Study on Spray Characteristics and Breakup Mechanism of an SCR Injector
Abstract
:1. Introduction
2. Numerical Models and Methods
2.1. Model Description and Methods of Primary Breakup
2.1.1. Primary Breakup Model of Non-Air-Assisted Injector
2.1.2. Flow Control Equations of Primary Breakup
2.1.3. Two-Phase Flow Control Equations of Primary Breakup
2.1.4. Dynamic Mesh Method
2.2. Model Description and Methods of Droplet Development Process
2.2.1. Droplet Development Model
2.2.2. Control Equations of the Droplet Development Process
2.2.3. Secondary Breakup Model
3. Results and Discussion
3.1. Analysis of the Primary Breakup Process
3.1.1. Primary Breakup Mode of Liquid Jet
3.1.2. Breakup Length of Liquid Jet
3.1.3. Inclination Angle of Liquid Jet
3.1.4. Droplet Diameter and Velocity of the Primary Breakup
3.2. Analysis of the Droplet Development Process
3.2.1. Distribution Characteristics of Droplet Development Process
3.2.2. Velocity Distribution Characteristics of the Droplet Development Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFD | Computational fluid dynamics |
DPM | Discrete phase model |
LES | Large eddy simulation |
SCR | Selective catalytic reduction |
SMD | Sauter mean diameter |
UWS | Urea water solution |
VOF | Volume of fluid |
Nomenclature
Aj | Face area vector |
Cb, Cd, Cf, Ck | Dimensionless constant |
CD | Resistance coefficient |
d0 | Characteristic length of the jet at the nozzle exit |
dl | Droplet diameter |
F | Generalized source term of momentum equation |
Fd | Additional force |
f | Drag force |
g | Gravitational acceleration |
Lc | Average breakup length of liquid jet |
ml | Droplet mass |
nf | Number of motion surfaces of the control body |
Oh | Ohnesorge number |
p | Static pressure |
Re | Reynolds number |
Sϕ | Source term of the general scalar quantity ϕ |
t | Time |
u | Velocity vector |
u0 | Average axial velocity of jet at nozzle exit |
um | Mesh velocity of the moving mesh |
ul | Droplet velocity |
ug | Gas velocity |
We | Weber number |
Weg | Aerodynamic Weber number |
ρ | Density |
ρg | Gas density |
ρl | Liquid density |
αi | Volume fraction of ith phase |
αg | Volume fraction of gas phase |
αl | Volume fraction of liquid phase |
σl | Surface tension of liquid |
μg | Dynamic viscosity of gas |
μl | Dynamic viscosity of liquid |
Stress tensor | |
Γ | Dissipation coefficient |
∆t | Time step |
δVj | Volume swept by the motion surface of the control volume in the time step ∆t |
References
- He, L.; Hu, J.; Zhang, S.; Wu, Y.; Guo, X.; Guo, X.; Song, J.; Zu, L.; Zheng, X.; Bao, X. Investigating Real-World Emissions of China’s Heavy-Duty Diesel Trucks: Can SCR Effectively Mitigate NOx Emissions for Highway Trucks? Aerosol Air Qual. Res. 2017, 17, 2585–2594. [Google Scholar] [CrossRef]
- Martinovic, F.; Castoldi, L.; Deorsola, F.A. Aftertreatment Technologies for Diesel Engines: An Overview of the Combined Systems. Catalysts 2021, 11, 653. [Google Scholar] [CrossRef]
- Schmidt, A.; Bonarens, M.; Roisman, I.V.; Nishad, K.; Sadiki, A.; Dreizler, A.; Hussong, J.; Wagner, S. Experimental Investigation of AdBlue Film Formation in a Generic SCR Test Bench and Numerical Analysis Using LES. Appl. Sci. 2021, 11, 6907. [Google Scholar] [CrossRef]
- Lauer, T. Preparation of Ammonia from Liquid AdBlue—Modeling Approaches and Future Challenges. Chem. Ing. Tech. 2018, 90, 783–794. [Google Scholar] [CrossRef]
- Choi, B.; Lee, K.; Son, G. Review of Recent After-Treatment Technologies for De-NOx Process in Diesel Engines. Int. J. Automot. Technol. 2020, 21, 1597–1618. [Google Scholar] [CrossRef]
