
Citation: Oyewola, D.O.; Dada, E.G.;

Omotehinwa, T.O.; Emebo, O.;

Oluwagbemi, O.O. Application of

Deep Learning Techniques and

Bayesian Optimization with Tree

Parzen Estimator in the Classification

of Supply Chain Pricing Datasets of

Health Medications. Appl. Sci. 2022,

12, 10166. https://doi.org/10.3390/

app121910166

Academic Editor: Yu-Dong Zhang

Received: 3 September 2022

Accepted: 29 September 2022

Published: 10 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Application of Deep Learning Techniques and Bayesian
Optimization with Tree Parzen Estimator in the Classification of
Supply Chain Pricing Datasets of Health Medications
David Opeoluwa Oyewola 1 , Emmanuel Gbenga Dada 2 , Temidayo Oluwatosin Omotehinwa 3 ,
Onyeka Emebo 4 and Olugbenga Oluseun Oluwagbemi 5,6,*

1 Department of Mathematics and Statistics, Federal University Kashere, Gombe P.M.B. 0182, Nigeria
2 Department of Mathematical Sciences, University of Maiduguri, Maiduguri P.M.B. 1069, Nigeria
3 Department of Mathematics and Computer Science, Federal University of Health Sciences,

Otukpo P.M.B. 145, Nigeria
4 Department of Computer Science, Virginia Tech University, Blacksburg, VA 24061, USA
5 Department of Computer and Information Technology, Sol Plaatje University, Kimberley 8301, South Africa
6 National Institute for Theoretical and Computational Sciences (NiTheCS), Stellenbosch 7602, South Africa
* Correspondence: olugbenga.oluwagbemi@fulbrightmail.org; Tel.: +27-663926506

Abstract: From the development and sale of a product through its delivery to the end customer, the
supply chain encompasses a network of suppliers, transporters, warehouses, distribution centers,
shipping lines, and logistics service providers all working together. Lead times, bottlenecks, cash flow,
data management, risk exposure, traceability, conformity, quality assurance, flaws, and language
barriers are some of the difficulties that supply chain management faces. In this paper, deep learning
techniques such as Long Short-Term Memory (LSTM) and One Dimensional Convolutional Neural
Network (1D-CNN) were adopted and applied to classify supply chain pricing datasets of health
medications. Then, Bayesian optimization using the tree parzen estimator and All K Nearest Neighbor
(AllkNN) was used to establish the suitable model hyper-parameters of both LSTM and 1D-CNN
to enhance the classification model. Repeated five-fold cross-validation is applied to the developed
models to predict the accuracy of the models. The study showed that the combination of 1D-
CNN, AllkNN, and Bayesian optimization (1D-CNN+AllKNN+BO) outperforms other approaches
employed in this study. The accuracy of the combination of 1D-CNN, AllkNN, and Bayesian
optimization (1D-CNN+AllKNN+BO) from one-fold to 10-fold, produced the highest range between
61.2836% and 63.3267%, among other models.

Keywords: health medications; deep learning; supply chain; artificial intelligence

1. Introduction

There are different diseases affecting public health and safety across different parts
of the world. Much research has centered on proffering solutions by diagnosing and
truncating the transmission of diseases such as COVID-19 (henceforth, SARS-CoV-2) [1,2],
HIV [3,4], Ebola [5–8], malaria [9–20], hereditary diseases [21,22], monkeypox [23–25],
tuberculosis [26–30], and other diseases [31–35], by adopting different computational, mod-
eling and bioinformatics approaches. Recently, the World Health Organization (WHO)
declared monkeypox disease a case of a global public health emergency of International
Concern [36]. Health medications such as vaccines, and liquid and solid medications are
very essential and in high demand to combat the diseases [37–40]. After the production
of these medications, one of the major problems is how to transport and distribute these
health medications effectively and efficiently to regions where they are urgently needed.
Health medications form an essential part of human society. However, the supply chain
process that health medication undergoes before they are safely delivered to their various
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destinations can be very complicated and challenging. Issues such as unpredictability,
instability, and a lack of accountability are problems facing the global supply chain sector.
Companies today, (pharmaceutical firms inclusive), face a distinct set of difficulties, in-
cluding transportation issues, outsourcing, bottlenecks due to unexpectedly high demand,
in addition to growing consumer expectations, and complicated operational processes.
Health medication supply chain fragility was recently brought to light by the outbreak of
the SARS-CoV-2 pandemic [41,42].

At present, organizations are seeking ways to make their supply chains less susceptible
to disturbances in the current environment of transforming the supply chain competitive
landscape, evolving workplace practices, and increasingly volatile demand [43]. Many
well-known and new supply chain difficulties can be solved by computational approaches
such as machine learning. Artificial intelligence helps companies manage their supply
chains better and make them more resilient to disturbances. One of the ways supply chain
managers can take to address pressing challenges in the supply chain process is to use
machine learning use cases as a prepared roadmap of the steps they should follow [44–46].

Recently, the conventional linear supply chain has been evolving over the past few
years into a computerized supply chain network, which we have all seen (DSNs). Businesses
are actively reviewing their overall supply chain strategy in anticipation of the recent reality,
and COVID-19 has only expedited this process [47]. It is feasible to convert conventional,
linear supply chains into linked, adaptive, expandable, and configurable digitized supply
chain networks with the aid of technologies like IoT, intelligent systems, and deep learning.
Conventional supply chains operate according to a predetermined workflow. This is
how most industrial execution systems work [48]. A nondeterministic system, on the
other hand, lacks predetermined workflows and gives automation itself some latitude in
how it manages business logic. Improved online manufacturing systems can reorganize
and improve production processes, prevent service disruptions, and lower the expenses
associated with changing product lines [49].

The widespread use of machine learning throughout the supply chain has made it
possible for retailers, suppliers, and wholesalers to implement the massive adjustments
that are urgently required to address the epidemic. Benefits that have never been feasible
before are now available to supply chain operations thanks to machine learning, including
cost savings via improved supply chain prediction and risk management, rapid supplies,
and improved customer experience, to mention a few [50]. Machine learning will most
significantly aid supply chain experts by giving them additional insight into how to improve
supply chain efficiency and foresee abnormalities in logistics costs and performance before
they arise. Machine learning is also revealing which areas of automation will result in the
greatest scale advantage. As a result of supply management machine learning technologies,
retailers and suppliers are cooperating in whole new ways. Machine learning, a branch
of artificial intelligence, uses data to train computer models to respond to events on
their own [51]. The computer may progressively train itself in this way, improving the
precision of its own algorithms. Some machine learning methods are used in the supply
chain. According to Gartner [43,52], by 2023, cognitive algorithms and artificial intelligence
approaches will be implemented or augmented in 25 percent of all supply chain technology
systems, according to Gartner [43,53].

