart Implants. Appl. Sci. 2022, 12, 9333. https://doi.org/10.3390/app12189333
Moura CG, Dinis H, Carvalho O, Mendes PM, Nascimento RM, Silva FS. A Novel Approach for Micro-Antenna Fabrication on ZrO2 Substrate Assisted by Laser Printing for Smart Implants. Applied Sciences. 2022; 12(18):9333. https://doi.org/10.3390/app12189333
Chicago/Turabian StyleMoura, C. G., H. Dinis, O. Carvalho, P. M. Mendes, R. M. Nascimento, and F. S. Silva. 2022. "A Novel Approach for Micro-Antenna Fabrication on ZrO2 Substrate Assisted by Laser Printing for Smart Implants" Applied Sciences 12, no. 18: 9333. https://doi.org/10.3390/app12189333
APA StyleMoura, C. G., Dinis, H., Carvalho, O., Mendes, P. M., Nascimento, R. M., & Silva, F. S. (2022). A Novel Approach for Micro-Antenna Fabrication on ZrO2 Substrate Assisted by Laser Printing for Smart Implants. Applied Sciences, 12(18), 9333. https://doi.org/10.3390/app12189333