- Park, G.; Bang, H.; Lee, S. Flow Analysis of PM/NOX Aftertreatment System for Emergency Generator. Appl. Sci. 2022, 12, 4404. [Google Scholar] [CrossRef]
- Hua, L.; Zhao, Y.; Hu, J.; Tang, T.; Shuai, S. A Comparative Experimental Study on the Urea Spray Characteristics in SCR Systems w/wo Air Assistance. Automot. Eng. 2013, 35, 197–201. [Google Scholar]
- Frühhaber, J.; Lieber, C.; Mattes, D.; Lauer, T.; Koch, R.; Bauer, H.-J. Modeling the Formation of Urea-Water Sprays from an Air-Assisted Nozzle. Appl. Sci. 2020, 10, 5723. [Google Scholar] [CrossRef]
- Spiteri, A.; Dimopoulos Eggenschwiler, P. Experimental Fluid Dynamic Investigation of Urea–Water Sprays for Diesel Selective Catalytic Reduction–DeNOx Applications. Ind. Eng. Chem. Res. 2014, 53, 3047–3055. [Google Scholar] [CrossRef]
- Varna, A.; Spiteri, A.C.; Wright, Y.M.; Dimopoulos Eggenschwiler, P.; Boulouchos, K. Experimental and numerical assessment of impingement and mixing of urea–water sprays for nitric oxide reduction in diesel exhaust. Appl. Energy 2015, 157, 824–837. [Google Scholar] [CrossRef]
- Liao, Y.; Furrer, R.; Dimopoulos Eggenschwiler, P.; Boulouchos, K. Experimental investigation of the heat transfer characteristics of spray/wall interaction in diesel selective catalytic reduction systems. Fuel 2017, 190, 163–173. [Google Scholar] [CrossRef]
- Shahariar, G.M.H.; Lim, O.T. Investigation of urea aqueous solution injection, droplet breakup and urea decomposition of selective catalytic reduction systems. J. Mech. Sci. Technol. 2018, 32, 3473–3481. [Google Scholar] [CrossRef]
- Zhao, Y.; Hua, L.; Hu, J.; Tang, T.; Shuai, S.; Wang, J. Experimental Study of Urea Solution Spray Characteristics in SCR System of Diesel Engine. Chin. Intern. Combust. Engine Eng. 2012, 33, 22–27. [Google Scholar]
- Oh, J.; Lee, K. Spray characteristics of a urea solution injector and optimal mixer location to improve droplet uniformity and NOx conversion efficiency for selective catalytic reduction. Fuel 2014, 119, 90–97. [Google Scholar] [CrossRef]
- Kapusta, Ł.J.; Sutkowski, M.; Rogóż, R.; Zommara, M.; Teodorczyk, A. Characteristics of Water and Urea–Water Solution Sprays. Catalysts 2019, 9, 750. [Google Scholar] [CrossRef]
- Bracho, G.; Postrioti, L.; Moreno, A.; Brizi, G. Experimental study of the droplet characteristics of a SCR injector spray through optical techniques. Int. J. Multiph. Flow 2021, 135, 103531. [Google Scholar] [CrossRef]
- Ghiji, M.; Goldsworthy, L.; Brandner, P.A.; Garaniya, V.; Hield, P. Analysis of diesel spray dynamics using a compressible Eulerian/VOF/LES model and microscopic shadowgraphy. Fuel 2017, 188, 352–366. [Google Scholar] [CrossRef]
- Qiu, T.; Wang, K.; Lei, Y.; Liu, X.; Fan, L.; Peng, G. Dynamic Identification of Diesel Spray Breakup Model Feature Based on Improved ELSA Algorithm. Trans. Csice 2021, 39, 153–158. [Google Scholar]
- Xu, J.X.; Chen, C.Y.; Shen, L.Y.; Xuan, W.D.; Li, X.G.; Shuai, S.S.; Li, X.; Hu, T.; Li, C.A.J.; Yu, J.B.; et al. Atomization mechanism and powder morphology in laminar flow gas atomization. Acta Phys. Sin. 2021, 70, 140201. [Google Scholar] [CrossRef]
- Zeoli, N.; Gu, S. Numerical modelling of droplet break-up for gas atomisation. Comput. Mater. Sci. 2006, 38, 282–292. [Google Scholar] [CrossRef]
- Kitaguchi, K.; Fujii, T.; Hatori, S.; Hori, T.; Senda, J. Effect of breakup model on large-eddy simulation of diesel spray evolution under high back pressures. Int. J. Engine Res. 2014, 15, 522–538. [Google Scholar] [CrossRef]
- Fuster, D.; Bagué, A.; Boeck, T.; Le Moyne, L.; Leboissetier, A.; Popinet, S.; Ray, P.; Scardovelli, R.; Zaleski, S. Simulation of primary atomization with an octree adaptive mesh refinement and VOF method. Int. J. Multiph. Flow 2009, 35, 550–565. [Google Scholar] [CrossRef]
