Particulate Matter Concentrations and Fungal Aerosol in Horse Stables as Potential Causal Agents in Recurrent Airway Disease in Horses and Human Asthma and Allergies
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Design
2.2. Airborne Dust Concentration and Physical Parameter Measurements
2.3. Fungal Aerosol Measurement
2.4. Next Generation Sequencing
2.5. Data Interpretation and Analysis
3. Results
3.1. Particulate Matter and Microclimatic Parameters
3.2. Fungal Aerosol Concentration
3.3. Taxonomic Composition of Fungal aerosol Components in the Kraków Stable
3.4. Correlation of Daily Activities in Stables with Bioaerosol Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.diba.cat/documents/74348/226277151/Estudi+sobre+el+turisme+eq%C3%BCestre+a+Europa/ba6041d0-3840-4dc2-abca-7598089989b8 (accessed on 24 May 2022).
- Chien, Y.-C.; Chen, C.-J.; Lin, T.-H.; Chen, S.-H.; Chien, Y.-C. Characteristics of microbial aerosols released from chicken and swine feces. J. Air Waste Manag. 2011, 61, 882–889. [Google Scholar] [CrossRef]
- Douwes, J.; Thorne, P.; Pearce, N.; Heederik, D. Bioaerosol Health Effects and Exposure Assessment: Progress and Prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar]
- Wålinder, R.; Riihimäki, M.; Bohlin, S.; Hogstedt, C.; Nordquist, T.; Raine, A.; Pringle, J.; Elfman, L. Installation of mechanical ventilation in a horse stable: Effects on air quality and human and equine airways. Environ. Health Prev. Med. 2011, 16, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Nowakowicz-Dębek, B.; Pawlak, H.; Wlazło, Ł.; Kuna-Broniowska, I.; Bis-Wencel, H.; Buczaj, A.; Maksym, P. Evaluation of working conditions of workers engaged in tending horses. Ann. Agric. Environ. Med. 2014, 21, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, D.; Kwiatkowska-Stenzel, A.; Jóźwiak, A.; Chorąży, Ł.; Wójcik, A. Microbiological contamination of air inside and around stables during different seasons of the year. Pol. J. Environ. Stud. 2012, 21, 1061–1066. [Google Scholar]
- Grzyb, J.; Podstawski, Z.; Bulski, K. Bacterial aerosol, particulate matter, and microclimatic parameters in the horse stables in Poland. Environ Sci. Pollut. Res. Int. 2022, 29, 26992–27006. [Google Scholar] [CrossRef] [PubMed]
- Borowicz, H.; Kubiak, K.; Nikolovski, G.; Niedźwiedź, A. Impact of recurrent airway obstruction (RAO) on selected antioxidants in horses. Mac. Vet. Rev. 2016, 39, 5–14. [Google Scholar] [CrossRef]
- Hotchkiss, J.W.; Reid, S.W.J.; Christley, R.M. A survey of horse owners in Great Britain regarding horses in their care. Part 2: Risk factors for recurrent airway obstruction. Equine Vet. J. 2007, 39, 301–308. [Google Scholar] [CrossRef]
- Couëtil, L.L.; Cardwell, J.M.; Gerber, V.; Lavoie, J.P.; Léguillette, R.; Richard, E.A. Inflammatory Airway Disease of Horses—Revised Consensus Statement. J. Vet. Intern. Med. 2016, 30, 503–515. [Google Scholar] [CrossRef]
