
Citation: Kong, X.; Kong, S.; Yu, M.;

Du, C. Joint Embedding of Semantic

and Statistical Features for Effective

Code Search. Appl. Sci. 2022, 12,

10002. https://doi.org/10.3390/

app121910002

Academic Editors: Rolando Miragaia

and José Carlos Bregieiro Ribeiro

Received: 12 August 2022

Accepted: 28 September 2022

Published: 5 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Joint Embedding of Semantic and Statistical Features for
Effective Code Search
Xianglong Kong 1,* , Supeng Kong 1 , Ming Yu 2 and Chengjie Du 1

1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2 Shenyang Blower Works Group Corporation, Shenyang 110869, China
* Correspondence: xlkong@seu.edu.cn

Abstract: Code search is an important approach to improve effectiveness and efficiency of software
development. The current studies commonly search target code based on either semantic or statistical
information in large datasets. Semantic and statistical information have hidden relationships between
them since they describe code snippets from different perspectives. In this work, we propose a joint
embedding model of semantic and statistical features to improve the effectiveness of code annotation.
Then, we implement a code search engine, i.e., JessCS, based on the joint embedding model. We
evaluate JessCS on more than 1 million lines of code snippets and corresponding descriptions. The
experimental results show that JessCS performs more effective than UNIF-based approach, with at
least 13% improvements on the studied metrics.

Keywords: code search; software reuse; code embedding; statistical semantics

1. Introduction

Code search is a process that takes a user’s query as input and retrieves the most
relevant, appropriate and rated source code snippets from a code base [1]. During soft-
ware development, 19% of working time is spent on code search, the existing code snip-
pets in open-source communities can be reused to implement current requirements [2].
An effective code search approach can significantly improve the efficiency of software
development [3–5]. Existing code search research mainly focuses on query expansion and
search engine optimization, which are constructed based on semantic and statistical fea-
tures. Akbar et al. used semantics and ordering to retrieve source code [6]. Balachandran
conducted instance queries from large-scale code repositories [7]. The effectiveness of
semantic and statistical analysis can directly impact code search techniques.

However, existing code search techniques focus on either semantic or statistical model,
regardless of the potential relationships between them. For example, API invocation and
code frequency can represent a code snippet from different perspectives, but they are
rarely used together in traditional code search approach. The existing works already prove
that either statistical features [8] or semantic features [9–11] can be used to build a code
search model. Actually, semantic and statistical features are symbiotic in software projects.
Technical problems that arise when combining semantic and statistical features involves the
mismatch between cooperative features and multidimensional information with various
patterns of representation and different levels of granularity.

To address this problem, we apply joint natural language and source code snippet
models to make code search more effective, so that a code search technique can be found,
i.e., JessCS. During code semantic analysis, the necessary semantic information is extracted
at the method level and the class level to implement the best fit semantic information. Next,
statistical features are extracted, e.g., API invocation sequence, to investigate statistical
regularity. During joint embedding, the code and its corresponding natural language
description are mapped into a unified vector space. Semantically, similar concepts occupy

Appl. Sci. 2022, 12, 10002. https://doi.org/10.3390/app121910002 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app121910002
https://doi.org/10.3390/app121910002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-2448-2214
https://doi.org/10.3390/app121910002
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app121910002?type=check_update&version=3

Appl. Sci. 2022, 12, 10002 2 of 19

adjacent regions in this vector space. We train a deep learning model to match the natural
language query and relate code based on the joint embedding network.

To evaluate the effectiveness of JessCS, we collected 1,263,974 sets of code and a set of
corresponding functional descriptions from a public API, i.e., Google BigQuery (Google
BigQuery, https://cloud.google.com/bigquery/public-data/ (accessed on 1 June 2020)).
The code base is conducted based on a project filter that limits the stars, language, time
period, and other factors. Methods that do not contain Javadoc comments are filtered out.
Our model uses <method name, API invocation, token collection> to represent the code
snippets. Experimental results show that JessCS obtained higher accuracy and success rate
on code search results. We selected UNIF-based approach [12] to make the comparison.
JessCS obtains commonly at least 13% improvement in various indicators, and the query
success rate of returning TOP-10 results reaches 0.90. In terms of code feature selection,
selecting a triad for the code feature improves the TOP-1 Precision and MRR (Mean Rank
Reciprocal) by 16.6% and 0.144, respectively, which effectively improves the accuracy of
code search. To summarize, the main contributions of this study include:

• We propose semantic and statistical analysis methods for code search and combines
deep learning to construct a joint embedding network.

• A code search technique for Java language, i.e., JessCS is designed and a dataset for
code search based on 1,263,974 pairs of code snippets and descriptions was constructed.

• We conducted a comparative experiment to evaluate the effectiveness of JessCS and
analyze the impact of related factors. We found that JessCS is more effective than the
selected approach, and the improvements come from both of semantic and statisti-
cal features.

The rest of the paper is organized as follows. Section 2 presents the background tech-
niques. Section 3 introduces the details of our approach. Section 4 introduces experiment
and analysis. Section 5 discusses the possible threats to validity. Section 6 introduces the
related concepts and techniques. Section 7 concludes this paper.

2. Background

In this section, we introduce the background concepts and techniques our approach is
based on.

2.1. Code Search

The current studies applied many kinds of models to match the given query with
the candidate code snippets [13]. For example, information retrieval models commonly
match the code and query at the text level. Machine learning models mine the semantic
information of the code from massive datasets and builds a code search model to achieve
semantic matching between the code and natural language queries.

Text-level analysis in code search usually employs language models to mine deep
statistical features of text [14]. The language model from the code search is used to predict
the next word based on the previous text, so it can only handle sequences of fixed length.
Aiming at NNLM problems, we use LSTM [15] in the application of code embedding to
maintain long-term dependencies. LSTM introduces a gating mechanism to control when
and how previous information is read from memory cells and how new information is
written. The vector representation of words can be obtained by training the language
model. In this paper, the attention mechanism is used to weigh and sum these word vectors
to obtain the vector representation of the sequence.

2.2. Joint Embedding

Joint embedding [16], known as multi-modal embedding [17], is a technique that
can encode heterogeneous data into a unified vector space. This technique is used for
many tasks [18] (e.g., Krugle (Krugle code search, http://www.krugle.com/ (accessed on 2
August 2020)), especially in the image processing. For example, in the field of computer
vision, Karpathy and Li [19] used the joint embedding technique to jointly embed images

https://cloud.google.com/bigquery/public-data/
http://www.krugle.com/

Appl. Sci. 2022, 12, 10002 3 of 19

and text into the same vector space for image labeling. In the code search field, we need to
treat the code as a structural text and vectorize it.

