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Abstract: This paper mainly studies the colorization of near-infrared (NIR) images. Image colorization
methods cannot be extended to NIR image colorization since the wavelength band of the NIR image
exceeds the visible light spectral range and it is often linearly independent of the luminance of the
RGB image. Furthermore, a symmetric codec, which cannot guarantee the ability of the encoder
to extract features, is often used as the main frame of the network in both CNN-based colorization
networks and CycleGAN-based colorization networks. In order to deal with the investigated problem,
we propose a novel NIR colorization method using asymmetric codec (ACD) and pixel-level fusion.
ACD is designed to improve the feature extraction ability of the encoder by allowing the information
to enter deeper into the model and learning more non-redundant information. In addition, the global
and local feature fusion networks (GLFFNet) are embedded between the encoder and the decoder to
improve the prediction of the subtle color information of the image. The ACD and GLFFNet together
constitute the colorization network (ColorNet) in this paper. Bilateral filtering and weighted least
squares filtering (BFWLS) are used to fuse the pixel-level information of the input NIR image into
the raw output image of the ColorNet. Finally, an intensive comparison analysis based on common
datasets is conducted to verify superiority over existing methods in qualitative and quantitative
visual assessments.

Keywords: NIR image colorization; asymmetric codec; global and local feature fusion networks;
bilateral filter; weighted least squares filter

1. Introduction

Near-infrared (NIR) images obtained by an active imaging system have the advan-
tages of good concealment, high resolution, and rich detail information. Therefore, NIR
images begin to be widely used in some emerging fields of machine vision, such as night-
vision-assisted driving systems [1], night video surveillance [2], and real-time wildlife
monitoring [3]. The NIR image is a single channel grayscale image that will reduce the
user’s visual sensory acceptance and cause difficulty in target recognition [4]. Therefore, it
is meaningful to convert grayscale NIR images into multichannel RGB images in terms of
user application and visualization.

It was once generally considered that the task of colorization of NIR images was similar
to that of grayscale images, since the two types of images are single-channel gray images.
However, some scholars’ research [5,6] indicated that the colorization methods of grayscale
image are apparently not suitable for colorizing NIR images. The main reason is that the
spectral range of grayscale images is different to that of NIR images. Grayscale images and
RGB images are located in the same spectral range. There is an obvious correlation between
grayscale images and the luminance of RGB images. Therefore, grayscale colorization can
recover color well by using the grayscale image as the luminance information and only
estimating the chroma map. Conversely, the spectral band of NIR images exceeds the
spectral range of the visible wavelength and an NIR image is linearly independent of the
luminance of an RGB image. When using an NIR image as the luminance information, it
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leads to a phenomenon that the NIR image is “transparent” to a number of colorants or
paints [7]. Therefore, the NIR image colorization task has greater complexity and ambiguity
since it needs to establish a single-channel to three-channel mapping [8].

In recent years, NIR colorization methods based on deep learning network have
received ever-increasing attention. Symmetric codecs are widely used as the main network
architecture in both CNN-based colorization networks and CycleGAN-based colorization
networks. However, some scholars pointed out that the standard symmetric UNet [9] is
considered insufficient to simulate the high-level semantic work of NIR colorization [10].
Although the asymmetric codec has not been used in the field of NIR colorization, it
has been successfully applied in image segmentation [11]. It is composed of UNet and
ResNet [12] to improve segmentation accuracy without any significant increase in number
of parameters. Later, D-Linknet [13] was proposed by adding dilated convolution layers
between the encoder and decoder of LinkNet.

Therefore, this paper proposes a novel NIR colorization method using asymmetric
codec (ACD) and pixel-level fusion. In ACD, we have one less downsampling layer than
ResNet [12], which is enough to guarantee the effect of sampling, and bilinear interpolation
is used for upsampling instead of deconvolution in LinkNet. In addition, a global–local
feature fusion network (GLFFNet) is embedded between the encoder and decoder. The
ACD and GLFFNet together constitute the colorization network (ColorNet) in this paper. To
improve the final colorization result, bilateral filtering and weighted least squares filtering
(BFWLS) are combined to fuse the pixel-level information of the input NIR image into the
raw output image of the ColorNet. The main contributions of this paper are as follows:
(1) an ACD is designed in the ColorNet to improve the feature extraction ability of the
encoder by allowing the information to enter deeper into the model and learning more
non-redundant information; (2) a GLFFNet is built between the encoder and the decoder to
reduce the information loss in the pooling layer of the encoder and improve the prediction
of the subtle color of the image [14]; (3) using BFWLS, the input NIR image is fused with
the luminance of the output image derived by the decoder to enhance the details of the
final output image.

