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Abstract: During the COVID-19 pandemic, reusable masks became ubiquitous; these masks were
made from various fabrics without guidance from the research community or regulating agencies.
Though reusable masks reduce the waste stream associated with disposable masks and promote the
use of masks by the population, their efficacy in preventing the transmission of infectious agents
has not been evaluated sufficiently. Among the unknowns is the effect of relative humidity (RH)
on fabrics’ filtration efficiency (FE) and breathability. This study evaluates the FE and breathability
of several readily accessible mask materials in an aerosol chamber. Sodium chloride aerosols were
used as the challenge aerosol with aerodynamic particle diameter in the 0.5 to 2.5 µm range. To
mimic the variability in RH in the environment and the exhaled-breath condition, the chamber was
operated at RH of 30% to 70%. The face velocity was varied between 0.05 m/s and 0.19 m/s to
simulate different breathing rates. The FE and pressure drop were used to determine the quality
factor of the materials. Among the tested materials, the 3M P100 filter has the highest pressure drop
of 140 Pa; the N95 mask and the 3M P100 have almost 100% FE for all sizes of particles and tested
face velocities; the surgical mask has nearly 90% FE for all the particles and the lowest pressure drop
among the certified materials, which ranks it the second to the N95 mask in the quality factor. Other
material performance data are presented as a function of relative humidity and aerosol size. The
quality factor for each material was compared against reference filtration media and surgical masks.
Multiple layers of selected materials are also tested. While the additional layers improve FE, the
pressure drop increases linearly. Additionally, the certified materials performed approximately three
times better than the highest performing non-certified material.

Keywords: mask; aerosol; filtration efficiency; breathability; quality factor

1. Introduction

Respiratory infections are the most common illnesses and are one of the leading causes
of mortality worldwide [1,2]. Infection transmission comes from the fomite route and
exposure to infectious aerosols. Airborne transmission can cause large outbreaks even
when individuals have minimal contact with fomites [3–5]. The airborne transmission
mechanism involves infectious aerosols in particle diameter (dp) ranging from 0.01 to
100 µm [6]. Typically, larger particles (dp > 5 µm) have been classified as droplets, whereas
those with dp < 5 µm are classified as aerosols [7]. Aerosols remain suspended in the air for
hours, long enough to be inhaled, and can contain multiple viral copies [8–10].

Aerosol inhalation can be reduced by using a face mask as the material provides
filtration of inhaled and exhaled air, protecting the users and those around them. Filtration
occurs via five different mechanisms: interception, inertial impaction, diffusion, electrostatic
attraction, and gravitational settling [11,12]. The effectiveness of these filtration mechanisms
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depends on the particle size and the type of filtration media. Gravitational settling is
prevalent in removing droplets dp > 50 µm. Inertial impaction is primarily seen on aerosols
larger than 1 µm, whereas diffusion primarily affects the smallest particles [12]. As the
flow rate increases, so does the effect of interception and inertial impaction, while the
gravitational settling, diffusion, and electrostatic attraction become less impactful.

Face masks should provide the wearer with high filtration efficiency (FE), while re-
maining comfortable. Mask comfort can be attributed to the fit of the mask, a mask’s ability
to transfer heat and moisture away from the face, and its breathability [13]. Breathability
is described by the permeability and pressure drop across the material [13,14]. Part of
the certification testing for mask materials that public health organizations, such as the
National Institute for Occupational Health (NIOSH), conduct is testing a materials pres-
sure drop. Materials may not exceed the pressure drop values at the corresponding flow
rate to ensure the breathability of the mask. Respirators can reach pressure differentials
ranging from 210 to 350 Pa, whereas surgical masks should range between 40 Pa/cm2 and
70 Pa/cm2 [14,15]. At the start of the COVID-19 pandemic, high demand resulted in a
scarcity of masks [16–19], leading to many using homemade masks made from various
textiles. However, the protection from aerosolized transmission provided by these masks
remains unclear, and the public has not received clear guidance from health officials.

Previous studies compared the performance of homemade masks and those certified
by organizations such as NIOSH [20–44]. However, the accuracy of the results and the
methodology used by some of these studies have come under scientific scrutiny [14,45–47].
Some studies did not provide sufficient details on the experimental methodology. For
example, one study erroneously stated that N95 respirators did not provide 95% FE when
tested with no leakage points [21,46,47]. Certified masks are subjected to a standardized
testing procedure to ensure their ability to filter out 95% of aerosols. The NIOSH testing
procedure uses a TSI Respirator Fit Tester to test twenty filters. With extensive testing
procedures, masks that receive a certified N95 rating have a high-accuracy standard and
excellent consistency between the samples. Real-time particle sizing instruments can
significantly simplify and expedite the test procedures. An increasing number of studies
use real-time particle sizers for calculating collection and transmission aerosols [48–51], for
sensor calibration studies [52–56], and recently became a well-accepted method for testing
the filtration efficiency, e.g., refs [57–63].