Vectorization of a text refers to the process of converting text into numerical tensors.
In this paper, we decompose the text into a series of lexical tokens, and then use word
embeddings and distributed representations to associate numerical vectors with these
tokens. If two words have similar context, then even if the two words themselves are
unrelated, they may carry similar semantic features. Since natural language queries and
code fragments are heterogeneous, semantically similar codes and natural language queries
may not have the same keywords or synonyms, and simply matching based on their
keyword tags is prone to term mismatch. To remedy this deficiency, embeddings need to
be generated separately for code and natural language descriptions.

Word embedding is an embedding technique that makes vectors of similar entities
close to each other, also known as a distributed semantic model [20,21]. It represents words
as fixed-length vectors so that similar words are close to each other in the vector space.
Word embeddings are often implemented using machine learning models such as CBOW
and Skip Gram [22]. These models build a neural network to capture the relationship
between words and their contextual representation.

In this paper, we want to find the corresponding functional code snippet for the natural
language query entered by the user. Considering the heterogeneity of code and natural
language, we use a joint embedding technique to map the code and its corresponding
language description into a unified vector space to achieve the purpose of code search. Due
to many syntactic and structural features unique to the source code, we choose a collection
of method names, API calls, and tokens to represent the code, and then combine them into
a semantic vector representing the entire code entry.

3. Approach

We present the technical framework of JessCS in Figure 1. JessCS consists of three steps:
feature extraction, joint embedding of semantic and statistical features, and construction of
a code search engine. First, we extract information from source code and query descriptions
to build the code embedding network and natural language embedding network. The query
description, which includes word stemming, keyword synonyms and word frequency, is
obtained by tokenizing the identifier according to the camel case naming rule. Second,
we implement the joint embedding method based on semantic and statistical features to
overcome the incongruence of data dimension. Finally, we construct a code search engine
based on the matching strategy of the query and source code.

Figure 1. Feature extraction for source code.

3.1. Feature Extraction with Different Granularities

To learn the deep statistical features of source code through deep learning methods [23],
we employ semantic analysis and modeling on the source code. To extract the semantic
information in the code as comprehensively as possible and eliminate the semantically
irrelevant noise, this work proposes a source code feature extraction method.

Figure 2 demonstrates how the solution uses the method in the Java file as the basic
unit and models the source code from the method level and the class level. For each
method in the class, the necessary semantic information related to the appropriate method
is extracted from the class where the method is located to supplement the description. In

Appl. Sci. 2022, 12, 10002 4 of 19

Java, a method is the smallest unit of source code functionality implementation. The method
level does not exist alone, it exists as part of a class level.

Figure 2. Feature extraction for Java source code.

3.1.1. Feature Extraction at the Method Level

For code search with method as the granularity as a parameter, the semantic infor-
mation at the method level can be reflected in the method name, API invocation, string,
variable name, method comment, and other information. This study uses the triplet,
<method name, API invocation, token collection> to model the method [9]. The specific
information extraction method is as follows:

• method name: For each Java method, we extract its method name and parse it ac-
cording to camel case. For example, the method name “ContentAddExecutor” will be
resolved as “content, add, executor”.

• API invocation: A sequence of API invocations can represent the semantics of the
source code [24]. We present the detailed methods of feature extraction through the
following examples: (a) For each constructor invoking new C(), C.new is generated
and appended to the API sequence. (b) For each method invoking o.m(), where o
is an instance of class C, C.m is generated to append to the API sequence. (c) For
method invocations passed as parameters, the method is attached before invoking the
method. For example, o1.m1(o2.m2(), o3.m3()), we generate a sequence C2.m2-C3.m3-
C1.m1, where Ci is the class to which the instance oi belongs. (d) For the statement
sequence s1, s2, . . . , sN , the API sequence ai is extracted from each si and concatenated
to the API sequence a1-a2-. . . -aN . (e) For conditional statements such as if(s1)s2;elses3;,
we create a sequence from all possible branches, i.e., a1-a2-a3, where ai is the API
sequence extracted from statement si. (f) For loop statements such as while(s1)s2,
a sequence a1-a2 is generated, where a1 and a2 are API sequences extracted from
statements s1 and s2.

• token collection: According to the hump rule, the various names in the entire method
entity are split. The words, after filtering the stop words and keywords are added to
the token collection. For example, stop words (e.g., and and in) and keywords in Java
language are removed because they do not distinguish semantically in source code.

Appl. Sci. 2022, 12, 10002 5 of 19

3.1.2. Feature Extraction at the Class Level

In Java, a method exists as part of a class. This work extracts class-level semantic
information from three features: class name, association attribute, and association method.
The class-level semantic information is used as a supplementary description of the token
collection in the method-level semantic information. The specific methods are as follows:

• class names: The scope covered by some descriptive names (such as class names, method
names, variable names) varies according to the objects they describe. The smaller the
coverage, the more accurate the semantic information can be represented in the name.
Thus, our scheme uses the class name as a supplement to the token collection in the
method description information.

• Associated attributes and associated methods: A class contains several attributes and
methods, in which class methods can directly access class attributes or invoke other
class methods. To extract class-level semantic information for methods, it is necessary
to dig deep-level sub-method calls and attribute access to analyze the functions of
upper-level methods. Since the semantic information at the class level is less important
than the semantic information at the method level, the upper layer and the bottom
layer method name are parsed and added to the token collection of the middle layer.
At the same time, the class name of the attribute accessed by the upper-level method
is also added to the token collection.

The deep semantic features of the code are the ternary features generated after filtering
the method name, API invocation, and token collection extracted from the method level
features. Code searching based on statistical features extracts code semantics via statistical
methods, and then matches them with the semantic features of the query language. Statisti-
cal features, which are Java code features extracted at the class level, include class names,
associated attributes, and associated methods. In addition to considering the information
of the method itself, the statistical features in the class where the method is located are a
complementary description of the semantic information of the method.

3.2. Joint Embedding of Semantic and Statistical Features

A joint embedding model consists of three parts: code embedding, natural language
description embedding, and similarity measurement. The code and natural language
description embedding encodes the code and natural language description into vectors.
The similarity calculation measures the similarity between the code vector and the natural
language description vector. The core idea of the joint embedding is to represent code and
natural language descriptions in the same vector space.