Inventory management is one component of supply chain management. It requires
expensive storage and upkeep of inventory to keep it in good shape. Therefore, inventory
planning should be approached carefully by supply chain managers as it directly affects
a company’s cash flow and profit margins. Among the most prevalent applications of
machine learning in the supply chain is inventory management [54]. The issue of under-
or overstocking can be resolved with the aid of machine learning. With ML, you can
forecast the growth in demand based on data that can be gathered from a variety of sources,
such as the open market environment, trends in the market, advertising, purchases, and
historical analyses [55]. Additionally, you can plan to stock up on supplies and avoid
having an excess of either items or crucial components for manufacture. There is a need
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for a variety of facts for the forecast to be correct. Machine learning presents a range of
solutions to the issue of inadequate data for research to be successful. One such method
is data augmentation, which enables you to greatly enhance the variety of data provided
for training models without having to collect additional data. Depending on the type of
data, several augmentation strategies are utilized in deep learning applications [56,57].
Approaches like Synthetic Minority Over-sampling TEchnique (SMOTE) or Synthetic
Minority Over-sampling TEchnique-Nominal Continuous (SMOTE NC) are frequently
used to enhance plain numerical data [58,59]. Depending on the nature of the project,
augmentation techniques for large amounts of data, such as images and text, range from
straightforward manipulations to neural network-generated data. A machine learning
technique called incremental learning trains a model using a small quantity of data [60].
Rather, learning begins with a rather basic model that generally forecasts the estimated
value with a certain variability. The model is trained to be able to predict outcomes more
accurately when a data scientist inserts additional data instances. The number of datasets
will eventually be sufficient to generate accurate predictions.

Along with supervised learning and unsupervised learning, reinforcement learning
(RL) is one of the three fundamental machine learning methods. It employs rewards
and penalties as cues for appropriate and inappropriate conduct [61]. RL is employed in
robotic systems and process control to allow the robot to develop an effective, adaptable
control system for itself that gains knowledge from its own experience and behavior [62].
When it comes to data, the decision of whether to employ a data lake or a data warehouse
emerges. Data lakes are frequently employed in advanced analytics or machine learning
applications. They are frequently employed in ML projects because they enable the real-time
collection and storage of data from numerous sources. A data warehouse is appropriate
for operational processes and daily operations, whereas a data lake is ideal for those
who require a thorough study of broad-spectrum data that have been acquired over time.
Nevertheless, a lot of businesses are increasingly utilizing both types of storage, particularly
when a data lake serves as the foundation for a data warehouse that leverages sanitized
and structured data from a DL [63].

Another type of supply chain ML application is computer vision (CV) for inventory
control. It is often used in many different settings. It is first used to categorize and tally
freshly delivered items. CV also helps in the identification of visible package damage. With
the use of computer vision, the program can classify the items it “sees.” Robots equipped
with cameras, for example, may scan your storage spaces and instantly produce a picture
of your goods. Machine learning techniques that may be applied in the CV sector include
supervised learning, unsupervised learning, and reinforcement learning [64].

Predictive maintenance of equipment is another common application of machine
learning in the supply chain. Based on real-time asset data instead of a predetermined
timetable, ML ensures reactive and preventative maintenance of equipment. Supply chain
experts can drastically reduce maintenance costs by improving asset upkeep. Additionally,
ML aids in the decline of no-fault-found (NFF) situations. When a unit is deemed to be
defective, it is taken out of service and designated as NFF. If no abnormality is found, the
device is put back into use without any repairs. The production process becomes more
efficient as the number of such accidents decreases [65]. ML aids in determining a package’s
location throughout the logistics process. It enables supply chain experts to monitor the
whereabouts of cargo while it is being transported. Additionally, it gives insight into the
circumstances of the package’s transportation. Retailers can keep an eye on variables like
temperature, vibration, humidity, etc. with the use of sensors. Additionally, ML supports
in-the-moment route optimization. It keeps track of the weather and the state of the roads
and makes suggestions on how to shorten travel time and optimize the route. This allows
for the diversion of trucks at any moment when a more economical route is available [66].

Machine learning is utilized in warehouses to automate manual tasks, foresee potential
problems, and minimize paperwork for warehouse workers. For instance, computer vision
enables the management of conveyor belt operations and the forecasting of blockages.
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Thanks to NLP and OCR [67], warehouse personnel can automatically recognize goods’
arrival and modify their delivery statuses. On the product, barcodes and inscriptions are
scanned by cameras, and the data are immediately input into the system. Additionally, ma-
chine learning assists in programming robots and autonomous vehicles, both of which are
commonly utilized in warehouses. Autonomous vehicles and robots assist with receiving,
packing and unpacking, transporting, and uploading and unloading boxes with the use of
system-integrated instructions. In this scenario, computer vision aids in locating a vacant
space for a box, monitoring its proper placement, and preventing robot and automobile
accidents in warehouses [68]. This paper is an innovative work because it deals with the
hybridization of deep learning and Bayesian optimization with a tree parzen estimator
for the classification of the supply chain of health medication datasets. To the best of our
knowledge, there is no study in the literature that has adopted such a technique. The major
contributions of this work include:

i. A survey of machine learning and deep learning algorithms that have been applied
for supply chain management was presented.

ii. Determination of the most appropriate deep learning model for the classification of
supply chain health medications was done.

iii. Development of deep learning and Bayesian optimization Techniques with Tree
Parzen Estimator for classification of supply chain health medications was done.

iv. Evaluation of the performance of the proposed methods for classifying health
medications using different metrics was achieved.

The rest of the paper is organized as follows: a review of related work together with
the summary of contributions table is presented in Section 2. Whereas Section 3 explains
the methods used for the classification of supply chain health medications. The simulation
and statistical results of our experiments are presented in Section 4. The conclusion of the
paper is in Section 5.

2. Materials and Methods
2.1. Related Works

In the area of supply chain management, some study has been done. Wong et al. [69]
examine the technological design while considering the technical viability in terms of
scalability, large data processing, and analytics. For data transfer and communication
between members of the community, blockchain technology establishes a network that is
mainly dependable. Supply chain management using blockchain technology is susceptible
to efficiency and memory issues because of the irreversibility, increasing volume, and
heterogeneity of supply chain transaction data on the blockchain peer-to-peer network of
different supply chain participants. To uphold the norms of supply chain management
using blockchain technology, the blockchain architecture backed by a cutting-edge cloud
infrastructure was proposed. The cloud platform supports all required web services with
scalability, accessibility, protection, and virtualized computing features that make it easier
to distribute, share, and store a sizable amount of immutable transaction records with the
help of privacy and confidentiality web services, including the use of status update web
services. The limitation of the work is that further quantitative and empirical investigations
into the supply chain management performance model are required.