The rest of the paper is organized as follows. In Section 2, some related works about
grayscale image colorization and NIR colorization are introduced. In Section 3, the structure
of the ColorNet is described in detail. In Section 4, the experimental results were analyzed
qualitatively and quantitatively, comparing with other methods. Finally, Section 5 presents
the conclusion.

2. Related Work

In this section, we describe image colorization methods and NIR colorization methods.

2.1. Image Colorization

In the past two decades, several colorization techniques have been proposed. These
methods are usually classified into two groups: user-guided colorization and data-driven
automatic colorization. User-guided input can be scribbles, images, etc., to control the
color. Scribble-based methods rely on local hints, as, for instance, color scribbles, which
are provided by the user. There are two ways of propagating color scribbles to the whole
image: applying optimization to pixels nearby in space-time [15,16] and using deep neural
networks with local hints trained on a large dataset [17]. However, scribble-based meth-
ods suffer from requiring large amounts of user inputs. Moreover, choosing the correct
color palette is complicated. Exemplar-based methods work as semi-automatic methods
to transfer color statistics from reference images onto input grayscale images. Although
this type of method can significantly reduce the user inputs, it is still highly dependent on
the correspondence between the reference image and the input image at pixel level [18,19],
semantic level [20,21], or superpixel level [22,23]. Recently, data-driven automatic coloriza-
tion has received more and more attention, while [24,25] train their networks to directly
estimate chrominance values and [26] quantizes the chrominance space into discrete colors.
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In summary, the automatic colorization methods above only generate chroma layers and
use the grayscale image as the luminance information to synthesize RGB images. Therefore,
image colorization methods are not applicable to colorize NIR images.

2.2. NIR Colorization

Recently, scholars have proposed some deep learning methods for NIR image coloriza-
tion. Limmer et al. [5] used deep multi-scale convolutional neural networks combined with
joint bilateral filter to transfer RGB color spectrum to NIR images. This approach fails to col-
orize objects correctly, where object appearance and color do not correlate. Suarez et al. [27]
used a generative adversarial network (GAN) architecture model to colorize NIR im-
ages and later added triple loss to optimize colorization performance [28]. Both meth-
ods proposed by Suarez lost a lot of texture information and details in the generated
results. Moreover, they are trained and tested via image patches, which is not suitable for
large-scale images.

U-Net is widely used in the field of NIR image colorization due to its ability to effec-
tively preserve low-level and high-resolution features. UNet-based colorization networks
mainly include: CNN-based colorization network and CycleGAN-based colorization net-
work. CNN-based colorization network uses UNet as the core of its network structure.
Dong et al. [6] colorized NIR images using an end-to-end network S-Net based on UNet
followed with a shallow codec. Kim et al. [29] added a variational auto-encoder (VAE) to
UNet. CycleGAN-based colorization network used the UNet as a generator to colorize
NIR images. Mehri et al. [30] used UNet as the generator of CycleGAN [31] that requires
less computation time and converges faster. Yang et al. [32] used UNet with cross-scale
dense connections in both generators to increase the learning capacity for high-level se-
mantic information. However, Sun et al. [10] thought that the colorization according to
context is a high-level semantic work and the standard UNet is not enough to model this
problem, so they added a ResNet block in the UNet architecture to enlarge its capacity.
In addition, Chitu et al. [8] used ResNet as the generator to increase their performances
at a lower computational cost. These studies reveal that UNet combined with ResNet is
feasible for NIR image colorization and ResNet can improve the performances at a lower
computational cost.

3. Proposed Method

A block diagram overview of the proposed NIR colorization method is shown in
Figure 1. It consists of two parts. The first part is the ColorNet and its function is to obtain
the initial RGB image. The second part is the BFWLS fusion, which is used to fuse the
details and texture in the input NIR image into the raw output of the ColorNet. Finally,
we use the fusion result as the luminance channel and UV channels as the chrominance
channel to obtain the final colorized image.
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3.1. ColorNet

The ColorNet consists of two parts, the ACD and GLFFNet. The structure is shown in
Figure 2.