- Simões, J.; Batista, M.; Tilley, P. The Immune Mechanisms of Severe Equine Asthma—Current Understanding and What Is Missing. Animals 2022, 12, 744. [Google Scholar] [CrossRef]
- Xavier, M.O.; Nogueira, C.E.W.; Meirelles, M.; Fernandes, W.R.; Andreolla, H.; Severo, L.L.; Pasqualotto, A.C.; Maireles, M.C.A. Fungi in the respiratory tract of horses with recurrent airway obstruction. Arq. Bras. Med. Vet. Zootec. 2014, 66, 1457–1463. [Google Scholar] [CrossRef]
- Scaife, H.; Crook, B.; Jordinson, G. PPC Bioaerosols (dust and particulates) potentially emanating from intensive agriculture and potential effects on human health. In Science Report—SC040021/SR4; Environment Agency: Bristol, UK, 2008. [Google Scholar]
- Derksen, F.J. Chronic Obstructive Pulmonary Disease. In Equine Respiratory Disorders; Beech, J., Ed.; Lea & Febiger: Malvern, PA, USA, 1991; pp. 223–235. [Google Scholar]
- Owen, M.K.; Ensor, D.S.; Sparks, L.E. Airborne particle sizes and sources found in indoor air. Atmos. Environ. 1992, 26A, 2149–2162. [Google Scholar] [CrossRef]
- Harkawy, A.; Górny, R.L.; Ogierman, L.; Wlazło, A.; Ławniczek-Wałczyk, A.; Niesler, A. Bioaerosol assessment in naturally ventilated historical library building with restricted personnel access. Ann. Agric. Environ. Med. 2011, 18, 323–329. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Augustyńska, D.; Pośniak, M. Harmful Factors in the Working Environment—Limit Values. Interdepartmental Commission for Maximum Admissible Concentrations and Intensities for Agents Harmful to Health in the Working Environment; CIOP-PIB: Warsaw, Poland, 2016. (In Polish) [Google Scholar]
- Elfman, L.; Wålinder, R.; Riihimäki, M.; Pringle, J. Air quality in horse stables. In Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality; Mazzeo, D., Ed.; Intech: Rijeka, Croatia, 2011; pp. 655–680. [Google Scholar]
- Won, W.-S.; Oh, R.; Lee, W.; Ku, S.; Su, P.-C.; Yoon, Y.-J. Hygroscopic properties of particulate matter and effects of their interactions with weather on visibility. Sci. Rep. 2021, 11, 16401. [Google Scholar] [CrossRef]
- Sá, J.P.; Conceição, M.; Alvim-Ferraz, M.; Martins, F.G.; Sousa, S.I.V. Application of the low-cost sensing technology for indoor air quality monitoring: A review. Environ. Technol. Innov. 2022, 28, 102551. [Google Scholar] [CrossRef]
- Anastasiou, E.; Vilcassim, M.J.R.; Adragna, J.; Gill, E.; Tovar, A.; Thorpe, L.E.; Gordon, T. Feasibility of low-cost particle sensor types in long-term indoor air pollution health studies after repeated calibration, 2019–2021. Sci. Rep. 2022, 12, 14571. [Google Scholar] [CrossRef]
- Molnár, A.; Imre, K.; Ferenczi, Z.; Gyula, K.; Gelencsér, A. Aerosol hygroscopicity: Hygroscopic growth proxy based on visibility for low-cost PM monitoring. Atmos. Res. 2020, 236, 104815. [Google Scholar] [CrossRef]
- Elfman, L.; Riihimäki, M.; Pringle, J.; Wålinder, R. Influence of horse stable environment on human airways. J. Occup. Med. Toxicol. 2009, 4, 10. [Google Scholar] [CrossRef]
