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Abstract: The results presented in this paper are obtained as part of the continued development and
research of clustering algorithms based on the discrete mathematical analysis. The article briefly
describes the theory of Discrete Perfect Sets (DPS-sets) that is the basis for the construction of DPS-
clustering algorithms. The main task of the previously constructed DPS-algorithms is to search for
clusters in multidimensional arrays with noise. DPS-algorithms have two stages: the first stage is the
recognition of the maximum perfect set of a given density level from the initial array, the second stage
is the partitioning of the result of the first stage into connected components, which are considered
to be clusters. Study of qualities of DPS-algorithms showed that, in a number of situations in the
first stage, the result does not include all clusters which have practical sense. In the second stage,
partitioning into connected components can lead to unnecessarily small clusters. Simple variation of
parameters in DPS-algorithms does not allow for eliminating these drawbacks. The present paper
is devoted to the construction on the basis of DPS-algorithms of their new versions, more free from
these drawbacks.

Keywords: discrete mathematical analysis; density; localization radius; fuzzy set; perfect set

1. Introduction

One of the most interesting and widely used approaches to the multidimensional data
analysis are cluster analysis or clustering methods. Currently, there are many clustering
algorithms. Despite significant differences between them, they all rely on the initial pos-
tulate of compactness: in the space of objects, all “close” objects must belong to the same
cluster, and all different objects, respectively, must be in different clusters. The concepts of
“proximity” are interpreted differently in different clustering algorithms.

Within the framework of Discrete Mathematical Analysis (DMA)—an original ap-
proach to data analysis that uses fuzzy mathematics and fuzzy logic [1], methods of so-
called DPS-clustering are being developed. The present study is devoted to DPS clustering
and continues the series of papers on this problem [2–7].

The initial notion of DPS-clustering is a fuzzy model of the fundamental mathematical
property “limit”. It is called the density and represents a non-negative function depending
on an arbitrary subset and any point in the initial space in which clustering is supposed.

The value of density can be understood as the strength of the connection between a
subset and a point, as the degree of influence of a subset on a point, or dually, as the degree
of limiting a point to a subset. This view of density automatically requires its monotonicity
over a subset: the larger the subset, the stronger its impact on the point, and it is more
limiting for it.

Nontrivial densities always exist in a finite metric space (FMS). Each density on the
FMS gives a new look at it and a new program of its study, so that the density is a new
mathematical concept.
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Fixing the density level α and interpreting it as a limit level, we can introduce the
concept of discrete perfection with level α: a subset is called discretely perfect with level α
(α-DPS- or simply DPS-set) if it consists of exactly all points of the original space α-limit
to it. A rigorous theory of DPS-sets has been constructed within the framework of DMA.
In particular, it has been shown that DPS-sets have the properties of clusters. This, as
well as the comparison of DPS-clustering with modern cluster analysis algorithms and its
applications, is described in detail in [5].

The DPS-clustering algorithms created to date operate in finite metric spaces, depend
on three parameters (density P, density level α, and local coverage radius r) and have
two stages.

At the first stage, topological filtering of the original space is carried out. It is cleaned
from noise. The DPS-algorithm iteratively cuts out from the original space (Figure 1a) the
maximum α-perfect subset (Figure 1b).

Figure 1. Comparison of algorithms: (a)—initial array; (b)—the result of clustering by SDPS-algorithm;
(c)—the result of clustering by the DBSCAN-algorithm.

At the second stage, the DPS-algorithm splits the result of the second stage into
r-connected components for which it considers to be clusters (Figure 1c).

For the array in Figure 1a and for the SDPS-algorithm that is the most known of the
DPS-algorithms Section 2.2.2, the clusters are shown in different colors in Figure 1b. Similar
clusters obtained as a result of working on a given array of well-known cluster analysis
algorithms DBSCAN [8] and OPTICS [9] practically coincide and are shown in Figure 1c.
This allows us to conclude that DPS-algorithms, like the DBSCAN and OPTICS algorithms,
represent a new stage in cluster analysis, since they not only split the initial space into
homogeneous parts, but also preliminarily clear it of noise (filter).

Studies show that there are situations where the result of the first stage does not
include all noteworthy clusters. Decreasing the limitation level α leads to a decrease in the
quality of a cluster recognition and is not a way out of the situation.

Furthermore, due to the locality of the radius, the partitioning into r-connected com-
ponents of the maximum α-perfect subset in the second stage is often too shallow, and
detailed, and needs to be enlarged as can be seen in Figure 1b.

The present work is devoted to correcting these disadvantages.

2. Materials and Methods

This section defines DPS-sets and describes DPS-clustering algorithms.

2.1. Discrete Perfect Sets

DMA has a rigorous theory of discrete perfect sets (DPS-sets) in finite spaces, which is
summarized in [5]. A complete rigorous justification can be found in [3].