Alnahhal, Ahrens, and Salah [70] examined the dynamic lead-time forecasting that
may be done by a logistics firm to optimize temporal cargo consolidation. Consolidating
shipments is frequently done to cut the cost of export, but it can lengthen the delivery
time. In the study, forecasting is done using real data in a make-to-order supply chain
where the logistics provider is unaware of the producers’ own data records. Using machine
learning techniques like logistic regression and linear regression, forecasting was carried
out in stages. The final stage verifies whether the order will arrive during the next delivery
week or not. After each cargo delivery, forecasting is reviewed to see whether it would
be capable of delivering the present inbound purchases for a specific customer promptly
or if it would wait until the next week. The outcomes demonstrated acceptable accuracy
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expressed in many ways, one of which is dependent on a type I error with an average
value of 0.07. Adaptive forecasting is used in the work in order to optimize cargo temporal
integration in the aggregation center. The limitations of the study include a lengthy lead
time and the assumption that it will take a few weeks. Furthermore, forecasting by the
third-party delivery company is unnecessary if suppliers offer correct information about
delivery schedules. Suppliers can offer better forecasting because they typically have access
to more local knowledge. Temporal consolidation would not be desirable if stock level
costs are too high and transportation costs are low.

A novel medicine supply chain and recommendation system built on blockchain,
and machine learning was developed by Abbas et al. [71] and deployed (DSCMR). A
consumer medicine recommendation system based on machine learning and a system
for managing the drug supply chain based on blockchain are the two main parts of our
suggested strategy. The first module installs the medication supply chain management
system using open blockchain fabrics. This system can continuously track and monitor
the drug distribution process in the intelligent pharmaceutical business. In contrast, the
N-gram and LightGBM models are employed in the machine learning module to provide
clients in the pharmaceutical business with recommendations for the best or highest-rated
medications. These models were trained using the well-known drug review dataset, which
the University of California made available to the public as part of a fully accessible machine
learning collection. Additionally, this blockchain system incorporates the machine learning
module with the aid of the REST API. Finally, they run a number of tests to evaluate the
effectiveness and usefulness of our proposed solution. The system’s limitations are that the
network is not very large, and the technology is not used in real-time by pharmaceutical
companies to evaluate its effectiveness. Additionally, the accuracy of the machine learning
models used in the work is subpar.

Shahbazi and Byun [72] provided a method for manipulating perishable food that
integrates the most recent advances in blockchain technology, machine learning technology
(ML), and fuzzy logic traceability systems. This technology is known as the blockchain ma-
chine learning-based food traceability system (BMLFTS). The proposed system’s blockchain
technology was created to address issues such as weight, evaporation, warehousing trans-
actions, and shipment times. The blockchain data flow is intended to demonstrate how
machine learning was extended to the level of food traceability. Additionally, to extend
shelf life, supply chains use precise and reliable data. The proposed solution has limitations
dependent on the use of other supply chain applications in the food traceability scenario.
The proposed system should not be limited to food traceability; additional analysis features,
such as risk management and e-commerce transactions, can be included. These are the
two primary aspects that are recommended for further study and refining of the proposed
technique. Similar information flows, including risk, material, and value flows, can be
addressed by an incorporated strategy to build a supply chain that is more dependable
and safer.

Tirkolaee et al. [73] give a general overview of how ML approaches are being used
across the supply chain. They named machine learning (ML) applications in supply chain
management (SCM) as one of the most well-known artificial intelligence (AI) method-
ologies. The importance of machine learning (ML) approaches in supplier selection and
segmentation, supply chain risk prediction, demand and sales estimation, inventory control,
transport and logistics, environmental sustainability (SD), and digital economy (CE) is
highlighted in this study. The study’s implications for the major issues and shortcomings
are then examined, followed by managerial advice and suggestions for future research. The
authors predicted advancements in AI research and proposed more investigation into the
use of RL approaches in real-time pricing. The study’s main flaw is that it only looked into
a small number of algorithms, leaving out many other highly effective deep learning and
machine learning methods.

Manasas [74] explains how lead time prediction and minimization using machine
learning techniques can help with supply chain management. Lead time has been ex-
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tensively studied since it is seen as a crucial aspect in both supply chain planning and
customer satisfaction. These techniques were used on a sizable set of Greek-headquartered
enterprises that manufacture aluminum in multiple stages and with multiple products.
The lead times for the company’s main product groups, architectural aluminum profiles,
and accessories, were explored in depth using two predictive models. A third model was
used to accurately forecast for aluminum accessories to avoid stock-outs, which have a
significant impact on the lead times for orders placed. The case study’s outcomes seem
more than acceptable, outperforming the effectiveness of the technologies in use for de-
mand forecasting and lead time prediction. The work’s limitations include inaccurate lead
time estimation; waiting periods between phases should be considered as this “dead time”
influences the overall cycle time. In addition, the industrial environment is undergoing
dynamic changes. Substantial changes in the system, such as the adoption of new planning
methods and systems, are not easily accomplished by the algorithms in the absence of
appropriate data, despite the fact that machine learning algorithms are good at recognizing
the environment’s modifications when being retrained.

Wong et al. [75] used artificial intelligence (AI) to show how supply chains (SCs) can
respond dynamically to unstable conditions, reducing the need for small-to-medium-sized
businesses (SMEs) to make potentially costly decisions. This work explores the effect of
AI on SC risk management for SMEs, building on a resource-based perspective. Based
on information gathered from executives, managers, and senior managers of SMEs, a
structural model consisting of AI-risk management capabilities, SC reengineering prowess,
and supply chain agility (SCA) was created and evaluated. Artificial neural networks
(ANNs) and partial least squares-based structural equation modeling (PLS-SEM) are the
key methodologies used in this study (ANN). According to the findings, SC re-engineering
flexibility and capacities are influenced by the application of AI for risk management.
Efficiency is further impacted and mediated by reengineering abilities. Reliability was
found for models A and B when PLS-SEM and ANN were compared. The SC’s current
levels of demand uncertainty put managers under pressure to make difficult trade-off
decisions in a short amount of time. AI makes it feasible to model different situations to
provide answers to important issues that outdated infrastructures cannot. In this work,
non-linear correlations in the model were discovered and a multi-construct adaptability
idea was combined. The limitation of the study is that other factors affecting the acceptance
of technology, like culture, managerial dedication, and technological innovation, were not
taken into account by the model.

Keerthana [76] applied different machine learning techniques for supply chain man-
agement. To close the supply-demand imbalance, the researcher created a complete system
that uses an expandable deep neural network architecture. Depending on transaction
records from already processed transactions, the architecture is able to examine a number of
customized input items and proactively identify supply and demand trends. Based on a set
of adaptable features, a general training model is created to forecast future demand, which
is then put to the test. Integrating layers are applied to transfer high-dimensional features
onto a small subdomain, resulting in a more compact representation, to bring together
incoming data. The training framework of the model is made up of fully joined layers with
connected activation functions. The limitation of the work is the low performance of the
machine learning models used.