3.2.1. Code Embedding Network

Based on source code feature extraction and modeling, we propose a deep learning
model that represents code fragments as continuous distributed vectors. They represent
code fragments as a fixed-length code vector, which can be used to predict the semantic
properties of code fragments. Deep learning models can help mine the relationship between
query descriptions and code. Compared with traditional text retrieval methods, deep
learning-based code search using deep neural networks to learn code and natural language
representations can obtain more effective results [12,25,26]. Through this network model,
the deep statistical features of the code can be extracted and applied to the downstream
code search task. The code embedding network is shown in Figure 3. According to the
triplet of code <method name, API invocation, token collection> obtained by modeling,
we generate embeddings for them, respectively, and integrate the embedding vectors of
three different features into a code representation vector Ec.

Appl. Sci. 2022, 12, 10002 6 of 19

Figure 3. Code embedded in the network.

Method name embedding. We suppose the method name containing T words, which
are represented as M = x1, x2, x3, . . . , xT . The specific scheme is as follows:

• Embedding layer: The role of this layer is to convert each word xi into a corresponding
vector representation ei. A word vector matrix WM ∈ Rd×|V| is defined, where V is a
fixed-size vocabulary, d is the dimension of the word vector, and WM is the parameter
matrix obtained by training. Each entry of the word vector matrix (a word), can be
converted into a representation of its word vector: ei = WMvi, where vi is a one-hot
vector with dimension |V|. Then, the method named M is transformed into a matrix
embM = e1, e2, . . . , eT as the input of the next layer of the model.

• Attention layer: This work uses the attention mechanism to assign normalized weights
to each word according to its weight to generate sentence vectors. For the output
generated by the previous layer embM = e1, e2, . . . , eT ∈ Rd×T , we use the following
formula to calculate the normalized weight αi of each word vector ei:

αi =
exp(am · ei

T)

∑n
i=1 exp(am · ei

T)
, (1)

where am is a trainable d-dimensional vector. After calculating the normalized weights, we
weighted and summed each individual word vector to obtain the vector representation of
the method name EM:

EM =
T

∑
i=1

αi · ei. (2)

API invocation embedding. The API invoked in one method are sequential nature.
In this paper, the network structure of Bi-LSTM + attention is used to generate embeddings
for API invocation sequences, which not only considers the weight relationship between
different words, but also retains the position information of the sequence. The specific
network structure is shown in Figure 4.

• Embedding layer: Like the embedding layer at the method name embedding, this
layer converts the sequence of API invokes into a matrix of real numbers and passes it
to the next layer of the model.

• Bi-LSTM layer: The word vector matrix input at the upper layer is converted into a
hidden state matrix output. The LSTM structure of this layer includes an input gate,
forget gate, cell state, and output gate:
Input gate. Used to decide how much new information to add: it = σ(Wxi xt +
Whi

ht−1 + Wci ct−1 + bi), where xt represents the current input, ht−1 represents the
previous hidden state, and ct−1 represents the previous cell state.
Forgotten door.Used to decide how much old information to discard: ft = σ(Wx f xt +

Wh f
ht−1 + Wc f ct−1 + b f).

Cell state. It contains the last cell state and new information generated based on
the current input and the last hidden state information: ct = itut + ftct−1; ut =
tanh(Wxc xt + Whc ht−1 + Wcc ct−1 + bc).
Output gate. Used to decide which information is output: ot = σ(Wxo xt + Who ht−1 +
Wco ct + bo).

Appl. Sci. 2022, 12, 10002 7 of 19

Finally, the current hidden state of the output is obtained by multiplying the current
cell state by the weight of the output gate:

ht = ottanh(ct). (3)

• Attention layer: Denote the vector set of the output of the LSTM layer as
H : [h1, h2, . . . , hT]. We calculate the normalized weight of each hidden state hi ac-
cording to Formula (3). These individual hidden state vectors are then weighted and
summed to obtain a vector representation of the API invocation.

Figure 4. API invocation embedding.

Tokens collection embedding. The embedding method focuses on embedding layer
and attention layer.

• Embedding layer: Like the embedding layer embedded in the method name, this layer
converts the token collection into a real matrix and passes it to the next layer.

• Attention layer: Like the attention layer embedded in the method name, the weight
of each word vector ei is calculated according to Formula (3). These individual word
vectors are then weighted and summed to obtain a vector representation of the set
of tokens.

Feature fusion. The vectors of these three features are fused into a final code represen-
tation vector through the fully connected layer. The fully connected layer is a multi-layer
perceptron, which can convert the feature vector into the output of the specified dimension.

The specific calculation formula for fusing the three code feature vectors is as follows:

Ec = tanh(Wc[EM, EA, ETS]), (4)

where [EM, EA, ETS] represents the simple concatenation of the vectors of these three fea-
tures and WC is the matrix of trainable parameters in the MLP. The output vector EC
represents the final embedding of the code segment.

In this section, we extracted three code features based on semantic analysis and
modeling of the source code and we constructed a code embedding network based on
multi-feature modeling, which is used to represent the code fragment as a fixed dimension
that can reflect a code semantics vector.

Appl. Sci. 2022, 12, 10002 8 of 19

3.2.2. Natural Language Embedding Network

Like code embedding networks, query embedding networks embed natural language
descriptions into a vector space. Suppose a natural language description
D = w1, w2, . . . , wND is a sequence of ND words. The specific embedded network is
as follows:

• Embedding layer: Like the Code Embedding Network, the role of this layer is to
convert each word wi into a corresponding vector representation ei. For each the word
vector matrix W ∈ Rd×|V|, each word can be converted into a representation of its
word vector: ei = Wvi. The natural language description named D is transformed
into a matrix embD = e1, e2, . . . , eND as the input of the next layer of the model.

• Attention layer: Like the Code Embedding Network, this study uses the attention
mechanism to assign normalized weights to each word according to its importance
to generate sentence vectors. For the output generated by the previous layer embD =
e1, e2, . . . , eND , we use the following formula to calculate the normalized weight αi of
each word vector ei:

αi =
exp(ad · ei

T)

∑ND
i=1 exp(ad · ei

T)
, (5)

where ad is a trainable d-dimensional vector. Then, the weighted sum of these individual
word vectors is used to obtain the final natural language description embedding vector ED:

ED =
ND

∑
i=1

αi · ei. (6)

3.2.3. Joint Embedding

Figure 5 shows an example of a joint embedding between code snippet and natural
language query. There are two natural language description texts (Text1: “read a text file
line by line”; Text2: “sort an array”) and a code snippet (Code), which is a function that
implements the function of reading text in a file line by line. After embedding Text1, Text2,
and Code into the same vector space with the natural language description embedding
network and code embedding network, respectively, Text1 and Code with similar functions
are closer in space. A supervised code search model [12] is selected as the baseline model
of the search, and it is extended on this basis.

Figure 5. Schematic diagram of joint embedding of code and natural language query.