Let X be a finite set, and let A, B, . . . and x, y, . . . be subsets and points in it, respectively.
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Definition 1. Let us call a density P on a set X a product of mapping 2X × X to non-negative
numbers R+, increasing on the first argument and trivial on the empty:

P(A, x) = PA(x)
∀x ∈ X, A ⊂ B⇒ PA(x) ≤ PB(x), P∅(x) = 0

(1)

For a fixed x, the function PA(x) is a non-normalized fuzzy measure on X, so the
density P is a family of such measures parameterized by X itself.

By fixing a density level α and interpreting it as a limit level, one can define any
topological notions in X, and discrete perfection with level α particularly.

Definition 2. A set A consisting of exactly all α-perfect points of the original space X is called an
α-discrete perfect (just perfect, DPS-) set in X:

A −DPS-set in X ⇔ A = {x ∈ X : PA(x) ≥ α} (2)

Numerous studies and examples below show that DPS-sets are clusters in X and are
closely related to clustering in X.

In the works [2,3,5], a construction is given that allows a subset A(α) ⊂ X to be
constructed from a subset A in the space X and the level α of the density P. Under the
condition of nontriviality, it will be an α-DPS-set in X. It does not have to lie in A, but if A
itself is an α-DPS-set in X, then the set A(α) constructed for it will coincide with it. Thus,
the construction A⇒ A(α) depends on the space X, subset A, density P, and level α. To
emphasize this fact, we introduce the notation

A(α) = AP(α|X). (3)

The properties of the construction A⇒ AP(α|X) are formulated in Statement 1, which
is proved in [3].

Statement 1. The dependences on A, P and X are increasing, and the dependence on α is decreasing:

1. If A ⊆ B, then A(α) ⊆ B(α) ;
2. If P, Q are densities on X and PA(x) ≤ QA(x) ∀x ∈ X, then AP(α) ≤ AQ(α);
3. If α < β, then A(β) ⊆ A(α).
4. If A ⊆ X ⊂ Y and density P is given on Y, then A(α|X) ⊆ A(α|Y).

2.2. DPS-Algorithms

In the case of the entire space X, the transition X ⇒ X(α) is an iterative cutting:

X(α) = ∩iXi(α)
Xi+1(α) = {x ∈ X : PXi(α)(x) ≥ α}, X0(α) = X (4)

If there is a metric on the space X and the density P is compatible with it, the property
of α-perfectness is inherited by the connected components of the set X(α). Precisely, they
most closely correspond in the first approximation to empirical clusters.

In what follows, a metric d is given on the space X, so that (X, d) is a FMS.

2.2.1. Topological Digression

Two points x and y in A are called r-connected if there exists a chain of r-close to
each other points x0, . . . , xn in A with the beginning x0 = x, and the end xn = y and
distances d(xi, xi+1) ≤ r, i = 0, . . . , n− 1. The r-connectivity relation is an equivalence
splitting the set A into r-connectivity components, which, depending on the context, will
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be denoted cA(k) = cr A(k), k = 1, . . . , k∗ = k∗(A, r). Let us denote their collection by
C(A) = Cr(A) = {cA = cr A(k)|k∗1 }. Thus:

A = ∨cA∈C(A)cA = ∨k∗
k=1cA(k), (5)

where the sign ∨ denotes a disjoint union of sets.
For x ∈ X, A ⊂ X, we denote by DA(x, r) the closed ball in A centered at x with radius

r: DA(x, r) = {a ∈ A : d(x, a) ≤ r}.

Definition 3. Let P be a density on X, r > 0. A density P is called r-local if

∀x ∈ X, A ⊂ X ⇒ PA(x) = PDA(x,r)(x) (6)

Statement 2. If the density P r-local, then every r-connected component of the set X(α) is α-perfect.

Proof. According to (2), for any k = 1, . . . , k∗, it is necessary to establish the equality of
the component crX(α)(k) with the set {x ∈ X : PcrX(α)(k)(x) ≥ α}, which we denote by
crX(α)(k)1.

The inclusion of crX(α)(k) ⊆ {x ∈ X : PcrX(α)(k)(x) ≥ α}. x ∈ crX(α)(k) ⇒ x ∈
X(α)⇒ PX(α)(x) ≥ α. Furthermore, DX(α)(x, r) = DcrX(α)(k)(x, r), since d(x, crX(α)(k̄)) >
r for k̄ 6= k. Due to the r-locality of P PcrX(α)(k)(x) = PDcr X(α)(k)(x,r)(x) = PDX(α)(x,r)(x) =

PX(α)(x) ≥ α, x ∈ crX(α)(k)1.
The inclusion of crX(α)(k) ⊇ {x ∈ X : PcrX(α)(k)(x) ≥ α}.
First case (x /∈ crX(α)(k)) ∧ (x /∈ X(α)). Then, PcrX(α)(k)(x) ≤ PX(α)(x) < α ⇒ x /∈

crX(α)(k)1.
Second case (x /∈ crX(α)(k))∧ (x ∈ X(α)). Then, (x ∈ crX(α)(k̄)) and d(x, crX(α)(k̄)) >

r, and therefore DcrX(α)(k)(x, r) = ∅.
Taking into account the normalization of the density P and its r-locality, PcrX(α)(k)(x) = 0.