Abou Zwaida, Pham, and Beauregard [77] presented a study on a drug refilling
optimization problem, a general model for drug inventory management in a hospital. To
solve the optimization challenge of a drug shortage, they investigated the hospital’s drug
supply chain model and developed Dynamic Refilling dRug Optimization (DR2O). They
simulate an objective function that seeks to reduce the restocking costs, which include
the price of the drug itself, the cost of storing it, and the consequence of a deficit. They
also took budgetary limitations and supply limits into account while refilling medications,
such as storage capability. They also proposed the Deep Reinforcement Learning Model
for Drug Inventory (DRLD), a deep learning approach based on RL and DNN in which
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the pharmaceutical problem is represented as a state in a Markov Decision Process (MDP).
They searched for a proper measure to decide whether to supply based on each state in
order to reduce the objective cost function. They created an online approach to system
control based on the MDP model, where reward and Q-matrices are established to assess
an action match for each state. They presented a DNN model that can approximate the
Q-values after training and can understand the behavior of the system because of the large
search state space in RL. Lastly, they looked at using a detailed simulation to carry out
their work. They specifically compared their strategy to three baseline strategies, which
included support functionality, ski rental, and max-min. In most analyses, their approach
outperforms other methods considered in the paper, particularly in terms of lowering the
cost of restocking and the scarcity issue. The limitation of the work is the relatively high
rate of unexpected results.

Milani et al. [78] worked on the forecasting of supply chain management for non-
communicable diseases. The authors examine the applicability of forecasting modeling to
non-communicable diseases (NCDs) in supply chain management, including the suitable
techniques to gather and analyze the crucial data. In healthcare, a different approach has
been put in place to forecast both vertical and horizontal supply chain interactions utilizing
numerical forecasting models and machine learning. To foresee harmful medical events,
the paper suggests various types of data gathering, analysis, and prediction methodolo-
gies. These methods may prove valuable in the healthcare supply chain, which includes
manufacturers, wholesalers, marketers, and providers. The shortcoming of the work is that
the performance of the machine learning and deep learning models used in the work was
not reported.

Liotine [79] reviews the outcomes of the findings of a panel study conducted by
the industry to determine how supply chain control tower (CT) deployments for the
pharmaceutical business are affected by new autonomous intelligence technologies, such
as artificial intelligence and machine learning. Such technologies have the capability to
transform CTs into a model that allows for the collection, assessment, and decision-making
of data in real time. This can be done by utilizing these technologies to handle decision
intricacy better and carry out decisions at rates that people would normally find difficult
to handle. The essential skills that must be enabled and the increased level of decision
accessibility they offer are some of the main elements that have been recognized. They
also considered some of the obstacles involved in accomplishing this, such as data quality
and reliability, collaboration and data sharing across supply chain layers, system-to-system
compatibility, decision-validation, and administrative effects, among several others. The
drawback of the work is that no machine learning algorithm was implemented in the paper.

Shah [80] explains the essential components of every supply chain and the many
tactics a drug manufacturer can employ to operate effectively. Artificial intelligence (AI)
and machine learning (ML) tools are some of the more contemporary techniques that
businesses utilize for supply chain optimization. Lead times are shortened because of
these innovative technologies, which also assist in forecasting better routes in the future
and drastically save expenses. The paper then examines paracetamol, a medicine that is
extensively produced in India as an active pharmaceutical ingredient (API). The article
offers suggestions for strategies to enhance the supply chain for this specific API in India
by assessing its existing manufacturing across the supply chain process. Overall, increasing
organizational profitability may be accomplished by strengthening India’s supply chain
management through the creation of cogent plans and the application of data-driven
decision-making. The limitation of the work is that it is not scientific enough as there is
no practical implementation of any AI-based algorithms for supply chain management in
the paper.
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2.2. Methodology
2.2.1. Supply Chain Shipment Price Dataset

Supply chain management refers to the transportation of goods and services and
includes all processes that convert raw materials into completed products. It comprises
aggressively streamlining a company’s supply-side procedures to maximize customer
value and gain a market advantage. The supply chain shipping pricing dataset used
in this investigation was collected from Kaggle [81]. The supply chain shipping price
dataset, which was utilized as the target variable, has four modes of transportation, which
are classified as Air, Truck, Air Charter, and Ocean mode. Aircraft are used to deliver
commodities in air freight or air charter. The data sample sizes are 10,324.

The quickest mode of transportation without a doubt is air travel. Being the most
practical form of transportation and not having to deal with many natural obstacles makes it
quite advantageous. Due to this advantage, regardless of a location’s geographic challenge,
it is ultimately the most accessible. Except for exceptionally hefty products that would
not fit inside the aircraft, many objects can be transported using airfreight service. Also
known as the best method of shipping perishable goods, this technique of transportation.
Air travel is without a doubt the quickest means of transportation. It is incredibly beneficial
since it is the most convenient mode of transportation and does not have to contend with
numerous natural impediments. Because of this benefit, it is eventually the most accessible
to all locations, regardless of geographical obstacles. Most things may be delivered via
airfreight service, apart from particularly heavyweight items that may not fit within the
aircraft. This means of transportation is also recognized as the finest mode of shipment for
perishable commodities.

When compared to other types of transportation, air shipping is frequently the most
expensive. Express shipping refers to things that are transported using air transport
since the shipment pace is faster, the products are delivered sooner, and the procedure is
somewhat more expensive. You may anticipate your items to arrive in 1 to 2 days if you
choose air transport. One of the oldest modes of moving products is via land, for example,
by truck. When it comes to shipping products within a country or across borders, this is
the most practical option. Trucks are commonly employed to move things across highways
because they have large cargo compartments that can accommodate heavier objects like
building materials and even autos. This means of transportation is less expensive than the
others. However, it is possible that the goods will take longer to arrive at their destination.
Railways are another mode of land transportation. Because rail freight is less expensive
and can move bigger commodities across the country, it provides a number of benefits.
Shipping Through Sea (Ocean) is the term used to describe shipping by sea for a variety of
uses, such as commercial or military. It is a technique for shipping comparatively bigger
amounts of material using cargo ships in which the cargo is first loaded into a vessel before
being packed into containers. Almost everything may be transported by water, however, if
you want your product delivered fast, shipping products by sea is not advised. However,
as input variables, we utilized line-item value, line-item insurance, and line-item quantity.
Any Sales Order or Purchase Order that we may place for distinct items on the same
Purchase Order or Sales Order is referred to as a Line Item. All the things requested are
mentioned one after the other in the Sales/Purchase Order, whereas the Line of Insurance
refers to the coverage provided under the specific policy being purchased.