Appl. Sci. 2022, 12, 10087 4 of 17

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 17 
 

3.1. ColorNet 

The ColorNet consists of two parts, the ACD and GLFFNet. The structure is shown 

in Figure 2. 

 

Figure 2. Overview of our ColorNet structure. 

3.1.1. ACD 

The structure of ACD is shown in Figure 3. The left half is the residual encoder and 

the right half is the decoder. Different from SCD, in the encoder, we add residual blocks 

to the downsampling layer to improve the feature extraction ability of the encoder, while 

the decoder uses only an upsampling layer. The main feature of encoder is the short skip 

connections between the residual blocks, so that the output of the previous block com-

bined with the output of the current block is used as the input of the next block. The pur-

pose of such a structure is to improve the feature extraction ability of the encoder by al-

lowing the information to enter deeper into the model and learn more non-redundant 

information. The decoder is consistent with the decoder in the original UNet. Meanwhile, 

an improved encoder is proposed based on raw LinkNet. Specifically, one less downsam-

pling layer than LinkNet is used in the encoder and bilinear interpolation is used for up-

sampling instead of deconvolution. The skip connection is used between the encoder and 

the decoder. 

 

Figure 3. ACD structure diagram. 

Figure 2. Overview of our ColorNet structure.

3.1.1. ACD

The structure of ACD is shown in Figure 3. The left half is the residual encoder and
the right half is the decoder. Different from SCD, in the encoder, we add residual blocks
to the downsampling layer to improve the feature extraction ability of the encoder, while
the decoder uses only an upsampling layer. The main feature of encoder is the short skip
connections between the residual blocks, so that the output of the previous block combined
with the output of the current block is used as the input of the next block. The purpose of
such a structure is to improve the feature extraction ability of the encoder by allowing the
information to enter deeper into the model and learn more non-redundant information.
The decoder is consistent with the decoder in the original UNet. Meanwhile, an improved
encoder is proposed based on raw LinkNet. Specifically, one less downsampling layer than
LinkNet is used in the encoder and bilinear interpolation is used for upsampling instead of
deconvolution. The skip connection is used between the encoder and the decoder.
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The initial block of the encoder is a convolution block with a kernel size of 7 × 7 and a
stride of 1. Behind the initial convolution block, a max-pooling with a stride of 2 is used to
downsample the input images. The later portion of the encoder consists of 4 residual blocks.
Each residual block is shown in detail in Figure 4a. Here, Conv means convolution and /2
means downsampling by a convolution with stride of 2. In addition, for encoder training,
we adopt transfer learning, initializing the encoder with ImageNet [33] pretrained weights.
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The decoder consists of 6 convolution blocks; the first 5 convolution blocks remain the
same as the original UNet, which is computationally efficient. Each block firstly upsamples
the input feature maps by bilinear interpolation then concatenates with the cropped feature
maps from the residual encoder. Layers within these decoder blocks are shown in detail in
Figure 4b. * 2 means upsampling by a factor of 2, which is achieved by bilinear interpolation.
Finally, behind the last upsampling block, a 1 × 1 convolution followed with a tanh(x)
activation layer, which is suitable for generating images [26], is used to generate the final
RGB image. Moreover, we use batch normalization between each convolutional layer,
which is followed by ReLU non-linearity.

3.1.2. GLFFNet

For NIR image colorization, the prediction of subtle color information in the local
image plays an important role to generate color information in three channels. Therefore,
we embed GLFFNet between the encoder and decoder to reduce the information loss in the
pooling layer of the encoder and improve the prediction of the subtle color of the image.
The GLFFNet structure is shown in Figure 5.

The local feature network is a convolution block with a kernel of size 3× 3 and a stride
of 1. The number of channels is halved to 256 while keeping the image size unchanged.
The global feature network consists of two convolution blocks; the first convolution block
is used to halve the image size by setting the stride to 2 and the second convolution block is
used to halve the number of channels to 256. Finally, the global and local features are spliced
in the two dimensions of length and width through the fusion layer, then a 512-dimensional
fused feature map is obtained.
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3.1.3. Loss Function

Mapping an NIR image to an RGB image is a regression problem and predicting an
RGB image can be expressed by Equation (1) as:

Y′ = FX (1)

where X is the input NIR image, Y′ represents the predicted RGB image, and F is our ColorNet.
Our goal is to minimize the difference in intensity of the pixels between the predicted

RGB image and ground truth. The mathematical expression is shown in Equation (2):