Thus, in this case, x /∈ crX(α)(k)1.

Definition 4. DPS-algorithm depends on three parameters: radius r, r-local density P and level α:
DPS = DPS(P, α, r) and has two stages:

1. The first stage of DPS ⇔ the process of constructing for FMS (X, d) based on the r-local
density P its α-envelope X(α):

DPS(P, α, r)⇔ X ⇒ X(α)

2. The second stage of DPS⇔ the partitioning of the α-envelope X(α) into r-connected components:

DPSc(P, α, r)⇔ X ⇒ C(X(α)) ⊂ 22X
.

Further in the text, DPS(P, α, r) denotes, depending on the context, either the algorithm
itself or its first stage.

Let us present a flowchart of the DPS-algorithm (Figure 2).

Figure 2. Flowchart of the DPS-algorithm.

Let us summarize the above from the perspective of a cluster analysis: 1st stage
DPS(P, α, r) carves the maximal subset X(α) dense in the common background from the
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original space X; 2nd stage DPSc(P, α, r) partitions X(α) into components of r-connectivity
cX(α), each of which combines density on background and connectivity, i.e., formally
expresses empirical clustering [5].

DPS-clustering has developed methods for choosing the parameters α, r, which are
described in detail in [5] (see also Section 4.3.1). In particular, the density index α is
determined through the level of its extremity β(α), which answers the question on the scale
[−1, 1]: “To what extent can α be considered large against the background of all values of
the density P on X?”.

When constructing β(α), a fuzzy comparison of n between non-negative numbers is
used. It is expressing on the scale [−1, 1] the degree of superiority of the larger of them
over the smaller one (the left part in (7))

β(α) =
∑x∈X n(PX(x), α)

|X| , ∑x∈X n(PX(x), α(β))

|X| = β. (7)

Due to the properties of n, the correspondence α ⇒ β(α) is unique and the inverse
dependence β⇒ α(β) is implicitly given by the right side of (7). Thus, the DPS algorithm
has a second parameterization, which will be used in the future:

X(β) ⇔ X(α(β))
DPS(P, β, r) ⇔ DPS(P, α(β), r)

DPSC(P, β, r) ⇔ DPSC(P, α(β), r)
(8)

2.2.2. SDPS-Algorithm

Historically, the first in a series of DPS-algorithms was the set-theoretic SDPS. It is based
on the density S, which has the name “Number of points” (“Amount of space”) [2,3,6] and
conveys the degree of concentration of space X around each of its points x (the most natural
understanding of the density X in x).

The density SA(x) depends on the localization radius r and the non-negative parameter
p, which takes into account the distance to x in the ball DA(x, r):

SA(x) = SA(x|p) = ∑
y∈DA(x,r)

(
1− d(x, y)

r

)p
. (9)

With p = 0, we obtain the usual number of points, which explains the name S:

SA(x|0) = |DA(x, r)|.

The density S is r-local, and the SDPS-algorithm is the operation of a DPS-scheme
based on S: SDPS = DPS(S, β, r).

The result of SDPS-condensing in X ⇔ sets locally containing “many X”. They are
formally the most consistent with empirical clusters. By varying the SDPS parameters, one
can obtain a fairly complete idea of the hierarchy of clusters in X.

The SDPS-algorithm will serve as a testing ground where new results for the DPS-
series algorithms will be tested and shown.

3. Results: Iterative DPS

The first DPS-stage of the DPS(P, β, r) algorithm carves a maximal perfect subset X(β),
β-extremely P-dense in the background of X at each of its points, from the space X.

Let us turn to Figure 3b: it shows the result X(β) of the DPS algorithm on array X
(Figure 3a) in red when β = 0.02. It is easy to see that not all noteworthy condensations
from X were included. The reason for their non-inclusion in the result X(β) is explained by
the contradiction between the r-local character of the view of X and the global approach to
determine the level α(β) of density P by its extremality level β based on the whole image
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PX(X) (7) and (8): the density level of worthy condensations in the complement X(β)
appears to be below α(β).

Figure 3. Dependence of the DPS-algorithm result on the level of extremeness: (a)—initial array;
(b)—red color shows the result X(β) of the DPS-algorithm, green color shows the result of the
algorithm on the complement (X(β)), β = 0.02, the blue cluster is the result of one more transition to
the complement; β = 0.02; (c)—red color shows the result at β̄ = −0.25.

To include them in the final result, we need to lower the extremum level β: β⇒ β̄ < β
and switch from the DPS(P, β, r) to the DPS(P, β̄, r) algorithm. In the control example,
the first level of β, for which the result X(β) will include all worthy condensations, will
be β = −0.25. The result is shown in red in Figure 3c: we see that the result X(β̄) of the
algorithm DPS(P, β̄, r), along with X(β) and worthy condensations from X(β), included
weak points of the r-halo of the set X(β), and it helped them in this.