- Karwowska, E. Microbiological air contamination in farming environment. Pol. J. Environ. Stud. 2005, 14, 445–449. [Google Scholar]
- Dutkiewicz, J.; Pomorski, Z.J.H.; Sitkowska, J.; Krysińska-Traczyk, E.; Skórska, C.; Prażmo, Z.; Cholewa, G.; Wójtowicz, H. Airborne microorganisms and endotoxin in animal houses. Grana 1994, 33, 85–90. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Mainka, A.; Pastuszka, J.S.; Lizończyk, K.; Desta, Y.G. Assessment of Bacterial Aerosol in a Preschool, Primary School and High School in Poland. Atmosphere 2018, 9, 87. [Google Scholar] [CrossRef]
- Grzyb, J.; Lenart-Boroń, A. Size distribution and concentration of fungal aerosol in animal premises of a zoological garden. Aerobiologia 2020, 36, 233–248. [Google Scholar] [CrossRef]
- Cambra-Lopez, M.; Aarnink, A.J.A.; Zhao, Y.; Calvet, S.; Torres, A.G. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environ. Pollut. 2010, 158, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Ikeguchi, A.; Naide, T. Concentrations of Aerosol Numbers and Airborne Bacteria, and Temperature and Relative Humidity, and Their Interrelationships in a Tie-Stall Dairy Barn. Animals 2019, 9, 1023. [Google Scholar] [CrossRef] [Green Version]
- Morawska, L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 2006, 16, 335–347. [Google Scholar] [CrossRef]
- Zajc, J.; Gunde-Cimerman, N. The Genus Wallemia—From Contamination of Food to Health Threat. Microorganisms 2018, 6, 46. [Google Scholar] [CrossRef]
- Kristiansen, A.; Saunders, A.M.; Hansen, A.A.; Nielsen, P.H.; Nielsen, J.L. Community structure of bacteria and fungi in aerosols of a pig confinement building. FEMS Microbiol. Ecol. 2012, 80, 390–401. [Google Scholar] [CrossRef]
- Zeng, Q.Y.; Westermark, S.O.; Rasmuson-Lestander, A.; Wang, X.R. Detection and quantification of Wallemia sebi in aerosols by real-time PCR, conventional PCR, and cultivation. Appl. Environ. Microbiol. 2004, 70, 7295–7302. [Google Scholar] [CrossRef]
- Reboux, G.; Piarroux, R.; Mauny, F.; Madroszyk, A.; Millon, L.; Bardonnet, K.; Dalphin, J.-C. Role of molds in farmer’s lung disease in eastern France. Am. J. Respir. Crit. Care Med. 2001, 163, 1534–1539. [Google Scholar] [CrossRef]
- Hamilos, D.L. Allergic Fungal Rhinitis and Rhinosinusitis. Proc. Am. Thorac. Soc. 2010, 7, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Kurup, V.P.; Shen, H.D.; Banerjee, B. Respiratory fungal allergy. Microbes Infect. 2000, 2, 1101–1110. [Google Scholar] [CrossRef]
- Niedźwiedź, A.; Jaworski, Z.; Kubiak, K. Serum concentrations of allergen-specific IgE in horses with equine recurrent airway obstruction and healthy controls assessed by ELISA. Vet. Clin. Pathol. 2015, 44, 391–396. [Google Scholar] [CrossRef] [PubMed]
Time of Day | Early Morning (No Activity) | Feeding | Mid-Day | Activity | Outdoor Background | |||||
---|---|---|---|---|---|---|---|---|---|---|
Horse Stables | Kraków | Tarnów | Kraków | Tarnów | Kraków | Tarnów | Kraków | Tarnów | Kraków | Tarnów |
PM10 | 19 (1) | 54 (1) | 16 (1) | 57 (1) | 10 (1) | 62 (1) | 19 (1) | 109 (2) | 28 (2) | 36 (0) |