Environmental conditions and breathing rates affect local relative humidity (RH) in
the fiber matrix. In a high RH environment, hygroscopic fibers absorb water and swell [64],
affecting the material’s porosity and pressure drop [65]. Few studies have examined the
effects of humidity on the overall performance of textiles. The “quality factor” index can be
used to parameterize this effect; it describes a mask’s performance based on the ability to
filter out particulates and the breathability [11].

This paper aims to complement previous studies describing the FE of common mask
materials while adding new insight into the effects of RH on a material’s filtration perfor-
mance. In our study, materials were challenged with polydisperse sodium chloride (NaCl)
aerosols in a size range of ~0.3 to 2.5 µm. The face velocity through the material was varied
at 0.05 m/s, 0.10 m/s, and 0.19 m/s to simulate the variability in the breathing rate [15].
RH was varied in the 30% to 70% range. The FE and the pressure drop were measured to
determine the quality factor. The certified materials by NIOSH outperform other textiles by
a factor of three. Additionally, it is found that humidity has minimal effects on both the FE
and the breathability of the materials in the tested RH range.

2. Materials and Methods
2.1. Materials

The materials tested in this study range from the masks certified by NIOSH, nat-
ural, synthetic, blended fabrics, and other non-traditional materials such as Thinsulate,
heavyweight surgical wrap, and coffee filters. Certified masks include a 3M disposable
N95 respirator filter, a 3M P100 filter, and a disposable 3-ply surgical mask (BYD care).
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Fabrics tested in this study consisted of knitted cotton, muslin, and Kona cotton, along
with silk and rayon. One natural-synthetic fabric blend was also tested, which was 82%
rayon and 18% knitted cotton. Finally, more non-traditional materials were tested due to
their commercial accessibility and their use as mask materials. These materials consisted of
Thinsulate, heavyweight spunbond-meltblown-spunbond (SMS) polypropylene, and paper
coffee filters. Optical microscopy images of these materials are shown in Figure 1, and
additional details on each material are shown in Table S1 of the Supplemental Information.
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Figure 1. Microscopic images of the tested materials. Photos are taken at 2× magnification and are
shown with a 1 mm scale.

The multiple material layers were evaluated, as double masking becomes a common
practice for people to get more protection, affecting the FE, pressure drop and overall
quality factor of the mask. The materials selected for testing with additional layers were
the surgical mask, muslin, and coffee filter. The surgical mask was tested with two layers,
whereas the muslin and coffee filter materials were tested with two and three layers.

2.2. Aerosol Chamber Setup

The experiments were conducted using a custom-built aerosol chamber
(0.56 m × 0.52 m × 0.42 m) [66] with two 3D printed material holders attached. Two
medical nebulizers (VixOne Small Volume Jet Nebulizer, Westmed, Tuscon, AZ, USA) were
placed in the chamber. One of the nebulizers was used to generate polydisperse NaCl
aerosols. The aerosolization was stopped when the particle concentration reached 900 to
1200 particles/cc, measured by the Aerodynamic Particle Sizer (APS 3321, TSI, Shoreview,
MN, USA). The second nebulizer controlled the RH inside the chamber set to RH of 30%,
50%, or 70%. The two mixing fans inside provided homogeneous particle distribution
in the chamber [2,66]. A 3D rendering of the aerosol chamber and the position of these
components are shown in Figure 2(left).

Attached to the aerosol chamber are two sample holders: one holds the textile sample,
and the other is empty, serving as a reference channel. Magnetic clips were used for
alignment, and two binder clips were used to ensure an airtight seal, which was verified
before each experiment. Particle-laden air from the aerosol chamber was aspirated through
the material holder at a rate of 1 L per minute (LPM) from the APS. An additional make-up
flow was provided by the building vacuum line at flow rates from 0.1 LPM to 3 LPM to
reach the designed face velocity [50]. The make-up air was filtered by an in-line high-
efficiency particulate air (HEPA) filter. A differential manometer (UEi EM201B) measured
the pressure drop. The APS was connected to the holders through anti-static tubing to
minimize deposition through electrostatic attraction.
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Figure 2. 3D render of the experimental setup. A custom-built aerosol chamber (left) contains two
mixing fans, two nebulizers, and a hygrometer. Nebulizers generate polydisperse NaCl aerosols and
control the humidity within the chamber. Attached to the chamber are two sample holders (right),
one containing a material insert and one left empty to be used as a reference. The containers are
connected to a mass flow rate controller and a manometer to measure the pressure drop. The flow
passes through the material holders (one at a time) to the APS for data collection.