It can be done otherwise: keep the extremum level β, but change the original space by
transition from X to X(β). The result of DPS(P, β, r) on X(β) is shown in green in Figure 3b.
If we make another similar transition, a blue cluster appears in Figure 3b.

Such way of using the DPS scheme is called the “iterative DPS” algorithm.

3.1. Iterations by Extremality

It will be remembered that the level α(β) of density P by extremality level β is deter-
mined in the DPS(P, β, r) = DPS(P, α(β), r) algorithm from Equation (8). Let us introduce
the partition X = X(β) ∨ X(β). According to (7) and (8),

β =n(PX(X), α(β)) =
∑x∈X(β) n(PX(x), α(β)) + ∑x∈X(β)

n(PX(x), α(β))

|X| =

=
|X(β)|
|X|

∑x∈X(β) n(PX(x), α(β))

|X(β)| +
|X(β)|
|X|

∑x∈X(β)
n(PX(x), α(β))

|X(β)|
.

From the properties of convexity, hence the inequality

max

(
∑x∈X(β) n(PX(x), α(β))

|X(β)| ,
∑x∈X(β)

n(PX(x), α(β))

|X(β)|

)
≥ β.

However, the left mean ≤ 0 because ∀x ∈ X(β)⇒ PX(x) ≥ PX(β)(x) ≥ α(β). Hence,
if β ≥ 0, the right mean must be ≥ β:

∑x∈X(β)

n(PX(x), α(β))

|X(β)|
≥ β.
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Then, from the inequalities ∀x ∈ X ⇒ PX(β)
(x) ≤ PX(x) and the properties of fuzzy

comparison n, we have:

n
(

PX(β)

(
X(β)

)
, α(β)

)
=

∑x∈X(β)
n(PX(β)

(x), α(β))

|X(β)|
≥

≥∑x∈X(β)

n(PX(x), α(β))

|X(β)|
≥ β.

It follows that the density level α1(β), required for the operation of DPS(P, β, r) algo-
rithm on the space X(β):

n
(

PX(β)

(
X(β)

)
, α1(β)

)
= β

does not exceed the level α(β), which we will consider as zero: α(β) = α0(β), and can
be strictly less than it. In addition, this, in turn, means the possible nontriviality of such
operation, i.e., the set X(β)(β). Let us denote it by X1(β).

In the situation of non-triviality X1(β), one can define the first iteration on the extrem-
ity X(β, 1) of the set X(β), which is naturally considered as its null iteration, assuming
X(β, 0) = X(β).

Definition 5. Let X1(β) be non-trivial, and we will call by the first iteration of the space X with
respect to the extremity level β the disjoint union

X(β, 1) = X(β, 0) ∨ X1(β).

Note 1. Given this definition, the above can be understood as the first precondition for the existence
of the first iteration on extremality when β is non-negative. In this connection, the zero level of β
appears to be the most productive and interesting, at which the second precondition (non-triviality
of the result) will be the weakest.

A direct check shows that PX(β,1)(x) ≥ α1(β) ∀x ∈ X(β, 1), so, by repeating the
above deduction with replacement α0(β)⇒ α1(β), X(β, 0)⇒ X(β, 1), we obtain the level
α2(β) ≤ α1(β) of the DPS(P, β, r) algorithm on the complement X(β, 1) and the possible
nontriviality of its result X2(β) = X(β, 1)(β).

If all this can be continued up to and including the i-th step, i.e., the sets X1(β), . . . , Xi(β),
will be nontrivial, then their union with X(β, 0) = X(β) will be called the i-th iteration of
X by extremum level β:

X(β, i) = X(β, 0) ∨ X1(β) ∨ . . . Xi(β). (10)

3.2. Iterations of the DPS Algorithm

Considering the algorithms DPS(P, β, r) and DPSc(P, β, r) as their zero iterations:
DPS0(P, β, r) = DPS(P, β, r), DPS0

c (P, β, r) = DPSc(P, β, r), we define their i-th iterations
as processes of building for space X its i-th iteration X(β, i) and then breaking it into
r-connectivity components:

DPSi(P, β, r) ⇔ X ⇒ X(β, i)
DPSi

c(P, β, r) ⇔ X ⇒ Cr(X(β, i))
(11)

Due to the disjunctive nature of the decomposition (10), the iteration index ind is
correctly defined at the i-th iteration of X(β, i):

∀x ∈ X(β, i)⇒ ind(x) =
{

0, if x ∈ X(β)
ī ∈ [1, i], if x ∈ Xī(β)

.
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The index ind moves from points to connectivity components c = cX(β, i), thus
becoming multivalued:

ind(c) = {ind(x) : x ∈ c}.

In addition, this, in turn, makes it possible for any subset I ∈ [0, i] to define a condi-
tional version of the DPSI algorithm:

DPSI(P, β, r) = ∨i∈I Xi(β)

DPSI
c(P, β, r) = {c ∈ C(X(β, i)) : ind(c) ∈ I} . (12)

Example 1. Figure 4b–d show the sets Xi(β), i = 0, 1, 2 for the array X shown in Figure 4a,
obtained as a result of the operation of the SDPS-algorithm at β = −0.09 based on the fuzzy
comparison n(t, s) = (s− t)/(s + t) of non-negative numbers s and t [1].