2.2.2. Long Short-Term Memory (LSTM)

Deep learning is a sort of neural network with several layers, commonly referred to
as deep structured learning. These networks do better than standard neural networks at
remembering information from prior occurrences. One such device that employs many
networks in a loop is a recurrent neural network (RNN). Thanks to networks that are in
a closed loop, the information may be kept. Each network in the loop gets information
and input from the preceding network, takes the required action, and produces output
while sending the information to the next network. Only recent information is required
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by certain applications, but more historical data may be desired by others. The common
recurrent neural networks experience learning delays when the gap between the moment of
necessity and the required prior information expands. However, a kind of RNN called Long
Short-Term Memory (LSTM) Networks [82] can learn such occurrences. These networks
have been created expressly to get over the recurrent networks’ problem with long-term
reliance. The ability to recall information over a long period of time is a strength of LSTMs.
The validity of the model may be impacted by extra previous information, hence LSTMs
are an obvious option for usage. The four neural network layers that make up a standard
LSTM module sometimes referred to as a repeating module, interact in a special way. The
LSTM is represented mathematically as follows:

ft = α
(

W f ·[ht−1, xt] + b f

)
(1)

it = α(Wi·[ht−1, xt] + bi) (2)

ct = tanh(Wc·[ht−1, xt] + bc) (3)

ot = α(Wo·[ht−1, xt] + bo) (4)

ht = ot × tan h(ct) (5)

where ft is the forget gate at time step t, it is the input gate at time step t, ct is the cell gate at
time step t, ot is the output gate at time step t, ht is the hidden state at time step t, ht−1 is the
previous hidden state at time step t, ot is the output gate at time step t, α is the activation
function, W f , Wi, Wc, Wo are the weight of forget gate, input gate, cell gate, output gate
respectively and b f , bi, bc, bo are bias of forget gate, input gate, cell gate, ouput gate.

2.2.3. One Dimensional Convolutional Neural Network (1D-CNN)

A convolutional neural network (CNN) [83] can mine data in depth because of its
incredible feature extraction capabilities. A convolutional neural network (CNN) is a
two-dimensional image processing technique. A convolution kernel glides across an image,
extracting pixel information and allowing image classification and identification. A one-
dimensional convolutional neural network (1D-CNN) is a modified form of CNN. The
convolution layers of 1D-CNN [84] have one-dimensional filters and a one-dimensional
spectral input layer. 1D-CNN is made up of convolutional layers, max-pooling layers, and
fully connected layers.

The mathematical representation of 1D-CNN is:

x = β

(
n

∑
i=1

conv1D(Woi) + bi

)
(6)

where x is the input, β is the activation function, n represents the number of feature maps in
the layer, W represents the trainable one-dimensional convolutional kernel, xi represent ith
feature map, bi represent the bias of the ith feature map, oi is the output of the ith neuron.

2.2.4. Bayesian Optimization with Tree-Structured Parzen Estimators

The goal of hyper-parameter optimization in machine or deep learning is to determine
the hyper-parameters of a particular machine or deep learning algorithm that provide the
highest performance when tested against a validation set. A number of hyper-parameters
influence the predictive accuracy of the models. It is critical to tune these hyper-parameters
in a reasonable manner. However, unlike conventional parameter optimization, hyper-
parameter optimization is a combinatorial optimization issue that cannot be solved using
the gradient descent approach. Furthermore, because every hyper-parameter alteration
necessitates retraining to assess the effect, computation for evaluating a collection of
hyper-parameter configurations is particularly demanding. Bayesian Optimization will
be used in this work along with probabilistic regression models such as tree-structured
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parzen estimators. According to [85] the configuration space is limited to a tree-structured
parzen estimator, which gives a straightforward approach for determining the model
and determining local optimal hyper-parameter settings. Bayesian Optimization using a
Tree-Structured Parzen Estimator is mathematically expressed as follows:

ps(a|b) =
{

l(b) i f a > a∗

g(b) i f a ≥ a∗
(7)

EI(a) =
∫ amin

−∞
max(amin − a(b), 0)ps(a|b)da (8)

where a is the set of objective vectors, l(b) is the probability density function, g(b) is the
probability density function of the remaining observation, amin is current minimum loss,
a(b) is the loss under the hyper-parameter setting b. EI is the expected improvement, b is
the local optimal hyper-parameter setting.

2.2.5. Target Variable Class Imbalance

The above-mentioned target variable resulted in some class imbalance. For exam-
ple, in Figure 1, there is a class imbalance in shipping methods, with air accounting for
53.5 percent, truck accounting for 34.1 percent, air charter accounting for 8.0 percent, and
ocean accounting for 4.5 percent. To compensate for the imbalance, we employed AllKNN
(All K Nearest Neighbor) by [44]. Because the number of neighbors of the internal closest
neighbors algorithm is raised at each iteration, AllKNN differs from other under-sampling
techniques. This strategy employs the closest neighbor’s algorithm for the class based on
its difficulty in learning. The methods have a comparable impact by removing noisy data
around the class borders. This makes deep learning more successful at finding underrepre-
sented classes. Figure 1 demonstrates that air medical transport has been a significant mode
of transportation since it can move very quickly, which is quite useful in an emergency.
They can deliver the medications and patients to the required location. This is because the
airways are not backed up and can quickly go to the desired location.
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3. Model Specification

We compared the performance of two widely used deep learning techniques. In this
case, we contrasted a one-dimensional convolutional neural network with long short-term
memory (LSTM) (1D-CNN). Deep learning or deep structured learning refers to neural
network types with many layers, such as LSTM or 1D-CNN. When it comes to recalling
information from prior occurrences, these networks perform better than normal neural
networks. The network’s closed-loop design keeps the information safe. Every network in
the loop gets input and data from the preceding network, performs the specified action, and
then outputs data while sending them to the next network. While some applications just
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require the most recent data, others may call for more historical data. Such examples can
be learned by Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory
(LSTM) Networks [86]. These networks are specially designed to circumvent the recurrent
networks’ issue with long-term dependency. Long-term memory systems (LSTMs) are
effective in recalling information. The validity of the model may be impacted by extra
previous information; hence LSTMs are an obvious option for usage. The LSTM block
contains four gates: cell state gate retains g information over time, forget gate g f regulates
the extent of the value maintained in the cell, input gate gi controls the extent of the value
flow in the cell, and the output gate go controls the extent of the value in the cell to be
utilized for computing the output. A completely linked layer and an activation function
are included in each gate. The LSTM block also has three inputs: cell state st−1; previously
hidden state ht−1; and current input xt, as well as three outputs: cell state st; hidden state
ht; and current output yt. The current output is created depending on the hidden state. The
mathematical formulation of the LSTM units is as follows:

g f = γ
(

W f [xt, ht−1]
)