PM2,5 | 13 (1) | 46 (1) | 14 (1) | 47 (0) | 9 (1) | 51 (1) | 18 (1) | 86 (5) | 20 (1) | 32 (1) |
PM1 | 6 (1) | 29 (1) | 6 (1) | 29 (1) | 5 (0) | 32 (2) | 10 (1) | 33 (3) | 15 (2) | 20 (0) |
Respirable dust | 19 (2) | 74 (0) | 19 (1) | 76 (1) | 14 (1) | 82 (2) | 27 (1) | 119 (8) | 35 (1) | 52 (1) |
Temperature | 7 | 3 | 8 | 7 | 11 | 8 | 8 | 7 | 5 | 2 |
Relative humidity | 70 | 60 | 63 | 71 | 55 | 53 | 64 | 62 | 69 | 72 |
Time of Day | Early Morning (No Activity) | Feeding | Mid-Day | Activity | Outdoor Background | |||||
---|---|---|---|---|---|---|---|---|---|---|
Horse Stables | Kraków | Tarnów | Kraków | Tarnów | Kraków | Tarnów | Kraków | Tarnów | Kraków | Tarnów |
Fraction F1 (7.0–11.0 µm) | 541 (1) | 701 (300) | 2.82 × 104 (34) | 336 (336) | 422 (2) | 1.65 × 103 (654) | 901 (1) | 3.53 × 103 (748) | 0 (0) | 128 (128) |
Fraction F2 (4.7–7.0 µm) | 212 (12) | 654 (395) | 2.41 × 104 (617) | 830 (18) | 70 (0) | 860 (53) | 858 (8) | 3.59 × 103 (306) | 12 (2) | 44 (0) |
Fraction F3 (3.3–4.7 µm) | 436 (36) | 925 (571) | 1.90 × 104 (41) | 601 (247) | 173 (3) | 931 (365) | 1.33 × 103 (30) | 3.82 × 103 (707) | 12 (4) | 22 (22) |
Fraction F4 (2.1–3.3 µm) | 594 (6) | 306 (118) | 1.57 × 104 (201) | 2.31 × 103 (371) | 281 (1) | 2733 (59) | 1.94 × 103 (39) | 3.98 × 103 (353) | 59 (4) | 146 (0) |
Fraction F5 (1.1–2.1 µm) | 5.65×103 (148) | 347 (206) | 1.67 × 104 (231) | 3.32 × 103 (671) | 373 (3) | 2.73 × 103 (283) | 6.71 × 103 (7) | 3.60 × 103 (1060) | 177 (3) | 146 (66) |
Fraction F6 (0.65–1.1 µm) | 33 (3) | 141 (47) | 8.24 × 103 (240) | 353 (0) | 46 (1) | 471 (165) | 582 (2) | 4.57 × 103 (1458) | 0 (1) | 13 (13) |
Total fungal aerosol | 7.46 × 103 (193) | 3.07 × 103 (989) | 11.21 × 104 (1364) | 7.76 × 103 (1148) | 1.37 × 103 (12) | 8.44 × 103 (1926) | 1.23 × 104 (86) | 2.31 × 104 (2058) | 259 (9) | 406 (230) |
Respirable fungal aerosol | 6.71 × 103 (180) | 1.72 × 103 (294) | 5.97 × 104 (712) | 6.59 × 103 (795) | 874 (9) | 5.93 × 103 (872) | 10.56 × 103 (78) | 15.96 × 103 (1458) | 247 (10) | 234 (102) |
Kraków Stable | ||||||||||||||
Fungal Aerosol | Particulate Matter (PM) | Microclimatic Parameters | ||||||||||||
F1 | F2 | F3 | F4 | F5 | F6 | Total | Respirable | PM1 | PM2.5 | PM10 | Respirable | Temp. | Relative Humidity | |
F1 | - | 0.997 | 1.000 | 0.985 | 0.997 | 0.902 | 0.997 | 0.997 | −0.297 | −0.153 | −0.319 | −0.153 | 0.347 | −0.203 |
F2 | - | 0.997 | 0.976 | 1.000 | 0.900 | 0.988 | 1.000 | −0.296 | −0.152 | −0.318 | −0.152 | 0.346 | −0.202 | |
F3 | - | 0.985 | 0.997 | 0.902 | 0.997 | 0.997 | −0.297 | −0.153 | −0.319 | −0.153 | 0.347 | −0.203 | ||
F4 | - | 0.976 | 0.888 | 0.988 | 0.976 | −0.334 | −0.183 | −0.343 | −0.183 | 0.346 | −0.202 | |||
F5 | - | 0.900 | 0.988 | 1.000 | −0.296 | −0.152 | −0.318 | −0.152 | 0.346 | −0.202 | ||||
F6 | - | 0.900 | 0.900 | −0.372 | −0.287 | −0.564 | −0.287 | 0.650 | −0.597 | |||||
Total fungal aerosol | - | 0.988 | −0.296 | −0.152 | −0.318 | −0.152 | 0.346 | −0.202 | ||||||