Figure 5 shows both stages of the SDPS1-algorithm. Its result SDPS1
e (X) indicates that, in

the general case, the second stage of DPS cannot be considered final: many components of the
r-connectivity in Figure 5b need further connection. This will be done by the third stage of DPS, the
results of which on a given array X for a given SDPS-algorithm will be shown in Example 4.

Figure 4. DPS-algorithm iterations: (a)—initial array; (b)—the set X0(−0.09); (c)—the set X1(−0.09);
(d)—the set X2(−0.09).

Figure 5. SDPS1-algorithm: (a)—the first stage; and (b)—the second stage.



Appl. Sci. 2022, 12, 9335 9 of 16

4. Results: Third Stage of DPS

The first stage of the algorithm DPS⇔ DPS(P, α, r) cuts out from the original FMS X
the maximum α-perfect subset X(α) : DPS(X) = X(α). The second stage of the algorithm
DPSC ⇔ DPSC(P, α, r) is considered to be its result and is the set of all components of the
r-connectivity of the set X(α) : DPSC(X) = CrX(α). Each crX(α) component is considered
to be a DPS-cluster because, by virtue of the initial assumption that the initial density is
r-local, P is a DPS-set in X and, in particular, is α-dense at each of its points.

At this stage, the result DPSC(X) is taken as a given and is not subject to further
transformation. The radius r is assumed to be infinitely small, and the level α of P is
infinitely large. As a consequence, each component cX(α) is considered to be a single and
indivisible spot (large point).

Spots cX(α) are interpreted as fragmentary manifestations (exits) of global anomalous
entities in X. To understand their true scales, if possible, further connection of spots is
necessary. This is the third and final stage of the DPS-algorithm.

4.1. Logic and Action Plan

A collection of spots C ⊂ DPSc(X) is considered by the expert as a whole if the degree
of advantage in the closeness of internal transitions (paths) between any of its spots over
external transitions from C to C̄, allows the expert to conclude that C is non-random.

Thus, the cluster of spots C must have a tighter internal connection between them in
the general background of all spots from DPSc(X). There are no other constraints on C, in
particular on shape.

Because of the α-perfectness of the cX(α)(k) spots, it is natural to consider the mini-
mum distance between the closest points in them as the distance between them:

d(cX(α)(k), cX(α)(k̄)) = min{d(y, ȳ) : y ∈ cX(α)(k), ȳ ∈ cX(α)(k̄)}. (13)

It will no longer be a metric since there are no triangle inequalities for d (13), as the
example below shows:

Example 2. Consider subsets of the real line: A = [1, 1], B = [2, 3], C = [4, 4]. It is obvious
d(A, B) + d(C, B) < d(A, C), d(A, B) = |2− 1|, d(B, C) = |4− 3|, d(A, C) = |4− 1|.

Based on the distance d, the formalization of the expert’s logic for connecting spots
is constructed: in each cluster of spots C, any two spots can be connected by a chain of
spots whose distance d between neighboring links will be smaller than the distance d from
C to C̄. This is the d-clustering condition necessary for C. Its formal analysis will be the
first part of the functioning program to algorithmise the third stage of the DPS. Note that
d-clustering and DPS-clustering are different interpretations of clustering: the first is based
on connectivity, and the second on limiting.

The second part of this program consists of constructing, based on the initial distance
d in the original space X, measures of proximity and distance between spots expressing in
this the expert. Based on these, only those spots are selected from the d-clusters of spots in
which the proximity advantage of the inner transitions over the range of the outer ones
will be non-random in the expert’s opinion.

4.2. FirstPart: The Theory of d-Clusters

Initial data and designations: X is a finite set, d is a quasi-metric in X ((X, d) is a
quasi-metric space)

∀x ∈ X ⇒ d(x, x) = 0
∀x, y ∈ X ⇒ d(x, y) = d(y, x) 6= 0
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Definition 6. By the enumeration X(x) of space X with origin at the point x, we call the sequence
x = x0, . . . , x|X|−1 for which for any i = 0, . . . , |X| − 2

d(xi+1, Xi(x)) = d
(

Xi(x), Xi(x)
)

, (14)

where Xi(x) = {x0, . . . , xi}.

4.2.1. The Notation

d(x) is a numerical sequence of distances di(x) = d
(

Xi−1(x), Xi−1(x)
)

:

d(x) = {d1(x), . . . , d|X|−1(x)} (15)

Definition 7. Let us call an eigen d-cluster C = Ck(x), 1 ≤ k ≤ |X| − 2 with center (origin) in
x the eigen segment Xk(x) of the enumeration X(x), for which maxk

i=1 di(x) < dk+1(x):

C = Ck(x)⇔ eigen
d-cluster

⇔ (C = Ck(x)) ∧
(

maxk
i=1 di(x) < dk+1(x)

)
(16)

Statement 3. The cluster Ck(x) is independent of the choice of origin within itself:

Ck(x) = Ck(y) ∀y ∈ Ck(x)�x

In other words, in the case of d-clustering, there is a set-theoretic equality Xk(x) =
Xk(y) that is, for any y ∈ Ck(x), the first k + 1 terms in the enumeration X(y) will lie in
Ck(x).