F = argmin
(
Y, Y′

)
(2)

where Y represents the ground truth.
In the face of different target tasks, it is necessary to choose the most appropriate loss

function to achieve the best penalty network effect. The network regression is trained to
output an RGB image, which is similar to the ground truth, and the Euclidean distance
calculation is more suitable, so L2 regression is used as the loss function. Therefore,
Equation (2) can be expressed by the following Equation:

F = argmin
(

Y′ −Y2
)

(3)

For a certain pixel, the loss is defined in Equation (4):

losscolor = ‖Y′ −Y‖2 (4)

Subsequently, for a batch of images, the loss function is defined in Equation (5):

Losscolor(F(X; θ), Y) =

(
B

∑
b

H,W

∑
h,w

losscolor

(
F(X; θ)b,h,w, Yb,h,w

))
(5)

where X ∈ RH×W×1×B is a set of one channel NIR images. Y ∈ RH×W×3×B represents a set
of the three-channel ground truth. B represents the number of images in a batch. F(X; θ)b,h,w
represents the output color images of ColorNet. θ represents the hyperparameters of the
network. The sum of the losses for each batch is taken as the final total loss.
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3.2. BFWLS

Since the useful details of the image can be enhanced by fusion of RGB and NIR
images [34], the BFWLS is proposed to fuse the rich detail information of the input NIR
image into the initial colorized RGB image to obtain optimized output color image.

The fusion process is shown in Figure 6. In BFWLS, BF can preserve the image content
structure well and WLS is used to preserve shading distribution of reference information. In
order to ensure the color fidelity of output image of the ColorNet, the initial RGB image is
decomposed into luminance and chrominance and a new luminance layer is restructured by
fusing the luminance of the RGB image with the NIR image. In our method, the luminance
layer of RGB image is derived from the YUV color space, because it is suitable for situations
where the luminance decreases significantly from RGB to NIR images [7].
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Figure 6. The flow chart of BFWLS fusion.

The BFWLS fusion consists of three steps. In the first step, the NIR image is decom-
posed into base and detail images by BF and WLS filters, respectively. The base image refers
to the filtered smooth image. The detail images are obtained by subtracting the base image
from NIR image. The solution process of detail images is shown in Equations (6) and (7):

NIRd
BF = NIR− NIRb

BF (6)

NIRd
WLS = NIR− NIRb

WLS (7)

where the superscript d indicates the detail image and the superscript b indicates the base
image. NIRb

BF represents the NIR base image after BF filtering, NIRb
WLS represents the NIR

base image after WLS filtering, NIRd
BF represents the NIR detail image after BF filtering,

and NIRd
WLS represents the NIR detail image after WLS filtering. Finally, the average

values of the detail-WLS and detail-BF that are extracted from the NIR image are retained.
The final detail layer is obtained by Equation (8):

NIRd =
1
2

(
NIRd

BF + NIRd
WLS

)
(8)

In the second step, color space is transformed from RGB to YUV and then WLS
filtering is performed on the Y channel. The fused detail layer NIRd obtained by the first
step and the base-WLS of the Y channel are combined to obtain a new luminance layer. The
mathematical expression is shown in Equation (9):

Y′ = NIRd + Yb
WLS (9)
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where Yb
WLS represents the Y channel base image after WLS filtering and Y′ represents the

final luminance layer.
In the third step, the new luminance layer obtained by the second step and chromi-

nance channel UV are combined and transform to RGB color space to obtain the final fused
RGB image.

4. Experiments and Analysis

Brown and his cooperators proposed an RGB-NIR scene dataset [35], which contains
477 NIR images and 477 corresponding RGB images with image sizes of 1024 × 680 pixels
and this dataset was captured from nine categories of scenes. Thus, 763 pairs of NIR and
RGB images were generated by splitting up images and then each image size is unified to
480 × 480 pixels. As such, 57 pairs of images were randomly selected as the test set and
the rest of the image pairs were used as the training set. It should be noted that image
pairs in the dataset are correctly registered by using a global calibration method, so that a
pixel-to-pixel correspondence is guaranteed for quantitative and qualitative evaluation.

We train the network with an NVIDIA TITAN RTX GPU and use stochastic Adam
optimizer, which prevents overfitting and leads to convergence faster [36]. Meanwhile, we
save the optimal model within 300 epochs. The hyper-parameters were tuned during the
training stage as follows: initial learning rate 1× 10−4, β1 = 0.9, β2 = 0.999, ε = 1× 10−8,
leak ReLU 0.2, batch size 16.

