Design and Implementation of an Additively Manufactured Reactor Concept for the Catalytic Methanation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Requirements for a Novel Reactor Concept
2.1.1. Increasing Local Residence Time towards Reactor Outlet
2.1.2. Heat Pipes for Cooling
2.1.3. Internal Gas Preheating
2.1.4. Compact Design
2.1.5. Scalability
2.1.6. Simple Connectivity/Weldability
2.2. Modelling and Implementation
2.3. Tensile Tests
2.4. Strength Calculations
3. Results
3.1. ADDmeth1 Concept
3.2. Preliminary Feasibility Studies
3.2.1. Tensile Tests and Strength Verification
3.2.2. Printability of Fine Structures
3.3. Manufacturing and Assembly
4. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maroufmashat, A.; Fowler, M. Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways. Energies 2017, 10, 1089. [Google Scholar] [CrossRef]
- Schaaf, T.; Grünig, J.; Schuster, M.R.; Rothenfluh, T.; Orth, A. Methanation of CO2-Storage of Renewable Energy in a Gas Distribution System. Energy Sustain. Soc. 2014, 4, 2. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen Production by PEM Water Electrolysis—A Review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on Methanation—From Fundamentals to Current Projects. Fuel 2016, 166, 276–296. [Google Scholar] [CrossRef]
- Karl, J.; Neubert, M.; Riazi, M.R.; Chiaramonti, D. Production of Substitute Natural Gas—Thermochemical Methods. In Biofuels Production and Processing Technology; CRC Press: Boca Raton, FL, USA, 2017; pp. 461–485. ISBN 9781315155067. [Google Scholar]
- Kopyscinski, J.; Schildhauer, T.J.; Biollaz, S.M.A. Production of Synthetic Natural Gas (SNG) from Coal and Dry Biomass—A Technology Review from 1950 to 2009. Fuel 2010, 89, 1763–1783. [Google Scholar] [CrossRef]
- Guilera, J.; Boeltken, T.; Timm, F.; Mallol, I.; Alarcón, A.; Andreu, T. Pushing the Limits of SNG Process Intensification: High GHSV Operation at Pilot Scale. ACS Sustain. Chem. Eng. 2020, 8, 8409–8418. [Google Scholar] [CrossRef]
- Engelbrecht, N.; Everson, R.C.; Bessarabov, D. Thermal Management and Methanation Performance of a Microchannel-Based Sabatier Reactor/Heat Exchanger Utilising Renewable Hydrogen. Fuel Process. Technol. 2020, 208, 106508. [Google Scholar] [CrossRef]
- Pérez, S.; Aragón, J.J.; Peciña, I.; Garcia-Suarez, E.J. Enhanced CO2 Methanation by New Microstructured Reactor Concept and Design. Top. Catal. 2019, 62, 518–523. [Google Scholar] [CrossRef]
- Belimov, M.; Metzger, D.; Pfeifer, P. On the Temperature Control in a Microstructured Packed Bed Reactor for Methanation of CO/CO2 Mixtures. AIChE J. 2017, 63, 120–129. [Google Scholar] [CrossRef]
- Neubert, M.; Hauser, A.; Pourhossein, B.; Dillig, M.; Karl, J. Experimental Evaluation of a Heat Pipe Cooled Structured Reactor as Part of a Two-Stage Catalytic Methanation Process in Power-to-Gas Applications. Appl. Energy 2018, 229, 289–298. [Google Scholar] [CrossRef]
- Salmi, M. Additive Manufacturing Processes in Medical Applications. Materials 2021, 14, 191. [Google Scholar] [CrossRef] [PubMed]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; du Plessis, A. Metal Additive Manufacturing in Aerospace: A Review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Amedei, A.; Meli, E.; Rindi, A.; Romani, B.; Pinelli, L.; Vanti, F.; Arnone, A.; Benvenuti, G.; Fabbrini, M.; Morganti, N. Innovative Design, Structural Optimization and Additive Manufacturing of New-Generation Turbine Blades. In Proceedings of the American Society of Mechanical Engineers Turbo Expo; American Society of Mechanical Engineers Digital Collection; Online, 7–11 June 2021, ASME: New York, NY, USA, 2021; Volume 2C-2020. [Google Scholar]
- Laguna, O.H.; Lietor, P.F.; Godino, F.J.I.; Corpas-Iglesias, F.A. A Review on Additive Manufacturing and Materials for Catalytic Applications: Milestones, Key Concepts, Advances and Perspectives. Mater. Des. 2021, 208, 109927. [Google Scholar] [CrossRef]
- Danaci, S.; Protasova, L.; Middelkoop, V.; Ray, N.; Jouve, M.; Bengaouer, A.; Marty, P. Scaling up of 3D Printed and Ni/Al2O3 Coated Reactors for CO2 Methanation. React. Chem. Eng. 2019, 4, 1318–1330. [Google Scholar] [CrossRef]
- Stiegler, T.; Meltzer, K.; Tremel, A.; Baldauf, M.; Wasserscheid, P.; Albert, J. Development of a Structured Reactor System for CO2 Methanation under Dynamic Operating Conditions. Energy Technol. 2019, 7, 1900047. [Google Scholar] [CrossRef]
- Kreitz, B.; Wehinger, G.D.; Turek, T. Dynamic Simulation of the CO2 Methanation in a Micro-Structured Fixed-Bed Reactor. Chem. Eng. Sci. 2019, 195, 541–552. [Google Scholar] [CrossRef]