Proof. Induction on the number i of steps yi−1 ⇒ yi, i = 1 ≤ i ≤ k in the enumeration
X(y). Let y = xj, j = 1, . . . , k.

• i = 1. We have to show that y1 ∈ Ck(x). By virtue of y ∈ Ck(x), we have

d
(

y, Ck(x)
)
≥ d

(
Ck(x), Ck(x)

)
= dk+1(x).

The element y = xj in Ck(x) = Xk(x) has two neighbors xj−1 and xj+1, if 1 ≤ j < k,
and one neighbor xk−1, if j = k and y = xk. To any of the neighbors, the distance
from y will be less than dk+1(x), so the next element after y = y0 in the sequence X(y)
necessarily lies Ck(x).

• Let the assumption that the first i steps of yi, i ≤ k − 1 in the sequence X(y) lie in
Ck(x) be satisfied. Let us show that the element yi+1 will also lie in Ck(x).
Under our assumptions Xi(y) ⊂ Ck(x), therefore

d(Xi(y), Ck(x)) > d(Ck(x), Ck(x)) = dk+1(x).

Assume ym = xs(m), m = 0, . . . , i. If s0 < · · · < si is the correct ordering of array
s(m)|i0, then two cases are possible:

1st: the array sp|i0 has no gaps, that is, it is an eigensegment in [0, k]. In this case,
Ck(x) necessarily contains either an element xs0−1, or an element xsi+1, whose
distance from Xi(y) is nontrivial and less than dk+1(x). Hence, the term yi+1 in
the sequence X(y) necessarily lies in Ck(x):

2nd: sp|i0 array has gaps. Let p∗ be the first number for which sp∗+1 − sp∗ > 1. In this
case, in the array sp|i0, it has no number sp∗ + 1 and in the set Xi(y) of an element
xsp∗+1, whose distance from xsp∗ will be less than dk+1(x). Hence, in this case too,
the term yi+1 in the sequence X(y) lies in Ck(x).
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Consequence 1. Eigen d-clusters behave like non-Archimedean balls: either one contains the
other or they do not intersect. In particular, two d-clusters of the same order either coincide or do
not intersect.

Proof. Let C = Ck(x), C̄ = Ck̄(x̄) and y ∈ C ∩ C̄. According to Statement 3, C = Xk(y),
C̄ = Xk̄(y). If k ≤ k̄, then C ⊆ C̄.

The d-clusters of Ck(x) are eigennonpoint subsets in X. Let us remove this restriction
on k in Definition 7 using the notion of a connectivity exponent, which develops and
continues the topic of finite connectivity Section 2.2.1.

Definition 8. 1. Connectivity index r(A) of a subset A⇔minimum r for which A is r-connected:

r(A) = min{r : A r-connected}.

2. The isolation index e(A) of a subset A⇔ the distance to its complement Ā:

e(A) = d(A, Ā).

Statement 4.
r(Xk(x)) = maxk

i=1 di(x)

Proof. 1. Proof of the inequality r(Xk(x)) ≤ maxk
i=1 di(x). Induction on k, 1 ≤ k ≤

|X| − 2

• k = 1: X1(x) = {x0, x1} and d(x0, x1) = d1(x) according to (14) and (15).
• Suppose that r(Xk−1(x)) ≤ maxk−1

i=1 di(x), that is, any two points in Xk−1(x) can
be connected by a path with distance transitions ≤ maxk−1

i=1 di(x). Let x∗ be the
point in Xk−1(x), closest to xk. According to (15), dk(x) = d(x∗, xk). Through x∗

any point in Xk−1(x) can be connected to xk by a path with distance transitions
≤ maxk

i=1 di(x).

2. Proof of the inequality r(Xk(x)) ≥ maxk
i=1 di(x): let di∗(x) = maxk

i=1 di(x), then

di∗(x) = d
(

Xi∗−1(x), Xi∗−1(x)
)

, and any path with ends in Xi∗−1(x) and Xi∗−1(x)
has at least one jump between them. Therefore, r(Xk(x)) ≥ di∗(x).

For the eigen d-cluster C (Definition 7), the proved statement means that the necessary
condition is fulfilled

r(C) < e(C). (17)

It is invariant not only from the beginning of the enumeration but also from the
enumeration itself, which is obligatory at this point for the definition of C. Therefore, it is
natural to check this condition for sufficiency of d-clustering.

Statement 5. If (17) is satisfied for an eigensubset of A in X, then A is a d-cluster and A =
C|A|−1(x) ∀x ∈ A.