2.3. Pressure Drop and Filtration Efficiency Analysis

The breathability of the material was measured in terms of pressure drop. Pressure
drop readings were taken over a range of face velocities between 0 m/s to 0.39 m/s and
at each humidity level. Readings were taken using the differential manometer (UEI Test
Instruments) connected to the material holder that measures the pressure difference across
the sample material. Three pressure drop measurements for each face velocity were taken
to determine a standard deviation.

To calculate FE, we took six measurements at each humidity and face velocities of
0.05 m/s, 0.10 m/s, and 0.19 m/s. Each reading was taken over ten seconds, alternating
between filtered and reference streams. FE is calculated using Equation (1):

FE =
nre f − n f

nre f
∗ 100% (1)

where the nre f and n f are the size-resolved aerosol concentrations measured by the APS
for each size bin in the reference and in the filtered stream. The data collected from the
APS is recorded in particle mass concentrations with an assumed density of 1.03 g/cm3 for
NaCl and in number density for the smaller particle bin (dp = 0.3–0.52 µm). Though the
APS records the particle in the range dp = 0.3–20 µm, the data did not show a significant
concentration of particles > 2.5 µm. To evaluate the FE as a function of particle size, we have
binned the data into dp = 0.3–0.52 µm, dp < 0.97 µm (PM1), and dp < 2.46 µm (PM2.5). Any
calculations showing a negative FE due to the reference and filtered measurements variance
are reported as “zero.” The three replicates are averaged for each condition providing the
standard deviation shown as error bars in the plots in the result section.

The filter quality factor Q combines the material’s FE and pressure drop describing its
overall performance [11]. By combining the FE and the pressure drop, the desired functions
of a mask, such as comfort and high filtration abilities, can be presented by a single value.
The best filter is the one that has the highest FE with the lowest pressure drop. The Q is
calculated using the following equation:

Q =

ln
(

1
1− FE

100

)
Pressure Drop

(2)
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3. Results and Discussion
3.1. Pressure Drop

Figure 3 shows pressure drop for three certified mask materials as a function of face
velocity for three RH levels. The P100 3M filtration media had the highest pressure drop,
and the surgical mask had the lowest. Several materials (muslin, knitted cotton, and rayon
cotton blend) had lower pressure drops than a surgical mask. A complete list of materials’
pressure drops can be found in the Supplemental Material Table S1. Pressure drop has a
linear relationship to the face velocity through the material, as expected for the laminar
airflow through the filter media. Not considering the dust load, the pressure drop (∆P, Pa)
is proportional to the air velocity at the face of a filter (U0, m/s). ∆P = βU0, where β is the
air resistance coefficient (Pa·s/m) [11].
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Figure 4 shows the change in pressure drop of single-layer materials when the RH is
varied. The effect of RH on single-layer materials’ pressure drop is minimal or, in some
cases, statistically insignificant. The minor pressure-drop increase on some hygroscopic
materials such as silk, coffee filter, and cotton can be attributed to fiber swelling, a decrease
in fabric porosity, and a possible increase in fabric thickness. A similar change in the
resistance to convective flow at varying humidity levels was reported by Gibson, where
the largest change was observed at higher RH above 0.8 [67]. Commercial surgical face
masks typically have a three-layer structure. The middle layer is made of a melt-blown
material that serves as the filter media, whereas the inner layer is for absorbing moisture,
and the outer layer repels water. The moisture repelling by the outer layer might explain
the small change in pressure drop and FE of the surgical mask at elevated RH levels. For
multiple material layers, humidity has minimal to no effects on the breathability of the
layered materials, as shown in Figure S2 of the Supplemental Information. As expected,
the material’s pressure drop increased with each additional textile layer.
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3.2. Filtration Efficiency

Figure 5 shows the filtration efficiency of materials at different face velocities for
PM2.5, PM1, and particles in dp = 0.3–0.52 µm range. The certified masks had the highest
efficiency of all particle sizes; P100 and N95 had 100% flirtation for all particle channels
and tested face velocities. Surgical mask filtration was lower, especially for particles
smaller than 0.5 µm; however, the surgical mask outperformed all other tested materials for
homemade masks. The high FE of the certified materials for the ultrafine particles is due to
electrostatically charged fibers densely woven by the melt-blown extrusion process. The
mechanical filtration mechanisms (e.g., inertial deposition, interception, and diffusion) are
combined with electrostatic deposition to filter both large and small particles. Commonly
used textiles, such as cotton and cotton blends, had filtration efficiency below 10%. More
dense Kona cotton approached 25% FE; however, its pressure drop was 3 to 10 times
greater than other textiles and about the same as the surgical mask. Synthetic materials
showed increased FE at lower face velocities for smaller particles. This trend indicates
that the primary filtration mechanisms for PM1 are diffusion and electrostatic attraction,
as synthetic fibers are likely to carry permanent electrostatic charges or be charged by
triboelectrification, which improves the deposition of small particles [27,68,69]. However,
certified multilayer material such as surgical masks has clear advantages due to the removal
of moisture in the outer layer and the strong attraction of electrostatically charged fibers.
Natural fiber textiles did not show this trend, and in the case of the paper coffee filter,
higher velocity resulted in higher filtration for all particle sizes.