A joint embedding model consists of three parts: two different embedding functions
ϕ : X → Rd and ψ : Y → Rd. These are combined to form the similarity measure function
J(,). They are connected through deep neural networks. The entire code search model
consists of three modules, which correspond to the three components of the joint embedding

Appl. Sci. 2022, 12, 10002 9 of 19

technology: code embedding, query embedding network, and similarity calculation. This
is a general framework of the designed code search model based on supervised learning.

3.3. Code Search Engine

We combine the code embedding network, adjusted and optimized it, and proposed a
new code search model JessCS.The specific mode structure is shown in Figure 6.

Figure 6. The framework of the code search engine.

JessCS divides the model into three sub-modules, which generate embeddings for
code and natural language descriptions separately, and then use a cosine similarity function
to measure the similarity between these two embedding vectors. After generating the
embeddings for both the code and the natural language description, a similarity measure
function is needed to measure the similarity between the two embedding vectors. This study
uses the cosine function to measure the similarity between the two embedding vectors:

cos(c, d) =
cTd
‖c‖‖d‖ , (7)

where c and d are the code vector and query vector, respectively. The higher the similarity,
the more relevant the code is to the description.

Embedding both codes and descriptions into a unified vector space requires training a
code search model. Figure 6 shows a schematic diagram of model training.

When training the model, we construct each training instance as a triplet 〈C, D+, D−〉.
For each code fragment C, there is a positive description D+ (the correct description of
C) and a negative description D− (the wrong description of C) that is randomly selected
from the pool of all D+. When trained on the triplet 〈C, D+, D−〉, the code search model
predicts the cosine similarity between 〈C, D+〉 and 〈C, D−〉 and minimizes the following
loss function:

L(θ) = ∑
〈C,D+,D−〉∈P

max(0, ε− cos(c, d+) + cos(c, d−)), (8)

where θ represents the model parameter and P represents the training dataset. c, d+,
and d− are the embedding vectors of C, D+, and D−. The ε represents the significance
level in the validation experiment. It is set to 0.05 in this work. This loss function drives up
the cosine similarity between the code snippet and its correct description.

We use a large-scale corpus to train the model according to the above method, and con-
tinuously adjust and optimize the model parameters during the experiment to ensure the
model achieves the best effect. Our models are built on Keras (Keras, http://keras.io/
(accessed on 2 August 2020), an open-source deep learning framework. The hyperparame-
ters we used in training are as follows: the number of hidden units in each direction of all
LSTMs is set to 200; the dimension of the word embedding is set to 100; the dimension of

http://keras.io/

Appl. Sci. 2022, 12, 10002 10 of 19

the output vectors of all attention layers is set to 100; the number of hidden units of feature
fusion MLP is set to 100. The JessCS is trained with the mini-batch-Adam algorithm [2,27],
the batch size (i.e., the number of instances per batch) is set to 128. We limit the vocabulary
size to 10,000 words, which are the most used words in the training dataset. Through this
training process, JessCS can embed code and natural language descriptions into a unified
vector space.

JessCS focuses on comprehensive extraction of deep statistical features from source
code and performing semantic analysis and modeling on source code. DeepCS [4] uses
CODEnn model to represent code snippets with some directly available descriptions (e.g.,
high-quality comments or keywords). Due to the lack of deep investigation on code
representation, DeepCS is outperformed by UNIF-based approach in recent study [12]. So
we select the UNIF-based approach to make the comparison in our experiments.

4. Experiment and Analysis

This section describes the conducted experiments and analysis, including evaluation
of the effectiveness of JessCS and the analysis of the influencing factors.

4.1. Research Questions

In this work, we aim to answer the following research questions:

• RQ1: Is JessCS effective?
• RQ2: How do influencing factors impact the effectiveness of JessCS?

We evaluate the effectiveness of JessCS in the answer of RQ1 from two perspectives:
we firstly check the accuracy of code search model, then we conduct an evaluation on the
searching results from 30 real code search attempts. We also investigate how the selection
of code features and dimension of embedding vectors impact the effectiveness of JessCS
in RQ2.

4.2. Code Base

In the method-based code search, we obtain the Javadoc comments corresponding to
each method by parsing the abstract syntax tree of the Java source code. Feature information
is extracted as a natural language description of the method to obtain the large dataset. The
steps needed to construct the training set are as follows:

• We use the SQL statement in Figure 7 for data fetching. This SQL statement is executed
through Google BigQuery API. We obtained 63,015 Java projects with at least 2 stars in
the GitHub database from 2016 to 2019, including 7,190,099 Java code files according
to the conditions. The methods that do not contain Javadoc comments are filtered out
in this step.

• For each annotated Java method, we extract semantic information, and use <method
name, API invocation, token collection> to represent the code snippets.

• For the Javadoc comment in each method, functional information is extracted as a
natural language description. The specific methods used in this step are as follows:
(a) We delete the statements beginning with @param and @return in the comments,
which introduce information about parameters and return values. These statements
are not closely related to code functions;
(b) We delete the statements in the comments that contain the keywords createdby and
author, which introduce the relevant information introduced by the creator and the
author. These statements have nothing to do with the function of the code;
(c) We delete the comments led by TODO and FIXME, which have nothing to do
with the function of the code;
(d) We delete the content containing URL and date in the comment, which has nothing
to do with the function of the code;
(e) We delete the statement containing Copyright/LICENSE in the comment, which de-
scribes the copyright and other information and has nothing to do with the code function;

Appl. Sci. 2022, 12, 10002 11 of 19

(f) We remove comments containing @link and @see that indicate relationships to other
resources, not related to code functionality.

SELECT max(concat(f.repo_name, ’ ’, f.path)) as repo_path, c.content
FROM ’bigquery-public-data.github_repos.files’ as f
JOIN ’bigquery-public-data.github_repos.contents’ as c on f.id = c.id
JOIN (

SELECT repo FROM(
SELECT repo.name as repo
FROM ’githubarchive.year.2016’ WHERE type=WatchEvent’’
UNION ALL
SELECT repo.name as repo
FROM ’githubarchive.year.2017’ WHERE type=WatchEvent’’
UNION ALL
SELECT repo.name as repo
FROM ’githubarchive.year.2018’ WHERE type=WatchEvent’’
UNION ALL
SELECT repo.name as repo
FROM ’githubarchive.year.2019’ WHERE type=WatchEvent’’)

GROUP BY 1 HAVING COUNT(*) >= 2
) as r on f.repo_name = r.repo

WHERE
f.path like ’\%.java’ and c.size < 15,000

group by c.content

Figure 7. The SQL statement used in data extraction.