Respirable fungal aerosol | - | −0.296 | −0.152 | −0.318 | −0.152 | 0.346 | −0.202 | |||||||
PM1 | - | 0.969 | 0.870 | 0.969 | −0.641 | 0.433 | ||||||||
PM2.5 | - | 0.902 | 1.000 | −0.722 | 0.500 | |||||||||
PM10 | - | 0.902 | −0.896 | 0.786 | ||||||||||
Respirable PM | - | −0.722 | 0.500 | |||||||||||
Temperature | - | −0.860 | ||||||||||||
Relative humidity | - | |||||||||||||
Tarnów Stable | ||||||||||||||
Fungal Aerosol | Particulate Matter (PM) | Microclimatic Parameters | ||||||||||||
F1 | F2 | F3 | F4 | F5 | F6 | Total | Respirable | PM1 | PM2.5 | PM10 | Respirable | Temp. | Relative Humidity | |
F1 | - | 0.863 | 0.839 | 0.619 | 0.456 | 0.759 | 0.778 | 0.742 | 0.794 | 0.674 | 0.644 | 0.677 | 0.716 | −0.827 |
F2 | - | 0.936 | 0.805 | 0.687 | 0.909 | 0.912 | 0.888 | 0.751 | 0.713 | 0.675 | 0.695 | 0.849 | −0.765 | |
F3 | - | 0.729 | 0.503 | 0.857 | 0.842 | 0.806 | 0.650 | 0.663 | 0.703 | 0.620 | 0.808 | −0.812 | ||
F4 | - | 0.845 | 0.945 | 0.948 | 0.973 | 0.695 | 0.677 | 0.644 | 0.689 | 0.963 | −0.593 | |||
F5 | - | 0.821 | 0.830 | 0.842 | 0.724 | 0.699 | 0.593 | 0.723 | 0.821 | −0.345 | ||||
F6 | - | 0.997 | 0.979 | 0.794 | 0.793 | 0.785 | 0.787 | 0.963 | −0.642 | |||||
Total fungal aerosol | - | 0.988 | 0.804 | 0.790 | 0.771 | 0.790 | 0.960 | −0.640 | ||||||
Respirable fungal aerosol | - | 0.749 | 0.736 | 0.703 | 0.742 | 0.960 | −0.615 | |||||||
PM1 | - | 0.911 | 0.839 | 0.935 | 0.799 | −0.673 | ||||||||
PM2.5 | - | 0.963 | 0.994 | 0.811 | −0.494 | |||||||||
PM10 | - | 0.942 | 0.777 | −0.484 | ||||||||||
Respirable PM | - | 0.811 | −0.494 | |||||||||||
Temperature | - | −0.667 | ||||||||||||
Relative humidity | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenart-Boroń, A.; Bajor, A.; Tischner, M.; Kulik, K.; Kabacińska, J. Particulate Matter Concentrations and Fungal Aerosol in Horse Stables as Potential Causal Agents in Recurrent Airway Disease in Horses and Human Asthma and Allergies. Appl. Sci. 2022, 12, 9375. https://doi.org/10.3390/app12189375
Lenart-Boroń A, Bajor A, Tischner M, Kulik K, Kabacińska J. Particulate Matter Concentrations and Fungal Aerosol in Horse Stables as Potential Causal Agents in Recurrent Airway Disease in Horses and Human Asthma and Allergies. Applied Sciences. 2022; 12(18):9375. https://doi.org/10.3390/app12189375
Chicago/Turabian StyleLenart-Boroń, Anna, Anna Bajor, Marek Tischner, Klaudia Kulik, and Julia Kabacińska. 2022. "Particulate Matter Concentrations and Fungal Aerosol in Horse Stables as Potential Causal Agents in Recurrent Airway Disease in Horses and Human Asthma and Allergies" Applied Sciences 12, no. 18: 9375. https://doi.org/10.3390/app12189375
APA StyleLenart-Boroń, A., Bajor, A., Tischner, M., Kulik, K., & Kabacińska, J. (2022). Particulate Matter Concentrations and Fungal Aerosol in Horse Stables as Potential Causal Agents in Recurrent Airway Disease in Horses and Human Asthma and Allergies. Applied Sciences, 12(18), 9375. https://doi.org/10.3390/app12189375