Proof. There exists r1: r(A) ≤ r1 < d(A, Ā) for which the set A is r1-connected. Hence, in
the enumeration X(x) of space X from any point x ∈ A the elements from Ā will appear
only at the |A|-th step.

The result of Definition 8, Statement 4 and Statement 5 is a new invariant and more
complete definition of a d-cluster.

Definition 9. Let us call a d-cluster in X the subset C for which there is a true inequation:
r(C) < d(C, C̄).
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To the eigenclusters C (1 < |C| < |X|) will be added all points x ∈ X: x = C0(x), and
all space X: X = C|X|−1(x) ∀x ∈ X.

Thus, the restrictions in Definition 7 on k (1 ≤ k ≤ |X| − 2) are removed:

• x ⇔ d-cluster, since 0 = r(x) < e(x) ∀x ∈ X,
• X ⇔ d-cluster , since r(X) < e(X) = ∞: no appearance for X means that it is

at infinity.

4.2.2. Conclusions

The collection of d-clusters C(X, d) forms a hierarchy of sets on X based on the no-
tion of discrete connectivity and different from traditional hierarchical cluster analysis
hierarchies, usually binary [10].

C(X, d) is the first part of the formalization of the third stage of DPS.

4.3. Second Part: Final Selection of D-Clusters

Thanks to (14)–(16), the search for d-clusters in the space of r-connectivity components
DPSC(X) with respect to distance (13), that is, the formation of the space C(DPSC(X), d)
is constructive. Each d-cluster C ∈ C(DPSC(X), d) has two characteristics: internal r(C)
and external e(C) (17). Based on this information, expert E must decide: is it necessary to
combine the spots from C into a single whole or not?

Let DPS f (X) = DPS f (X|E) denote the set of maximal d-clusters in DPSC(X), obtained
after joining spots by expert E. According to Consequence 1, they are all disjoint.

Under the condition that DPS f (X) is nontrivial in the set X(α), a partition appears in
the general case larger than the partition (5) into r-connectivity components:

X(α) = {C : C ∈ DPS f (X)} ∨ {cX(α) : ∀C ∈ DPS f (X)⇒ cX(α) /∈ C} (18)

Let it also denote by DPS f (X) and consider it the third and final stage of the DPS
algorithm. Full history is presented in Figure 6.

Thus, for each component crX(α), one of three things can happen:

• crX(α) ∈ DPS f (X)⇔ component crX(α) is sufficiently isolated from the rest to be of
interest to the expert, it is the only way out of the global entity behind it on X;

• crX(α) /∈ DPS f (X), but crX(α) ⊂ C ∈ DPS f (X) ⇔ component crX(α) is part of the
d-cluster C, which is of interest to the expert and in the team represents a global entity
in X;

• crX(α) /∈ C ∀C ∈ DPS f (X)⇔ any d-cluster containing crX(α) is of no interest to the
expert: either it is not internally dense enough, or it is externally separable. According
to the expert, if crX(α) is a fragment of the output of the global entity on X, then it is
not clear enough.

Furthermore, Example 3 will show that all options for crX(α) are possible.

Figure 6. Complete block-diagram of the DPS-algorithm.

At stage 3.2 (Figure 6), the expert can act in different ways. Let us present the simplest
Boolean variant of actions for the formation of DPS f (X).

4.3.1. Boolean Variant

Expert E decides whether d-cluster C is included in the final result DPS f (X) based
on comparison of r(C) and e(C) with their proximity and distance thresholds rE and eE:
C ∈ DPS f (X)⇔ r(C) ≤ rE and e(C) ≥ eE.
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Expert E considers the parameter r of the DPS-algorithm to be very small (infinitesi-
mal), much less than rE, which, in turn, according to E, is much less than eE:

r ≤ rE ≤ eE.

The threshold rE, like the radius r in the DPS-algorithm, is built using the Kolmogorov
averaging of non-trivial distances of the FMS X [5]

rE =

(
∑x 6=y∈X d(x, y)
|X|(|X| − 1)

)1/q

, q = q(rE)

For the parameter r, numerous applications of DPS-series algorithms have established
that the choice of q(r) ∈ [−3,−2] can be considered optimal. The studies carried out within
the framework of present paper show that q(rE) ∈ [−2.5,−1, 5]. The intersection of the
areas of parameters r, rE is explained both by the fuzzy perception of proximity by the
expert and by the diversity in the arrangement of an arbitrary FMS.

The threshold eE is obtained from rE by formalizing the expert judgment “rE � eE”
using fuzzy comparison. For the comparison given in Example 1, this would be the
inequality eE/rE ≥ 5/3.

Example 3. Array X in Figure 7a has already been seen above: it was a testing ground for DPS,
DBSCAN, and OPTICS algorithms. Figure 7b–d show the complete DPS-scenario with parameters
β = −0.25, q(r) = −2.7, q(rE) = −2.3, eE/rE = 5/3.

The result of cutting at the first stage (Figure 7b) was divided into eight r-connectivity
components at the second stage (Figure 7c). Two components (blue and light brown) and two more
in a green combination passed independently to the third stage (Figure 7d). The remaining four
brown components did not pass the third stage.