For the content-filtered annotations, the first sentence is selected as the natural lan-
guage description of the method. Because the first sentence of the functional annotation is
an overall description of the code function. Based on the above conditions for the source
code, we conducted a dataset containing 1,263,974 sets of code snippets and corresponding
functional descriptions. To ensure the consistency of the data, the experiments in this study
are all carried out on this dataset.

4.3. Metrics

The experiments select three indicators commonly used in the field of information
retrieval to evaluate code search methods [28–32]:

4.3.1. Success Rate of the First N Results (SuccussRate@N)

For a query that may have multiple correct results, if the TOP-N results [29] returned
by the query contain at least one correct result, the query is deemed successful. The specific
formula of SuccussRate@N is as follows:

SuccussRate@N =
1
|Q|

|Q|

∑
q=1

δ(FRankq ≤ N), (9)

where Q is the set of queries, δ() is a functional method, and FRankq represents the ranking
of the first correct query result for the query statement q [31]. The values of N in this
experiment are 1, 5, and 10. From the TOP-10 search results, we mark the position of the
first correct search result of each query statement as Frank. If there is no correct result in
the query results of TOP-10, it will be recorded as NF (Not Found).

Appl. Sci. 2022, 12, 10002 12 of 19

4.3.2. The Accuracy of the First N Results (Precision@N)

The evaluation index evaluates the proportion of correct search results in the top N
returned search results for a query q [11]. The calculation formula is:

Precision@N =

∣∣relevantq,n
∣∣

N
, (10)

where relevantq,N represents the number of correct search results in the first N search results
returned for the query statement q. The index is not sensitive enough to the location of the
query result. In the standard calculation of TOP-N metric, ranking the 1st and Nth results
has the same impact on the precision. However, developer mainly focus on the first result
in the real development [33]. So we set N = 1 in our experiments.

4.3.3. Mean Rank Reciprocal (MRR)

The average sort reciprocal is suitable for situations where you only care about the
position of the first correct search result [30,32]. The formula is as follows:

MRR =
1
|Q|

|Q|

∑
q=1

1
FRankq

, (11)

where FRankq represents the sorting position of the first correct query result for the query q.
We also checked the p-value and standard error to measure statistical features. Dur-

ing the measurement, the significance level is set to 0.05 according to the widely-used
configurations [34–36]. The p-value represents the probability that the sample or observed
value will occur under the conditions of the null hypothesis. If the p-value is less than
the significance level, the null hypothesis can be rejected and a statistically significant
conclusion can be drawn. The standard error estimates the variability across multiple
samples of a population, which can also indicate the objectivity of our experiments.

4.4. Results Analysis
4.4.1. Rq 1: Effectiveness Evaluation of Code Search Approaches

We verify the effectiveness of JessCS in terms of search model and search results. An
automated evaluation method is used to evaluate the code search model on the validation
set. During model training, we evaluate the model on 1000 validation sets every 5 iterations
and record the TOP-1 precision and MRR values.

UNIF [12] is a supervised extension model based on NCS [26]. This work draws on the
ideas in UNIF to build and implement its network structure for comparative experiments,
which is referred to as UNIF-based here. The two techniques, UNIF-based and JessCS, were
trained for 1000 epochs each. According to the TOP-1 precision and MRR value recorded
in the model training, the curve of the TOP-1 precision and MRR value of the two models
with the number of model iterations were drawn.

Figures 8 and 9 represent how the TOP-1 precision and MRR values change with
the increase in iterations. According to the figures, the JessCS model converges when the
iteration reaches about 500th round and tends to stabilize after a slight decrease. The UNIF-
based model converges when the iteration reaches the 700th round, and then tends to be
stable. In this study, the models with the best performance in the training process of these
two different network structures are compared in Table 1. We measured the statistical
indicators, i.e., p-value and standard error, for the values of TOP-1 precision and MRR
in Figures 8 and 9. The significance level is set to 0.05 in the measurement. The p-values
for Figures 8 and 9 are 0.45 and 0.39, which are much greater than the significance level.
The corresponding standard errors are 0.0432 and 0.0448. These statistical indicators show
that the TOP-1 precision and MRR values are statistically determined. Both of the two
measurements can indicate the effectiveness of the studied approaches.

Appl. Sci. 2022, 12, 10002 13 of 19

Figure 8. The indicators of effectiveness for JessCS with the number of model iterations.

Figure 9. The indicators of effectiveness for UNIF-based approach with the number of iterations.

Table 1. Performance comparison of UNIF-based and JessCS.

Iteration TOP-1 Precision MRR

JessCS 775 0.708 0.791
UNIF-based 755 0.578 0.682

As shown in Table 1, JessCS obtained the optimal model when iterated to 775 rounds,
its TOP-1 precision was 0.708 and the MRR value was 0.791. The UNIF-based approach
obtained the optimal model when iterating to 755 rounds, its TOP-1 precision was 0.578,
and the MRR value was 0.682. The code search model proposed in this paper is 13%
higher than UNIF-based approach in terms of the TOP-1 precision, and 0.109 higher than
UNIF-based approach in terms of the MRR indicator.

We collected 30 query sentences from the high-frequency query set of the StackOver-
flow (StackOverflow, https://stackoverflow.com/ (accessed on 3 September 2020)) and
the commonly used high-frequency queries in the existing research [10,37,38]. Table 2
presents the collected query descriptions. We use JessCS and UNIF-based approach to code
search for each query statement. We use Frank to indicate the effectiveness of code search
approach in real attempts. The NF result means the approach cannot search a correct code
snippet. The summary of search results is shown in Table 3:

https://stackoverflow.com/

Appl. Sci. 2022, 12, 10002 14 of 19

Table 2. The collected query descriptions in real code search attempts.

Query ID Query Description

1 create a folder
2 queue an event to be run on the thread
3 get current time and date
4 how to split string into words
5 read line by line
6 how to deserialize XML document
7 open a URL in Android’s web browser
8 convert an input stream to a string
9 open url in html browser

10 copy paste data from clipboard
11 converting String to DateTime
12 how to delete all files and folders in a directory
13 how to generate random int number
14 how to execute a sql select
15 if a folder does not exist create it
16 how to get mac address
17 how to save image in png format
18 remove cookie
19 count how many times same string appears
20 how can I test if an array contains a certain value
21 append string to file
22 how can I convert a stack trace to a string
23 how to convert a char to a string in java
24 convert input stream to byte array in java
25 ping a hostname on the network
26 how to modify a char in string
27 how to read a large text file line by line using java
28 converting string to int in java
29 read an object from an xml file
30 get content of an input stream as a string using a specified character encoding

Table 3. The Frank values of the UNIF-based approach and JessCS search results.