(9)

gi = γ(Wi[xt, ht−1]) (10)

g = tan h(W[xt, ht−1]) (11)

go = γ(Wo[xt, ht−1]) (12)

st = g f st−1gig (13)

ht = gotan h(st) (14)

yt = γ
(
W ′ht

)
(15)

A unified neural network of 1D-CNN, on the other hand, is made up of 12 layers: five
1D convolutional neural network (1D-CNN) layers, two dropout layers, one max-pooling
layer, one flattened layer, and three fully connected layers. The signals are first routed
via the first convolutional layer, which has a filter size of 32. The kernel of the first layer
of our proposed 1D-Convolutional network is set to 3, indicating that all weights will be
shared by every stride of the signal’s input and output layers. The filter size is raised from
32 to 64 in the second 1D-convolutional layer, and the kernel size is adjusted to 3 in all 1D
convolutional layers. Furthermore, the filter size is set to 128 in the third 1D-convolutional
layer, but the padding is set to the same value in all three 1D-convolutional layers. The
fourth layer is a max pooling layer that is used to down-sample the input representation
from layer three. The pooling size is set to 3, the strides are set to 2, and the padding is
set to the same. The fifth and seventh convolutional layer filter sizes are increased to 256
and 512, respectively, with the same padding and kernel size set to 3. The sixth and eighth
layers are dropout layers with a value of 0.2 that are positioned between the fifth and sixth
convolutional layers to reduce overfitting. The ninth layer is a flattening layer that reduces
the input data to a single dimension. The flatten layer’s single dimension was fed into
the fully connected layer 10 with 512 nodes, and the leaky ReLU activation function was
employed in all activation functions. Layer 11 has 256 nodes and is completely connected.
After passing through Layer 11, data are delivered into the last fully linked layers with a
linear activation function for final prediction. Figure 2 is the block diagram of the proposed
model. The mathematical expressions for the 1D-convolutional neural network (y), Leaky
ReLU activation (β), max pooling (mpe), and dropout (d) layers are as follows:

y = β(
n

∑
i=1

conv1D(Wxi) + bi) (16)

β ={βx, f or 0 < x ≤ 0} (17)

mpe = max(mpe1 : e ≤ e1 < e + s) (18)
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d = ∑n
i=1 wiδixi (19)
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3.1. Repeated k-Fold Cross Validation

To improve the predicted performance of deep learning [87,88] models, repeated k-fold
is utilized in this study. As for regression and classification models, it may be used for
both [89–92]. Provide the mean result across all folds from all runs by simply iterating
the k fold cross-validation approach several times. The supplied dataset will be divided
into k folds according to the first input k, which is specified to be 5 (or subsets). On the
k-1 subsets, the model is trained, and its performance is assessed using the remaining
subset. These stages will be repeated up to a limit of two times, which will be determined
by the algorithm’s second parameter. Each iteration of the repeated k-fold cross-validation
is a conventional k-fold algorithm implementation. To begin, the dataset is divided into
k subsets, each of which is randomly assigned a number between 1 and 5. The subset is used
as a validation set, with the remaining subsets being used for training. On the validation or
test set, the model is trained and assessed. The prediction error is also determined, and the
step is performed k times. Finally, the total prediction error is calculated by averaging the
prediction errors in each scenario.

3.2. Other Related Works

Chen et al. [93] proposed a new disease diagnosis and treatment recommendation
system to make the best use of the sophisticated medical equipment found in modern
hospitals and the depth of expertise of skilled physicians. First, a Density-Peaked Clus-
tering Analysis (DPCA) technique for illness-symptom clustering is proposed in order
to more precisely and effectively identify disease symptoms. Additionally, the Apriori
algorithm does association studies on disease-diagnosis (D-D) rules and disease-treatment
(D-T) rules independently. Even if they are in a constrained therapeutic setting, patients
and novice doctors are advised to receive the proper diagnosis and treatment plan. A
parallel solution was also implemented using the Apache Spark cloud platform in order
to achieve the objectives of high throughput and low response latency. Comprehensive
experimental results show that the proposed system efficiently achieves illness-symptom
clustering and provides intelligent and precise disease treatment suggestions. The pro-
posed system’s weakness is the lack of evaluation of the efficiency of disease diagnostic
and treatment methods.
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Wang et al. [94] developed a novel system for solving the problem of incremental
group-level popularity prediction. The two key phases are restarting CP decomposition
to reduce cumulative error and progressively forecasting by utilizing progressive CP
decomposition. In terms of forecast accuracy and running time, extensive empirical studies
show that IGPP performs better than other baselines. The study concentrated mostly on
investigating dynamic diffusion throughout the temporal dimension. The authors also
expanded the applications of our incremental methodology in big data environments
and explored more general incremental approaches that can describe the evolving groups
over time.

Chen et al. [95] applied a Periodicity-based Parallel Time Series Prediction (PPTSP)
technique for large-scale time-series data that is suggested and implemented in the Apache
Spark cloud computing environment. A Time Series Data Compression and Abstraction
(TSDCA) approach is described to efficiently manage the enormous historical datasets. This
algorithm can scale down the data while properly retrieving the features. On the basis
of this, they suggested a Multi-layer Time Series Periodic Pattern Recognition (MTSPPR)
algorithm employing the Fourier Spectrum Analysis (FSA) technique. A Periodicity-based
Time Series Prediction (PTSP) algorithm is also suggested. The models for all prior periods
are used to forecast data for the later period, and a temporal attenuation factor is added to
reduce the influence of the various periods on the outcome of the prediction. Additionally,
they developed a parallel approach on the Apache Spark platform, utilizing the Streaming
real-time computing module, to enhance the performance of the suggested algorithms.
Extended experimental results demonstrate that, in terms of prediction accuracy and
performance, the PPTSP approach has a significant edge over competing algorithms.

Pu et al. [96] developed a new attention convolution neural network (named ED-
ACNN) for anticipating the movement of people in every area of a city center, using
historical human traffic data, and it is based on an encoder-decoder architecture. The
proposed system is capable of learning all the spatial and temporal interrelations of ve-
hicular images, including proximity, period, and pattern. The effectiveness of the method
was assessed using three different real-world datasets from Beijing and New York City. It
outperformed ten widely used baselines in terms of accuracy and efficiency, proving that
the suggested approach is more suitable for predicting traffic flow. Experimentally, Beijing
and New York City’s two distinct forms of population flow were thoroughly evaluated,
and the findings demonstrate that the suggested approach can be highly competitive with
leading-edge thresholds.