- Jyothis, K.; Vikas, R. Study of conversion of ammonia from urea water solution droplets using CFD. IOP Conf. Ser. Mater. Sci. Eng. 2017, 243, 012011. [Google Scholar] [CrossRef] [Green Version]
- Rogóż, R.; Kapusta, Ł.J.; Bachanek, J.; Vankan, J.; Teodorczyk, A. Improved urea-water solution spray model for simulations of selective catalytic reduction systems. Renew. Sustain. Energy Rev. 2020, 120, 109616. [Google Scholar] [CrossRef]
- Li, X.-G.; Fritsching, U. Process modeling pressure-swirl-gas-atomization for metal powder production. J. Mater. Process. Technol. 2017, 239, 1–17. [Google Scholar] [CrossRef]
- Xia, M.; Wang, P.; Zhang, X.H.; Ge, C.C. Computational fluid dynamic investigation of the primary and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process. Acta Phys. Sin. 2018, 67, 170201. [Google Scholar] [CrossRef]
- Crowe, C.T.; Schwarzkopf, J.D.; Sommerfeld, M.; Tsuji, Y. Multiphase Flows with Droplets and Particles, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 260–290. [Google Scholar] [CrossRef]
- O’Rourke, P.; Amsden, A. A Spray/wall Interaction Submodel for the KIVA-3 Wall Film Model. SAE Tech. Pap. 2000, 109, 281–298. [Google Scholar] [CrossRef]
- Im, K.S.; Lin, K.C.; Lai, M.C.; Chon, M.S. Breakup modeling of a liquid jet in cross flow. Int. J. Automot. Technol. 2011, 12, 489–496. [Google Scholar] [CrossRef]
- Pan, Y.; Suga, K. A numerical study on the breakup process of laminar liquid jets into a gas. Phys. Fluids 2006, 18, 052101. [Google Scholar] [CrossRef]
- Majumdar, N.; Tirumkudulu, M.S. Growth of sinuous waves on thin liquid sheets: Comparison of predictions with experiments. Phys. Fluids 2016, 28, 052101. [Google Scholar] [CrossRef]
- Reitz, R.D. Atomization and Other Breakup Regimes of a Liquid Jet. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1978. [Google Scholar]
- Sallam, K.A.; Dai, Z.; Faeth, G.M. Liquid breakup at the surface of turbulent round liquid jets in still gases. Int. J. Multiph. Flow 2002, 28, 427–449. [Google Scholar] [CrossRef]
Boundary Conditions and Material Properties | Value |
---|---|
Injection Pressure/MPa | 0.4, 0.5, 0.6 |
Water Density/kg·m−3 | 998.2 |
Dynamic Viscosity of Water/Pa·s | 1.4 × 10−3 |
Surface Tension Coefficient of Water/N·m−1 | 0.073 |
Air Density/kg·m−3 | 1.29 |
Dynamic Viscosity of Air/Pa·s | 1.8 × 10−5 |
Boundary Conditions and Parameters | Value | |
---|---|---|
Initial velocity of droplet group/(m·s−1) | 21.39, 22.50, 23.52 | |
Inclination angle α/° | 9.9 | |
Spray cone angle β/° | 5.4 | |
Rosin–Rammler distribution | Minimum diameter/μm | 10 |
Maximum diameter/μm | 400 | |
Mean diameter/μm | 11.24 | |
Spread parameter | 2.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, C.; Liu, K.; Zhao, T.; Liu, J. Study on Spray Characteristics and Breakup Mechanism of an SCR Injector. Appl. Sci. 2022, 12, 9387. https://doi.org/10.3390/app12189387
Bai C, Liu K, Zhao T, Liu J. Study on Spray Characteristics and Breakup Mechanism of an SCR Injector. Applied Sciences. 2022; 12(18):9387. https://doi.org/10.3390/app12189387
Chicago/Turabian StyleBai, Chuanxin, Kai Liu, Tong Zhao, and Jinjin Liu. 2022. "Study on Spray Characteristics and Breakup Mechanism of an SCR Injector" Applied Sciences 12, no. 18: 9387. https://doi.org/10.3390/app12189387
APA StyleBai, C., Liu, K., Zhao, T., & Liu, J. (2022). Study on Spray Characteristics and Breakup Mechanism of an SCR Injector. Applied Sciences, 12(18), 9387. https://doi.org/10.3390/app12189387