- Parlikkad, N.R.; Chambrey, S.; Fongarland, P.; Fatah, N.; Khodakov, A.; Capela, S.; Guerrini, O. Modeling of Fixed Bed Methanation Reactor for Syngas Production: Operating Window and Performance Characteristics. Fuel 2013, 107, 254–260. [Google Scholar] [CrossRef]
- Hauser, A.; Weitzer, M.; Gunsch, S.; Neubert, M.; Karl, J. Dynamic Hydrogen-Intensified Methanation of Synthetic by-Product Gases from Steelworks. Fuel Process. Technol. 2021, 217, 106701. [Google Scholar] [CrossRef]
- Faghri, A. Heat Pipes: Review, Opportunities and Challenges. Front. Heat Pipes 2014, 5, 1. [Google Scholar] [CrossRef]
- Try, R.; Bengaouer, A.; Baurens, P.; Jallut, C. Dynamic Modeling and Simulations of the Behavior of a Fixed-Bed Reactor-Exchanger Used for CO2 Methanation. AIChE J. 2018, 64, 468–480. [Google Scholar] [CrossRef]
- Bengaouer, A.; Ducamp, J.; Champon, I.; Try, R. Performance Evaluation of Fixed-Bed, Millistructured, and Metallic Foam Reactor Channels for CO2 Methanation. Can. J. Chem. Eng. 2018, 96, 1937–1945. [Google Scholar] [CrossRef]
- Papke, T.; Merklein, M. Characterization of Work Hardening Behavior of Additively Manufactured Stainless Steel 316L (1.4404) Using Bulk Metal Forming at Elevated Temperature. In Proceedings of the Lasers in Manufacturing Conference, Munich, Germany, 24 July 2019; pp. 1–10. [Google Scholar]
- Verband der Technischen Überwachungs-Vereine e.V. (VdTÜV e.V.) (Ed.) AD 2000-Regelwerk; Taschenbuch-Ausgabe 2016 (Handbuch Technische Regeln); Beuth Verlag GmbH: Berlin, Germany, 2016; ISBN 978-3-410-27086-7. [Google Scholar]
- Gläßner, C.; Blinn, B.; Burkhart, M.; Klein, M.; Beck, T.; Aurich, J.C. Comparison of 316L Test Specimens Manufactured by Selective Laser Melting, Laser Deposition Welding and Continuous Casting. In Proceedings of the 7 WGP-Jahreskongress, Aachen, Germany, 5–6 October 2017; pp. 45–52. [Google Scholar]
- Rösler, J.; Harders, H.; Bäker, M. Mechanisches Verhalten Der Werkstoffe; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2012; ISBN 978-3-8348-1818-8. [Google Scholar]
- Li, M.; Zhang, X.; Chen, W.-Y.; Byun, T.S. Creep Behavior of 316 L Stainless Steel Manufactured by Laser Powder Bed Fusion. J. Nucl. Mater. 2021, 548, 152847. [Google Scholar] [CrossRef]
Ultimate Tensile Strength Rm/N/mm2 | Technical Elastic Limit Rp0.2/N/mm2 | Uniform Elongation Ag/% | Elongation at Break A/% | ||
---|---|---|---|---|---|
RT | Horizontal | 749 ± 11 | 621 ± 5 | 23.7 ± 1.3 | 45.1 ± 2.0 |
45° | 757 ± 7 | 647 ± 10 | 26.1 ± 0.2 | 56.7 ± 2.7 | |
Vertical | 700 ± 4 | 623 ± 13 | 29.0 ± 2.9 | 64.6 ± 0.0 | |
300 °C | Horizontal | 561 ± 0 | 505 ± 16 | - * | - * |
45° | 556 ± 7 | 521 ± 14 | - * | - * | |
Vertical | 523 ± 5 | 489 ± 12 | - * | - * | |
425 °C | Horizontal | 541 ± 5 | 450 ± 22 | - * | - * |
45° | 533 ± 2 | 453 ± 16 | - * | - * | |
Vertical | 500 ± 4 | 446 ± 5 | - * | - * |
Material | Form of Strain | Tdesign/°C | pdesign/bar | Rp0.2/N/mm2 | Safety Factor | |
---|---|---|---|---|---|---|
Reaction channel | 1.4404 (SLM) | Internal pressure | 425 | 10 | 446 a | 49.4 |
Heat pipes | 1.4404 (SLM) | Internal pressure | 350 | 165 | 472 b | 8.3 |
Outer reactor wall (without lattice structure) | 1.4404 (SLM) | Internal pressure | 300 | 10 | 489 c | 1.5 |
Outer reactor wall (with lattice structure; weakest point: contact points with lattice) | 1.4404 (SLM) | Tension due to internal pressure | 300 | 10 | 489 c | 5.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hauser, A.; Neubert, M.; Feldner, A.; Horn, A.; Grimm, F.; Karl, J. Design and Implementation of an Additively Manufactured Reactor Concept for the Catalytic Methanation. Appl. Sci. 2022, 12, 9393. https://doi.org/10.3390/app12189393
Hauser A, Neubert M, Feldner A, Horn A, Grimm F, Karl J. Design and Implementation of an Additively Manufactured Reactor Concept for the Catalytic Methanation. Applied Sciences. 2022; 12(18):9393. https://doi.org/10.3390/app12189393
Chicago/Turabian StyleHauser, Alexander, Michael Neubert, Alexander Feldner, Alexander Horn, Fabian Grimm, and Jürgen Karl. 2022. "Design and Implementation of an Additively Manufactured Reactor Concept for the Catalytic Methanation" Applied Sciences 12, no. 18: 9393. https://doi.org/10.3390/app12189393
APA StyleHauser, A., Neubert, M., Feldner, A., Horn, A., Grimm, F., & Karl, J. (2022). Design and Implementation of an Additively Manufactured Reactor Concept for the Catalytic Methanation. Applied Sciences, 12(18), 9393. https://doi.org/10.3390/app12189393