Fillipe et al. [97] applied long short-term memory (LSTM) as a model for forecasting
time series. The model focused on a large volume of data from a time series characterized
by nonlinearities. However, Oyewola et al. [98] developed a novel Auditory Algorithm,
which follows the pathway of the auditory system like that of the human ear. The results
show that the auditory algorithm preforms better than other algorithms considered in
the paper.

4. Results and Discussion

In this section, the dataset and developed models such as the Long Short-Term Memory
(LSTM) and One Dimensional Convolutional Neural Network (1D-CNN) were subjected
to repeated K fold cross-validation. Python 3.6, numpy, sklearn, keras, imblearn, pandas,
matplotlib, seaborn, and plotly are the python packages used in this work. The hyperopt
library in Python is used to perform Bayesian hyperparameter optimization. The supply
chain dataset’s missing values were shown using a heatmap. The heatmap in Figure 3
shows two colors: red for missing data and green for remaining values with no Nan values.
Shipment Mode, Dosage, and Line-Item Insurance contain missing values.
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Correlation heatmaps are heatmaps that display the degree of correlations between
numerical variables. The links between variables and their strength are visualized using
correlation graphs. Every numerical variable in a correlation plot is typically represented
by a column. The rows reflect the connections between each pair of variables. The values
in the cells represent the strength of the correlation; positive values represent a positive
relationship, while negative values represent a negative association. The strength of
potential relationships between variables may be evaluated using heatmaps of correlation.
Additionally, linear, and nonlinear correlations, as well as outliers, may be found using
correlation plots. It is easy to quickly spot relationships between variables because of the
color coding of the cells. Correlation heatmaps may be used to discover both linear and
nonlinear relationships between data. Line-Item Quantity is substantially connected with
Line-Item Insurance, as seen in Figure 4, with a correlation value of 0.8. Meanwhile, the
Pack Price has a 0.6 correlation coefficient with Unit Price, although Unit Price is unaffected
by Unit of Measure or ID.

The data peaks are displayed using a violin plot, which is a mix between a box plot
and a kernel density plot. It serves as a representation of the distribution of numerical data.
Violin plots display summary statistics as well as the density of each variable, as opposed
to box plots, which can only offer summary statistics. The median can be seen as a white
dot in violin plots. Conversely, the narrow gray line represents the remaining portion of
the distribution, while the wide gray bar in the middle displays the interquartile range. On
either side of the gray line, a kernel density estimation is displayed to demonstrate how the
data are distributed. The violin plot is divided between broader and skinnier parts, with
wider areas representing a greater likelihood that members of the population would adopt
the given value and skinnier areas representing a lower probability. As seen in Figure 5, the
median Pack Price for Pediatric and Adult is about 1 but with a greater likelihood, whereas
the median Pack Price for ACT is around 45 but with a lower chance. Furthermore, with a
decreased chance, the median Pack Price for Malaria is about 30.
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The performance of the deep learning models used in this study was enhanced with the
aid of repeated k-fold cross-validation. This merely involves repeating the cross-validation
process and reporting the average outcome across all folds from all runs. The supply chain
shipping data are separated into five folds and repeated twice in this approach, as shown
in Tables 1–6. When training our models, we must consider loss and accuracy. Loss is a
metric that represents the sum of our model’s errors. It determines how well or poorly
our model is performing. Furthermore, accuracy assesses how well our model predicts
by comparing model predictions to true values in percentage terms. Table 1 displays the
Loss and Accuracy of Long Short-Term Memory (LSTM). The Loss is within the range of
1.3907 and 1.4682, which means that the model does not perform well. Also, the accuracy
in Table 1 is within the range of 50 and 55 which shows that the accuracy is low. Since the
loss is low and accuracy is low, it means the LSTM model is not performing well. Table 2
displays the Loss and Accuracy of the One-Dimensional Convolutional Neural Network
(1D-CNN). The Loss is within the range of 1.3 and 1.4 while the accuracy is within the
range of 52 and 55. Both the loss and accuracy were very low. It means that 1D-CNN is not
performing well.

Table 1. Loss and Accuracy of Long Short-Term Memory (LSTM).

Iteration Loss (%) Accuracy (%)

FOLD 1 1.4142 × 10−7 54.0441
FOLD 2 1.3936 × 10−7 55.2696
FOLD 3 1.4682 × 10−7 51.9607
FOLD 4 1.4419 × 10−7 52.5735
FOLD 5 1.3907 × 10−7 52.9411
FOLD 6 1.4053 × 10−7 53.7990
FOLD 7 1.4725 × 10−7 50.9803
FOLD 8 1.4010 × 10−7 55.1470
FOLD 9 1.4144 × 10−7 54.3558

FOLD 10 1.4071 × 10−7 53.4969

Table 2. Loss and Accuracy of One Dimensional Convolutional Neural Network (1D-CNN).

Iteration Loss (%) Accuracy (%)

FOLD 1 1.4740 × 10−7 52.4509
FOLD 2 1.4287 × 10−7 53.4313
FOLD 3 1.4243 × 10−7 53.4313
FOLD 4 1.4302 × 10−7 52.4509
FOLD 5 1.4287 × 10−7 53.3088
FOLD 6 1.4316 × 10−7 53.0637
FOLD 7 1.4243 × 10−7 54.0441
FOLD 8 1.3294 × 10−7 55.5147
FOLD 9 1.4539 × 10−7 52.3926

FOLD 10 1.3837 × 10−7 54.4785

Table 3. Loss and Accuracy of LSTM+AllKNN.

Iteration Loss (%) Accuracy (%)

FOLD 1 1.2414 × 10−7 60.6625
FOLD 2 1.2883 × 10−7 60.0414
FOLD 3 1.3006 × 10−7 59.4202
FOLD 4 1.1600 × 10−7 62.5258
FOLD 5 1.2463 × 10−7 60.0414
FOLD 6 1.2809 × 10−7 59.2132
FOLD 7 1.327 × 10−7 58.5921
FOLD 8 1.2957 × 10−7 58.3850
FOLD 9 1.2908 × 10−7 60.4554

FOLD 10 1.1007 × 10−7 65.0103
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Table 4. Loss and Accuracy of 1D-CNN+AllKNN.

Iteration Loss (%) Accuracy (%)

FOLD 1 1.2932 × 10−7 60.4554
FOLD 2 1.1550 × 10−7 63.9751
FOLD 3 1.2661 × 10−7 60.2484
FOLD 4 1.2093 × 10−7 61.9047
FOLD 5 1.2143 × 10−7 61.9047
FOLD 6 1.2710 × 10−7 60.0414
FOLD 7 1.2365 × 10−7 60.0414
FOLD 8 1.3500 × 10−7 56.9358
FOLD 9 1.3204 × 10−7 58.5921

FOLD 10 1.2167 × 10−7 60.2484

Table 5. Loss and Accuracy of LSTM+AllKNN+BO.