4.1. Main Experiment

In order to verify the effectiveness of the proposed method, we execute some adopted
methods, including the DeOldify method based on deep learning [37], the CycleGAN
method using UNet as the generator [30], the CycleGAN method using ResNet as the
generator [31], and the S-Net method based on UNet [6]. The corresponding results are
plotted in Figure 7.

As shown in Figure 7, satisfactory results are obtained. First, our method is better
at coloring vegetation and making it closer to the actual image in the scene, while the
DeOldify and CycleGAN_UNet methods did not estimate the correct luminance infor-
mation, resulting in vegetation in the NIR image being “transparent”. Compared with
CycleGAN_UNet, the color of vegetation and sky of CycleGAN_ResNet is improved well,
but there are some color errors, such as the street signs and roads in the seventh row are
painted blue and the mud in the eighth row is painted green. Second, compared to results
from the S-Net method, our method contains more detailed texture information, such as the
sky in the sixth row and trees and buildings in ninth row have clearer textures. Third, the
building generated is with a reasonable color rather than being gray, like those obtained by
DeOldify, or being uneven, like those obtained by CycleGAN_UNet, CycleGAN_ResNet,
and S-Net. Finally, although the color of our reconstructed image cannot be completely
consistent with that of the original image, our method can obtain an RGB image with more
natural appearance. In the examples of images in the fifth and tenth rows, the ground truth
itself has a less obvious color, but the color of the tree becomes clearer and brighter after
coloring by our method.

For quantitative evaluations, three evaluation metrics are used, including PSNR (Peak
Signal to Noise Ratio) [38], MAE (Mean Absolute Error), and SSIM (structural similarity
index) [39].
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PSNR is an evaluation index to measure image quality. The higher the value, the better
the image quality. It is defined by mean square error (MSE).

PSNR = 10× log10

(
(2n − 1)2

MSE

)
(10)
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where n is the bit depth of image and MSE is represented by the following formula:

MSE =
1

H ×W

H

∑
i=1

W

∑
j=1

(
Y(i, j)−Y′(i, j)

)2 (11)

where H and W represent the height and width of images, respectively, Y represents the
ground truth, Y′ represents the predicted RGB image, and (i,j) represents the pixel position.

MAE is used to calculate the pixel-level mean absolute error between the predicted
RGB image and the ground truth and the formula can be expressed as:

MAE =
1
n

n

∑
i

∣∣∣Yi −Y
′
i

∣∣∣ (12)

where n is the number of pixels.
SSIM measures image similarity from three aspects: brightness, contrast, and structure,

respectively. The SSIM is defined as:

SSIM = l
(
Y, Y′

)
× c
(
Y, Y′

)
× s
(
Y, Y′

)
(13)

where
l(Y, Y′) = 2µYµY′+C1

µ2
Y+µ2

Y′+C1

c(Y, Y′) = 2σYσY′+C2
σ2

Y+σ2
Y′+C2

s(Y, Y′) = σYY′+C3
σYσY′+C3

(14)

where µY, µY′ represent the mean of images Y and Y′, respectively, σY, σY′ represent the
variance in images Y and Y′, respectively, and σYY′ represents the covariance of images Y
and Y′. C1, C2, C3 are constants, C1 is generally equal to 6.5025, C2 is generally equal to
58.5225, and C3 is generally equal to 29.26125.

In addition to the above-mentioned general evaluation metrics for images, we use
S-CIELAB [40] and LPIPS [41] indicators to evaluate image color specifically. The spe-
cific operation is to transfer the color image to LAB space and only evaluate the color
information AB.

The S-CIELAB is a subjective measure, designed for measuring the image quality from
a human perspective. The chromatic aberration ∆E is defined as:

∆E =
H

∑
i=1

W

∑
j=1

2

√(
Ai,j − A′i,j

)2
+
(

Bi,j − B′i,j
)2

(15)

where Ai,j, Bi,j represent the A channel and B channel of the ground truth, respectively, and
A
′
i,j, B

′
i,j represent the A channel and B channel of the predicted RGB image.