Figure 6 shows the FE for multiple-layered materials. As the aerosol sizes increase,
the effects from interception and inertial impaction filtration mechanisms begin to appear,
increasing the FE with increasing face velocity. The trend between FE and face velocity
seen by the single-layer materials continued as additional layers were added. Additional
layers provided a higher FE, as seen by the surgical mask, which required two layers to
reach a consistent FE above 95%. These results represent the FE when a mask tightly fits the
wearer with no leakage. Masks that are not properly fitted would not be able to provide the
same level of FE, making the fit of masks a vital component to ensure maximum protection
for the wearer [27,40,70].
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3.3. Quality Factor

The overall performance of a material is quantified by using the quality factor to relate
the FE and breathability a material provides. Figure 7 shows the quality factor of tested
materials at three face velocities for PM2.5. The quality factors for other particle sizes can
be found in the Supplemental Information. The quality factor was calculated using three
measurements’ average FE and pressure drop readings. In terms of the quality factor, the top
three performing materials in this study were those commonly worn as PPE: the N95 mask,
the surgical mask, and the P100 3M filter. Even though the N95 and P100 3M filters are
considered more difficult to breathe through, their high FE makes them considerably better
materials when compared to non-traditional mask materials. These certified materials
were found to have, at a minimum, a quality factor three times higher than the top non-
traditional mask material. The critical differences are the utilization of electrostatically
charged fibers and the hydrophobic layers that are not considered in the homemade masks.
Natural fabrics are all found to have the lowest quality factor ranging from 0.01 to 0.02.
The effect of multiple material layers on the quality factor was also analyzed and included
in the supplemental material. The quality factor tended to decrease as additional layers
were added. While materials, such as the surgical mask, provided higher FE when double
layers were used, the additional pressure from the second layer caused the overall mask
performance to decline, as shown in Figure S5 of the Supplemental Information.
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4. Conclusions

This study found that mask performance is dependent on the face velocity through the
material rather than the relative humidity. Though varying humidity can inhibit particle
growth and hygroscopic behavior in certain materials, the effects from humidity on mask
FE and pressure drop are insignificant. While the impact of improper mask fittings is
not analyzed in this study, ensuring the mask fits with no leakage will supply the wearer
with filtered air within the filtration efficiencies shown in this study. In terms of overall
performance, masks certified by health organizations such as NIOSH perform at least
three times better than other non-certified materials. Non-certified materials provide the
wearer with some protection and comfort; however, they do not provide as much protection
as certified masks. While adding additional layers of material can increase a mask’s FE,
they can become increasingly difficult to breathe through, outweighing the increase in
aerosol protection. These results suggest that single-layered surgical masks should be
recommended, given their high FE, comfortability, and accessibility. Clips or additional
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accessories should be used to create a proper fit, reducing the risk of leakage. Higher-grade
surgical masks should be used by those in areas where they are subjected to a high amount
of air contaminants and users should refrain from long-term wear.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app12189360/s1, Figure S1: Photos of some of the tested materials.
Listing the materials starting from the top left and moving across are: Kona, Muslin, Cotton, Rayon,
Rayon Cotton blend, and Surg. Wrap; Figure S2: Pressure drop results for layered materials as
a function of RH. Bar colors represent the corresponding RH value and results are plotted as the
average pressure drop from three runs, with the error bars representing the standard deviation;
Figure S3: Filtration efficiency results for single layered materials as a function of relative humidity.
Bar colors represent the corresponding RH values with the results plotted at the average filtration
efficiency from three experimental runs with the error bars representing the standard deviation; Figure
S4: Filtration efficiency results for layered materials as a function of relative humidity. Bar colors
represent the corresponding RH values with the results plotted at the average filtration efficiency
from three experimental runs with the error bars representing the standard deviation.; Figure S5:
Quality factor results for layered materials when face velocity is varied. The quality factor results use
the average filtration efficiency and pressure drop readings taken from three experiments to calculate
three individual quality factor values. Error bars in the figure represent the standard deviation across
these three quality factor values while the bar colors represent the corresponding face velocity values;
Table S1: Material list, description, and average filtration efficiency, pressure drop, and quality factor
values. Materials are listed from highest quality factor to lowest. Average and standard deviation
values are calculated across three experiments.
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