Iteration Loss (%) Accuracy (%)

FOLD 1 1.2426 × 10−7 60.4554
FOLD 2 1.2291 × 10−7 61.3871
FOLD 3 1.2550 × 10−7 60.4554
FOLD 4 1.2229 × 10−7 61.2836
FOLD 5 1.3167 × 10−7 58.5921
FOLD 6 1.2574 × 10−7 59.6273
FOLD 7 1.2315 × 10−7 61.3871
FOLD 8 1.2108 × 10−7 63.9026
FOLD 9 1.2678 × 10−7 62.2432

FOLD 10 1.2439 × 10−7 61.3943

Table 6. Loss and Accuracy of 1D-CNN+AllKNN+BO.

Iteration Loss (%) Accuracy (%)

FOLD 1 1.2192 × 10−7 61.2836
FOLD 2 1.1617 × 10−7 62.7660
FOLD 3 1.2797 × 10−7 60.3519
FOLD 4 1.0192 × 10−7 63.1297
FOLD 5 1.2266 × 10−7 60.6625
FOLD 6 1.1618 × 10−7 62.2234
FOLD 7 1.2612 × 10−7 60.3512
FOLD 8 1.2467 × 10−7 60.4678
FOLD 9 1.160 × 10−7 62.3845

FOLD 10 1.1532 × 10−7 63.3267

By keeping all the data from the minority class and lowering the size of the majority
class, under-sampling is a method for balancing disparate datasets. As demonstrated in
Figure 1, there were uneven classes in target variables such as shipment mode. The dataset
was undersampled using AllkNN. The Loss and Accuracy of LSTM and 1D-CNN with
AllKNN are shown in Tables 3 and 4. The accuracy of LSTM has increased from 50% to 63%,
indicating that the model outperforms the prior model. To fine-tune the deep learning meth-
ods in Tables 3 and 4, Bayesian Optimization (BO) using a tree-structured parzen estimator
was used. Bayesian Optimization is a method for finding the lowest or maximum of an
objective function that uses the Bayes Theorem to guide the search. In many real-world ana-
lytics applications, optimizing a function is critical. By optimization, we imply determining
the objective function maximum or minimum with a certain set of parameter combina-
tions. Tables 5 and 6 show the outcomes of hyperparameter adjustment for LSTM+AllkNN
and 1D-CNN+AllkNN. Tables 5 and 6 show a slight improvement in accuracy, indicat-
ing that the accuracy is performing well. Table 7 shows all of the parameters used in
LSTM+AllkNN and 1D-CNN+AllkNN before and after Bayesian Optimization using the
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Tree Parzen estimator in LSTM+AllkNN and 1D-CNN+AllkNN, respectively. After using
Bayesian Optimization, there is a modest rise in the parameter. The pie chart of the overall
Loss of LSTM, 1D-CNN, LSTM+AllkNN, 1D-CNN+AllkNN, LSTM+AllkNN+BO, 1D-
CNN+AllkNN+BO is shown in Figure 5. 1D-CNN+AllkNN has a relatively low percentage
loss compared to other models, indicating that the model outperforms the others. Further-
more, Figure 6 depicts the pie chart of the overall loss of LSTM, 1D-CNN, LSTM+AllkNN,
1D-CNN+AllkNN, LSTM+AllkNN+BO, and 1D-CNN+AllkNN+BO. The results show
that 1D-CNN+AllkNN+BO has the lowest loss with 15.3% while LSTM and 1D-CNN
have the highest loss with 18.3%. Figure 7 depicts the overall accuracy of LSTM, 1D-
CNN, LSTM+AllkNN, 1D-CNN+AllkNN, LSTM+AllkNN+BO, and 1D-CNN+AllkNN+BO.
The ranking is topped by 1D-CNN+AllkNN, which has an extremely high accuracy of
17.6 percent. This means that the model performs admirably in supply chain management.

Table 7. Parameters of Hyper parameter tuning of LSTM and 1D-CNN.

Algorithms
Before Bayesian Optimization After Bayesian Optimization

Hyperparameter Values Hyperparameter Values

LSTM

Units 1–4 16, 32, 64, 128 Units 1–4 550, 715, 146, 216
return_sequences True return_sequences True

Dropout 1–4 0.2 Dropout 1–4 0.2, 0.6, 0.4, 0.4
Optimizer Rmsprop Optimizer Rmsprop

Loss Categorical_crossentropy Loss Categorical_crossentropy
Batch size 80 Batch size 80

LeakyReLU 0.2 LeakyReLU 0.2, 0.8, 0.01, 0.01

1D-CNN

Filters 32, 64, 128, 256, 512 Filters 670, 347, 948, 268
Kernel size 3 Kernel size 3

Padding same Padding same

LeakyReLU 0.001 LeakyReLU 0.002, 0.001, 0.001,
0.001,0.002

Pool size 3 Pool size 3
Strides 2 Strides 2

Dropout 0.2 Dropout 0.3, 0.7
Loss Categorical_crossentropy Loss Categorical_crossentropy

Batch size 80 Batch size 80
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5. Conclusions

This research was conducted with the goal of enhancing supply chain management,
and saving time and money by doing away with manual intervention. Based on our
findings, we demonstrated that Bayesian Optimization with the tree parzen estimator and
AllkNN may be used to optimize deep learning models such as Long Short-Term Memory
(LSTM) and One Dimensional Convolutional Neural Network (1D-CNN). The experimental
results showed that combining 1D-CNN, AllkNN, and Bayesian Optimization with a tree
parzen estimator may increase the accuracy of the supply shipment price datatset. This
research, like any other study, has some limitations. There is a chance that bias crept in
because all of our samples were gathered via the Kaggle website. Furthermore, despite
our best efforts, it is possible that the sample we gathered from the industry was not large
enough to reflect the whole sector. Due to these limitations, further research must be done
with larger samples across other industries in order to gain fresher insights.

In the future, we hope to broaden our empirical studies to include other and bigger
configuration spaces, as well as increase the number of iterations and datasets. We may also
mitigate the problem of overfitting in deep learning by reshuffling the train and validation
split for each function evaluation. Machine learning techniques are an area of interest that
we have not addressed. For supply chain management classification, machine learning
techniques can be used with Bayesian Optimization approaches. The goal of Bayesian
model-based optimization is to minimize the number of times the objective function must
be run by evaluating just the set of hyperparameters that has shown the most promise
in prior calls to the evaluation function. The Tree-structured Parzen Estimator (TPE) is a
sequential model-based optimization in which models are constructed progressively to
estimate the performance of hyperparameters based on previous measurements, and then
new hyperparameters are chosen to test based on this model.
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