LPIPS is used to measure the perceptual similarity of the predicted RGB image and
the ground truth. The difference in color perception ∆D is defined as:

∆D
(

AB, AB
′)

= ∑
l

1
HlWl

∑
h,w
‖wl �

(
âb

l
h,w − ˆab′

l
h,w

)
‖

2

2
(16)

where âb
l
h,w represents the ab channel of the feature stack extracted from the lth layer. The

vector wl is used to scale the number of active channels.
Table 1 shows the average metrics values of different methods with 57 randomly

chosen test images. It follows from this table that the MAE in our method is the smallest
and PSNR is the biggest. Only SSIM is slightly lower than the DeOldify method. The
main reason could be that the amount of NIR image information used is obviously higher
than ours, but its color reconstruction results are the worst from the visual evaluation.
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Furthermore, our method also performs the best on both S-CIELAB and LPIPS metrics. In
summary, the proposed method achieving NIR colorization is obviously superior to the
existing methods.

Table 1. Average values of quality metrics for 57 colored NIR images. The best performing metrics
are highlighted in bold format.

Methods MAE PSNR SSIM S-CIELAB LPIPS

DeOldify [37] 0.1631 14.7715 0.6448 8.9250 0.1516
CycleGAN_UNet [30] 0.1559 14.8807 0.6141 9.4862 0.1519

CycleGAN_ResNet [31] 0.1014 15.5518 0.6153 9.6304 0.1485
S-Net [6] 0.1139 16.5815 0.5205 10.1254 0.1278

Ours 0.0939 18.4421 0.6363 8.4912 0.1225

4.2. Ablation Studies

We conducted three ablation studies to analyze the contribution of each module:
(1) ACD only; (2) LinkNet; (3) ACD and GLFFNet, i.e., ColorNet; (4) ColorNet and BFWLS.
The ablations are carried out on the same dataset as the main experiments. Figures 8–11
show the effect of each module on color or detail performance, respectively. The quantitative
comparison results are shown in Table 2.

Table 2. Ablation experiments of various modules. The best performing metrics are highlighted in
bold format.

Modules MAE PSNR SSIM S-CIELAB LPIPS

SCD only
LinkNet

0.1139
0.1072

16.5815
17.1252

0.5205
0.5368

10.1254
9.9567

0.1278
0.1337

ACD only 0.1107 17.4910 0.5485 9.8960 0.1254
ACD+GLFFNet

(ColorNet) 0.0993 17.6443 0.5389 9.6563 0.1117

ColorNet + BFWLS(Ours) 0.0939 18.4421 0.6363 8.4912 0.1225
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Figure 10. Color performance comparison of different modules: (a) asymmetric codec (ACD) only;
(b) ACD combined with GLFFNet (ColorNet).

Figure 8 shows that ACD can improve the phenomenon of partial color error and
texture blur of SCD. For example, the textures of vegetation and buildings are clearer and
the color of the road and sky is normal. At the same time, it follows from Table 2 that
ACD has the most significant improvement in PSNR, by 0.9095. Furthermore, compared
to LinkNet, ACD is more accurate in local colorization, as shown in Figure 9. In terms of
qualitative metrics, all metrics of ACD are better than LinkNet. The effect of GLFFNet is
clearly shown in Figure 10. Without GLFFNet, the edge color spills in vegetation and the
color shows unevenly in buildings. MAE and PSNR slightly improved from the qualitative
analysis and LPIPS is the best. The function of BFWLS is shown in Figure 11. Comparing
the results with and without this module, we can draw the conclusion that BFWLS can not
only smooth the artifact of the picture, but also enhance the texture of the vegetation. The
introduction of the BFWLS has a greater impact on PSNR and SSIM, achieving a 0.7978 gain
in PSNR and 0.0974 gain in SSIM. Moreover, S-CIELAB lowered by 1.1651.
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5. Conclusions

This paper proposed a novel NIR colorization method using ACD and pixel-level
fusion. Our method can generate high-quality RGB images in different natural scenes. We
compare classical colorization methods based on a common dataset and the experimental
results show that the proposed method provides better images in enhancing textures and
coloring naturally. It is worth mentioning that our model is more suitable for training
and colorization of large-size NIR images, so it has greater practical application value.
Furthermore, we conducted ablation studies to demonstrate the contributions of the three
modules proposed in this paper. From the result, we can conclude that ACD enhances the
colorization accuracy and texture sharpness, GLFFNet improves the color overflow and
uneven color, and BFWLS fusion enables us to obtain more delicate coloring results. Under
the condition of ensuring the coloring quality, future work will focus on the lightweight
colorization of unpaired NIR-RGB images to address the lack of existing paired NIR-
RGB datasets.
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