Query ID FRank Query ID FRank
JessCS UNIF-Based JessCS UNIF-Based

1 1 1 16 1 1
2 1 3 17 4 3
3 5 1 18 1 1
4 1 1 19 NF NF
5 9 NF 20 1 7
6 8 2 21 1 1
7 1 3 22 1 NF
8 1 1 23 1 6
9 1 2 24 2 1
10 NF 6 25 1 3
11 4 1 26 1 NF
12 1 2 27 3 2
13 1 1 28 1 1
14 NF NF 29 1 1
15 2 1 30 1 NF

After evaluating the two code search models on 30 query statements, the query success
rate and the average ranking reciprocal are calculated, as shown in Table 4:

Appl. Sci. 2022, 12, 10002 15 of 19

Table 4. The accuracy of UNIF-based approach and JessCS results.

SucRate@1 SucRate@5 SucRate@10 MRR

UNIF-based 0.43 0.70 0.80 0.56
JessCS 0.63 0.83 0.90 0.71

Improvements
of JessCS 47% 19% 13% 27%

From the data in Table 4, we can find that JessCS performs more effective on all
the indicators used in our experiments. For JessCS, the query success rate of returning
TOP-10 results reaches 0.90 and 63% of the queries found the expected code snippet in the
first search result. JessCS obtains 47%, 19%, 13%, and 27% improvements on SucRate@1,
SucRate@5, SucRate@10, and MRR, respectively. The improvements come from the quality
of Javadoc comments since we set a filter on the projects selection. Javadoc comments are
widely used in the real projects, especially for the large-scale projects, so we can claim that
Jess is effective.

Finding 1. JessCS performs more effective then UNIF-based approach in our experiments, with at
least 13% improvements on the metrics.

4.4.2. Rq 2: Analysis of the Impacts on JessCS Effectiveness from Influencing Factors

This part mainly analyzes the influencing factors of code search effectiveness from
the selection of code features and embedding vector dimension. Based on the code search
model in this study, only the selection of code features in the code embedding network is
changed, and all other conditions are kept unchanged for experiments. We use 〈tokens〉,
〈tokens + method name〉, and 〈tokens + method name + API invocation〉 as code features to
train the model, and train 300 rounds on the same dataset, and record the index values
for comparison.

As shown in Figure 10, the horizontal axis feature represents different code feature
selections, t represents the token set, m represents the method name, and a represents the
API invocation. In terms of code feature selection, selecting t + m + a as the code feature
improves the TOP-1 Precision and MRR indicators by 16.6% and 0.144, compared with t
and t + m, which effectively improves the accuracy of code search.

Figure 10. The impacts of code features on the effectiveness of JessCS.

According to the code search model in this work, only the dimensions of the code
embedding and natural language description embedding vector in the code embedding
network are changed, and all other conditions are kept unchanged for the experiments.
Three embedding vector dimensions (i.e., 100, 200, and 400) were set and each of them was
trained for 300 rounds on the same dataset and model structure. The index values were
recorded for comparison.

Appl. Sci. 2022, 12, 10002 16 of 19

As shown in Figure 11, the horizontal axis d represents the dimension of the embedded
vector of the code and its corresponding natural language description. For the code
search model, changing the dimension of the embedding vector has a limited impact of
JessCS effectiveness.

Figure 11. The impacts of embedding vector dimension on the effectiveness of JessCS.

Finding 2. The joint embedding of method name and API invocation can significantly improve the
effectiveness of JessCS. The use of joint embedding network can obtain more effective results than the
single use of code tokens. The dimension of embedding vectors cannot impact JessCS significantly.
The different dimensions (i.e., 100, 200, and 400) obtain similar results.

5. Threats to Validity

Threats to internal validity. The construction of code base can pose a threat to internal
validity. Although we extract projects from a well-maintained repository, i.e., Google
BigQuery, the selected projects still cannot represent all the commonly-used search attempts.
Additionally, we use the functional annotation of the code to approximate the natural
language query of the code snippets. There is still a certain gap between the functional
annotation and the real natural language query statement, but there are very few high-
quality annotation 〈 Codes, Natural Language Queries〉 datasets. The cost and difficulty of
labeling such datasets manually is unacceptable for our team. To reduce this treat, we plan
to extend the experiments on more subject projects.

The complex structure of neural architecture of JessCS model can also pose threats
to internal validity. The multi-layer network may introduce cascading errors, which may
result in over-fitting problems for our model. Additionally, we only investigate the impacts
of two parameters, i.e., code features and embedding vector dimension, in the experiments.
All the other parameters are set according to the existing work and our experience. These
threats may impact the results of evaluation. We plan to design joint training models to
check the effectiveness of joint embedding methods [39], and extend our experiments with
various settings of parameters.

Threats to external validity. We selected UNIF-based approach [12] to make the
experimental comparison, because it is proved to be more effective than some code search
approaches (e.g., DeepCS [4]). However, there are still some other code search approaches,
especially in software industry (e.g., Apache Lucene). To reduce this treat, we plan to
extend the experiments on more techniques which can be used in code search.

The candidate code snippets are marked as independent functions, with the gran-
ularity of method level. Software developers may not always search for a method. So
we plan to improve the embedding approach to meet the features from different levels of
granularity for code snippets.

Appl. Sci. 2022, 12, 10002 17 of 19

6. Related Work

Code search methods are widely used in both industry and academia. The open-
source communities (e.g., GitHub, SourceForge) regard source code as text documents
when implementing code search tasks and use information retrieval models to retrieve the
snippet of code that matches the given query. These methods mainly rely on the matching
text between the source code and the natural language query, while ignoring the semantic
understanding of the natural language query and the source code. Code and natural
language belong to two heterogeneous languages, and semantically relate code fragments
and query sentences may not have common keywords, so this text-based matching method
is prone to term mismatch, which leads to low search queries accuracy.

A huge body of research effort is dedicated to investigating effective and efficient code
search techniques. Hindle et al. believe that although code and natural language are two
heterogeneous languages, they have similar properties, and the code implementations of
similar functions often have different degrees of similarity, so it is feasible to use statistical
laws to analyze the code [40]. In the code search task, text mining is distributed massive
heterogeneous code documents stored in code corpus. GuSites like StackOverflow are
powerful production tools because they make it easy to search for code related to user
questions expressed in natural language. Existing code search techniques can be divided
into two categories: code search based on information retrieval and code search based
on machine learning. The former treats code as text and uses information retrieval mod-
els to retrieve relevant code fragments that match a given query. The mainstream code
search engines include Krugle, GrepCode, to name a few. This technique mainly relies
on the textual similarity between source code and user query. The latter mainly uses
statistical methods to mine the semantics of codes in massive datasets and builds code
search models to further achieve semantic matching between codes and natural language
queries. Combining information retrieval and supervised learning techniques, Niu [41] et al.
used the RankBoost training set to train a model to learn ranking patterns based on the
correlation between code snippets and their corresponding query sentences. Jiang et al.
proposed ROSF [38]. The method is divided into two processes: coarse-grained search and
fine-grained reordering.