Figure 7. The complete scheme of the SDPS algorithm: (a)—initial array; (b)—the first stage; (c)—the
second stage; (d)—the third stage.

Example 4. In the conditions, notation and parameters of Example 1 Figure 8a–c show the original
array and two stages of the SDPS algorithm on it. Figure 8d–f show the complete scenario for his
second iteration of SDPS2.
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Comparison of Figure 8c,f serves as clear evidence of the work done in the paper: the full version
of the second iteration of SDPS2 with the same parameters performs better than the incomplete zero
version (the original SDPS algorithm) that existed before this article.

Figure 8. Comparison of SDPS and SDPS2 algorithms: (a)—initial array; (b)—the first stage of SDPS;
(c)—the second stage of SDPS; (d)—the first stage of SDPS2; (e)—the second stage of SDPS2; (f)—the
third stage of SDPS2.

5. Discussion

The density P on a finite space X is a definition in X in the language of fuzzy mathe-
matics of the property of limiting. From a formal point of view, P is a fuzzy structure on
the direct product 2X × X, monotonic in the first argument (1).

Fixing a level α ∈ [0, 1] for P, we can define a closure operator on 2X and, through it,
the usual topology τα on X. Thus, an increasing family of topologies {τα, α ∈ [0, 1]}, arises
on X, starting at zero with a trivially inseparable minimal topology of sticking together
points and ending with a trivially separable maximal topology of all subsets.

Each density on the space X gives its own view of it and its own program of its study.
It is a concept that does not lie in classical mathematics.

In addition to the density S Section 2.2.2, nontrivial densities always exist in a finite
metric space. The description of the most important densities and their significance for
data analysis are given in [5,11].

The study of the space X with the help of the density P defined on it began with the
study of perfect sets in the topology τα. The explanation for this is as follows: setting P on
X defines a clustering in X: K is a cluster (P-cluster) in X if it consists of exactly all points
that are P-limit to it. If α is the limit threshold, then the formal expression of what has been
said coincides with α-perfection: K = {x ∈ X : PK(x) ≥ α}.

The DPS-algorithm builds all such clusters, but there are too many of them for mean-
ingful cluster analysis in X: first of all, we need “connected components” of the maximal
α-perfect subset X(α) in X.

All this exists when X is FMS and the density P is local on it. It is in this situation
that the DPS-algorithm operates. It depends on the design of the density P, its level α and
the localization radius r: DPS = DPS(P, α, r). DPS operates in two stages: first, it cuts out
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a subset X(α) in X (first stage), and then splits it into r-connected components, which it
considers to be DPS-clusters in X (second stage).

Despite generally good results and efficient applications [4,5,11–13], the DPS-algorithm
in its current version has drawbacks: at the first stage, the cutting X ⇒ X(α) is not
always thorough and of high quality; at the second stage, the partitioning of X(α) into
r-connectivity components is too small and detailed due to the locality of the radius r. A
proper partition of X(α) must come from the global view of X(α) induced by the entire
space X.

In the present paper, we have made attempts to correct or mitigate these drawbacks:
our answers were at the first stage—the iterative cutting scheme DPSi(X), at the second—its
third stage DPS f (X) of connecting the components of the r-connectivity.

The iterations allowed the DPS-algorithm at the first stage to achieve the completeness
of its DPS(X) result, while maintaining a high level of extremality of cutting.

At the moment, the result DPSC(X) of the second stage of the DPS-algorithm is
considered its final result. The additional connections of components from DPSC(X)
proposed in the paper occur in two stages. On the first of them, which has the necessary
character, d-clusters are searched in DPSC(X). According to the results of the article, their
search is constructive. d-clustering is a necessary condition for connecting components from
DPSC(X) into a single whole. The set of d-clusters C(DPSC(X), d) serves as the basis for
the second stage, which is already sufficient. The main thing here is the expert: his criteria
form the final choice of DPS f (X) in C(DPSC(X), d) and at the same time the final partition
of DPSC(X). There are various formal variants of this choice in DMA. The simplest one of
them is given in Section 4.3.1.

DPS-series algorithms are actively applied in many geological and geophysical studies
(analysis of seismic catalogs, search for signals on geophysical records, in the problem
of radioactive waste disposal, etc.) [1,4,5,7,11–13]. It seems that the new version of DPS
developed in the present paper will make it possible to improve this application.

The addition of the third stage to the DPS according to the authors makes its architec-
ture sufficient. Further development of DPS-algorithms should take place through their
parameters: new constructions of densities and their connection with fuzzy logic will give
(and already give [5]) the possibility of deep study of finite metric spaces. Furthermore, the
following circumstance is fundamental: in contrast to the Euclidean space, the FMS X is
local at each of its points x; as a rule, it is arranged differently; therefore, the parameters α,
r of the DPS-algorithm, which have a local nature, must depend on x: r = r(x), α = α(x).
The iterative carving scheme only softens the matter.
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