In this work, unlike traditional code search techniques, JessCS achieves deep semantic
understanding of source code and user queries combining deep learning techniques. We
extract deep statistical features of source code through deep learning and perform semantic
analysis and modeling on source code. In order to extract the semantic information
in the code as comprehensively as possible, this work proposes an extraction method
of cooperative features. Source code features can be extracted separately at different
granularities. To solve the term mismatch problem in existing code search research caused
by different languages of query sentences and code snippets [42], we also use a joint
embedding method.

7. Conclusions

This work focuses on an appropriate usage of semantic and statistical features in code
search. We propose an effective code search approach, i.e., JessCS, based on joint embedding
network. JessCS combines deep learning techniques to construct a multi-feature model
that extracts the deep statistical semantics. We evaluated the effectiveness of JessCS on a
code base of more than 1 million lines of code. The experimental results show that JessCS
performs more effective than another high-quality code search technique, i.e., UNIF-based
approach. We also proved that the joint embedding of method name and API invocation
can significantly improve the effectiveness of JessCS. In the future, we will extend the
experiments on more subject projects and more code search approaches, and we also plan
to design a joint training model to leverage the joint embedding methods.

Appl. Sci. 2022, 12, 10002 18 of 19

Author Contributions: Conceptualization, X.K. and S.K.; methodology, X.K.; software, M.Y.; val-
idation, X.K., C.D. and M.Y.; investigation, X.K.; resources, M.Y.; data curation, M.Y.; writing—
original draft preparation, X.K.; writing—review and editing, S.K.; visualization, C.D.; supervision,
X.K.; project administration, X.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gabel, M.; Su, Z. A study of the uniqueness of source code. In Proceedings of the 18th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, Santa Fe, NM, USA, 7–11 November 2010; pp. 147–156.
2. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on

Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 1–15.
3. Yu, H.; Zhang, Y.; Zhao, Y.; Zhang, B. Incorporating Code Structure and Quality in Deep Code Search. Appl. Sci. 2022, 12, 2051.

[CrossRef]
4. Gu, X.; Zhang, H.; Kim, S. Deep code search. In Proceedings of the 40th International Conference on Software Engineering.

ACM, Gothenburg, Sweden, 27 May–3 March 2018; pp. 933–944.
5. Mathew, G.; Stolee, K.T. Cross-language code search using static and dynamic analyses. In Proceedings of the 29th ACM

Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Athens, Greece,
23–28 August 2021; pp. 205–217.

6. Akbar, S.; Kak, A. SCOR: Source Code Retrieval with Semantics and Order. In Proceedings of the 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories, Montreal, QC, Canada, 26–27 May 2019; pp. 1–12.

7. Balachandran, V. Query by example in large-scale code repositories. In Proceedings of the IEEE International Conference on
Software Maintenance and Evolution, Bremen, Germany, 29 September–1 October 2015; pp. 467–476.

8. David, A.; Larsen, K.G.; Legay, A.; Mikučionis, M.; Poulsen, D.B.; van Vliet, J.; Wang, Z. Stochastic semantics and statistical model
checking for networks of priced timed automata. arXiv 2011, arXiv:1106.3961.

9. Lemos, O.; Paula, A.; Zanichelli, S.; Lopes, C.V. Thesaurus-based automatic query expansion for interface-driven code search.
In Proceedings of the 11th Working Conference on Mining Software Repositories, Hyderabad, India, 31 May–1 June 2014;
pp. 212–221.

10. Rahman, M.M.; Roy, C.K.; Lo, D. RACK: Code Search in the IDE using Crowdsourced Knowledge. In Proceedings of the 2017
IEEE/ACM 39th International Conference on Software Engineering Companion, Buenos Aires, Argentina, 20–28 May 2017;
pp. 51–54. [CrossRef]

11. Nie, L.; Jiang, H.; Ren, Z.; Sun, Z.; Li, X. Query Expansion Based on Crowd Knowledge for Code Search. IEEE Trans. Serv. Comput.
2016, 9, 771–783.

12. Cambronero, J.; Li, H.; Kim, S.; Sen, K.; Chandra, S. When deep learning met code search. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, 26–30 August 2019; pp. 964–974. [CrossRef]

13. Liu, C.; Xia, X.; Lo, D.; Gao, C.; Yang, X.; Grundy, J.C. Opportunities and Challenges in Code Search Tools. ACM Comput. Surv.
2022, 54, 1–40. [CrossRef]

14. Farahat, A.K.; Kamel, M.S. Statistical semantics for enhancing document clustering. Knowl. Inf. Syst. 2011, 28, 365–393. [CrossRef]
15. Palangi, H.; Li, D.; Shen, Y.; Gao, J.; He, X.; Chen, J.; Song, X.; Ward, R. Deep Sentence Embedding Using Long Short-Term

Memory Networks: Analysis and Application to Information Retrieval. Audio Speech Lang. Process. IEEE/Acm Trans. 2016,
24, 694–707.

16. Allamanis, M.; Tarlow, D.; Gordon, A.; Wei, Y. Bimodal Modelling of Source Code and Natural Language. In Proceedings of the
32nd International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 2123–2132.

17. Xu, R.; Xiong, C.; Chen, W.; Corso, J.J. Jointly Modeling Deep Video and Compositional Text to Bridge Vision and Language
in a Unified Framework. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA,
25–30 January 2015; pp. 2346–2352.

18. Weston, J.; Bengio, S.; Usunier, N.N. Wsabie: Scaling up to large vocabulary image annotation. In Proceedings of the International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 16–22 July 2011; pp. 2764–2770. [CrossRef] [PubMed]

19. Karpathy, A.; Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. IEEE Trans. Pattern Anal. Mach.
Intell. 2017, 2017, 664–676.

http://doi.org/10.3390/app12042051
http://dx.doi.org/10.1109/TSC.2016.2560165
http://dx.doi.org/10.1145/3480027
http://dx.doi.org/10.1007/s10115-010-0367-z
http://dx.doi.org/10.1109/TASLP.2016.2520371
http://dx.doi.org/10.1109/TPAMI.2016.2598339
http://www.ncbi.nlm.nih.gov/pubmed/27514036

Appl. Sci. 2022, 12, 10002 19 of 19

20. Turian, J.; Ratinov, L.A.; Bengio, Y. Word Representations: A Simple and General Method for Semi-Supervised Learning.
In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden, 11–16 July 2010;
pp. 384–394.

21. Frome, A.; Corrado, G.S.; Sens, J.; Bengio, S.; Dean, J.; Ranzato, M.A.; Mikolov, T. DeViSE: A Deep Visual-Semantic Embedding
Model. Adv. Neural Inf. Process. Syst. 2013, 26, 1–9.

22. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the
1st International Conference on Learning Representations, Scottsdale, AR, USA, 2–4 May 2013; pp. 1–12. [CrossRef]

23. Lee, S.; Lee, J.; Kang, S.; Ahn, J.; Cho, H. Code Edit Recommendation Using a Recurrent Neural Network. Appl. Sci. 2021,
11, 9286.

24. Gu, X.; Zhang, H.; Zhang, D.; Kim, S. Deep API Learning. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, Seattle, WA, USA, 13–18 November 2016; pp. 631–642.

25. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. CodeBERT: A pre-trained
model for programming and natural languages. arXiv 2020, arXiv:2002.08155.

26. Sachdev, S.; Li, H.; Luan, S.; Kim, S.; Sen, K.; Chandra, S. Retrieval on source code: A neural code search. In Proceedings of
the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages, New York, NY, USA,
18 June 2018; pp. 31–41.

27. Mu, L.; Tong, Z.; Chen, Y.; Smola, A.J. Efficient mini-batch training for stochastic optimization. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014;
pp. 661–670. [CrossRef]

28. Kong, X.; Han, W.; Liao, L.; Li, B. An analysis of correctness for API recommendation: Are the unmatched results useless?
Sci. China Inf. Sci. 2020, 63, 190103.

29. Li, X.; Wang, Z.; Wang, Q.; Yan, S.; Xie, T.; Mei, H. Relationship-Aware code search for Javascript frameworks. In Proceed-
ings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Seattle, WA, USA,
13–18 November 2016; pp. 690–701.

30. Lv, F.; Zhang, H.; Lou, J.; Wang, S.; Zhang, D.; Zhao, J. CodeHow: Effective Code Search Based on API Understanding
and Extended Boolean Model (E). In Proceedings of the 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2015, Lincoln, NE, USA, 9–13 November 2015; IEEE Computer Society: Washington, DC, USA, 2015;
pp. 260–270.

31. Raghothaman, M.; Wei, Y.; Hamadi, Y. SWIM: Synthesizing what i mean code search and idiomatic snippet synthesis.In
Proceedings of the 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE) Austin, TX, USA, 14–22 May
2016; pp. 357–367.

32. Ye, X.; Bunescu, R.C.; Liu, C. Learning to rank relevant files for bug reports using domain knowledge. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering, Hong Kong, China, 16–21 November 2014;
pp. 689–699. [CrossRef]

33. Peng, Y.; Li, S.; Gu, W.; Li, Y.; Wang, W.; Gao, C.; Lyu, M.R. Revisiting, Benchmarking and Exploring API Recommendation: How
Far Are We? IEEE Trans. Softw. Eng. 2021. [CrossRef]

34. Kumar, P.; Singh, S.N.; Dawra, S. Software component reusability prediction using extra tree classifier and enhanced Harris
hawks optimization algorithm. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 892–903.

35. Barakaz, F.E.; Boutkhoum, O.; Moutaouakkil, A.E. Feature Selection Method Based on Classification Performance Score and p-Value;
Springer: Cham, Switzerland, 2022. [CrossRef]

36. Diwaker, C.; Tomar, P.; Solanki, A.; Nayyar, A.; Jhanjhi, N.Z.; Abdullah, A.B.; Supramaniam, M. A New Model for Predicting
Component-Based Software Reliability Using Soft Computing. IEEE Access 2019, 7, 147191–147203.

37. Campbell, B.A.; Treude, C. NLP2Code: Code Snippet Content Assist via Natural Language Tasks. In Proceedings of the
IEEE International Conference on Software Maintenance and Evolution, Shanghai, China, 17–22 September 2017; pp. 628–632.
[CrossRef]

38. Jiang, H.; Nie, L.; Sun, Z.; Ren, Z.; Kong, W.; Zhang, T.; Luo, X. ROSF: Leveraging Information Retrieval and Supervised Learning
for Recommending Code Snippets. IEEE Trans. Serv. Comput. 2019, 12, 34–46.

39. Luan, Y.; Wadden, D.; He, L.; Shah, A.; Ostendorf, M.; Hajishirzi, H. A general framework for information extraction using
dynamic span graphs. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Minneapolis, MI, USA, 2–7 June 2019; pp. 3036–3046. [CrossRef]

40. Hindle, A.; Barr, E.T.; Gabel, M.; Su, Z.; Devanbu, P. On the naturalness of software. Commun. ACM 2016, 59, 122–131. [CrossRef]
41. Niu, H.; Keivanloo, I.; Zou, Y. Learning to rank code examples for code search engines. Empir. Softw. Eng. 2017, 22, 259–291.

[CrossRef]
42. Mcmillan, C.; Grechanik, M.; Poshyvanyk, D.; Fu, C.; Xie, Q. Exemplar: A Source Code Search Engine for Finding Highly

Relevant Applications. IEEE Trans. Softw. Eng. 2012, 38, 1069–1087.

http://dx.doi.org/10.3390/app11199286
http://dx.doi.org/10.1007/s11432-019-2929-9
http://dx.doi.org/10.1109/TSE.2022.3197063
http://dx.doi.org/10.1007/s13198-021-01359-6
http://dx.doi.org/10.1109/ACCESS.2019.2946862
http://dx.doi.org/10.1109/TSC.2016.2592909
http://dx.doi.org/10.1145/2902362
http://dx.doi.org/10.1007/s10664-015-9421-5
http://dx.doi.org/10.1109/TSE.2011.84

	Introduction
	Background
	Code Search
	Joint Embedding

	Approach
	Feature Extraction with Different Granularities
	Feature Extraction at the Method Level
	Feature Extraction at the Class Level

	Joint Embedding of Semantic and Statistical Features
	Code Embedding Network
	Natural Language Embedding Network
	Joint Embedding

	Code Search Engine

	Experiment and Analysis
	Research Questions
	Code Base
	Metrics
	Success Rate of the First N Results (SuccussRate@N)
	The Accuracy of the First N Results (Precision@N)
	Mean Rank Reciprocal (MRR)

	Results Analysis
	Rq 1: Effectiveness Evaluation of Code Search Approaches
	Rq 2: Analysis of the Impacts on JessCS Effectiveness from Influencing Factors

	Threats to Validity
	Related Work
	Conclusions
	References

