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Abstract: Soft soils are commonly located in many regions near seas, oceans, and rivers all over the
world. These regions are vital and attractive for population and governments development. Soft soil
is classified as problematic soil owing to sustaining low shear strength and high settlement under
structures. Constructing structures and/or infrastructures on soft soil is a considerable risk that
needs great attention from structural engineers. The bearing capacity of structure foundations on
soft soil depends mainly on their undrained shear strength. This soil feature strongly influences
the selection of appropriate soil improvement methods. However, determining undrained shear
strength is very difficult, costly, and time-consuming, especially for sensitive clay. Consequently,
extracting undisturbed samples of sensitive clay faces several difficulties on construction sites. In
this research, accurate field-tested data were fed to advanced machine learning models to predict
the undrained shear strength of the sensitive clay to save hard effort, time, repeated laboratory
testing, and costs. In this context, a dataset of 111 geotechnical testing points were collected based
on laboratory and field examinations of the soil’s key features. These features included the water
content, liquid limit, dry unit weight, plasticity index, consistency index, void ratio, specific gravity,
and pocket penetration shear. Several machine learning algorithms were adopted to provide the
soft clay modeling, including the linear, Gaussian process regression, ensemble and regression trees,
and the support vector regression. The coefficient of determination was mainly used to assess
the performance of each predictive model. The achieved results revealed that the support vector
regression model attained the most accurate prediction for soil undrained shear strength. These
outcomes lay the groundwork for evaluating soil shear strength characteristics in a practical, fast,
and low-cost way.

Keywords: soft clay; undrained shear strength; machine learning; ICT; predictive modeling

1. Introduction

Patches of soft soil are distributed throughout many vital regions near oceans, seas,
and rivers. These regions are essential for human activities and the development of various
structures such as roads, bridges, embankments, buildings, railroads, tunnels, etc., and new
cities are also constructed on this type of soil. The problems presented by soft soil are high
compressibility and low shear strength. Moreover, structure settlement continues for long
periods. The failure of structures mainly occurs due to a lack of soft soil shear strength.
Soft soil is one of the problematic soils encountered all over the world. Consequently, the
“soft soil” [1], is defined as soil that typically exhibits an undrained shear strength (USS)
in the range of 20 to 40 kPa, while the very soft soil possesses USS values of less than
20 kPa. The performance of soft soil depends not only on water content, but also on its
structure. Generally, the soft soil remains stiff in the dry state until it is subjected to a drastic
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increase in its water content, at which it converts to weak and soft soils [2]. The saturated
soft soil causes several problems for structures on it, such as low bearing capacity and
long-term excessive settlement [3]. Constructing heavy structures on native soft clay soil is
a difficult task. The geotechnical design depends mainly on the (short-term) undrained
shear strength of the soft soil, as it has a smaller value compared to that of the (long-term)
drained shear strength.

Hence, the undrained shear strength of the soft soil is the most important parameter to
be determined when calculating its bearing capacity. The selection of suitable improvement
methods for the sensitive clay is also mainly dependent on the accurate values of its
undrained shear strength. However, there is a difficulty associated with extracting and
sampling the soft soil, especially the very sensitive soft clay. The sensitive clay usually
has an undrained shear strength in the laboratory smaller than that in the field due to the
effect of disturbance on the sample. Since the design of structure foundations depends
on the undrained shear strength of the sensitive clay, it must be carefully determined and
evaluated from the results of both field and laboratory tests.

The precision of the laboratory tests, such as direct shear, unconfined compression,
or undrained triaxial compression, significantly depend on the quality of the collected
sensitive, undisturbed clay samples [2,4], and additionally rely on the thickness and the
friction of the sharp edges of the circular samplers with soil. On the other hand, field test
results (field vane test and piezocone cone penetration test—CPTU) are also influenced by
selection techniques [5,6]. In 2021, Ayadat [4] stated that the field vane shear test is more
accurate than the Swedish cone shear test.

Due to the difficulty of determining the undrained shear strength of the sensitive clay,
empirical equations are utilized based on clay properties, like clay activity and Atterberg
limits [4,7–11], water content, plasticity index, and over consolidation ratio [12]. However,
there is a shortage of past studies that investigate the functional form and the influential
soil properties of the existing empirical correlations. Moreover, Mataic et al. [13] stated that
pre-consolidation pressures can differ significantly owing to soil disturbances during sam-
pling, which occasionally causes unpredictable values of the pre-consolidation pressures.
Subsequently, empirical correlations include only a few soil parameters despite there being
greater soil parameter influences on the undrained shear strength of the soft soil.

Recently, machine learning (ML) models have been widely utilized to predict the
same important soil parameters that are costly, time-consuming, and require great effort to
determine in the laboratory or the field. Generally, machine learning has been recently used
by geotechnical engineers in the prediction of skin friction of driven piles [14], the bearing
capacity of shallow foundations [15], or the shear strength of soil [16–18]. ML models are
rarely used to estimate undrained shear strength of soft soil based on different geotechnical
properties [12,19,20]. In 2022, Tran et al. [6] only utilized ML models in the prediction of
the undrained shear strength for marine-sensitive soft soil, with a coefficient of correlation
of 0.715.

Predictions of undrained shear strength of the alluvial sensitive soft clay using ML
advanced modeling have not yet been thoroughly studied by geotechnical researchers.
Therefore, the main objective of the current research was to introduce an accurate ML model
to predict the undrained shear strength of sensitive alluvial soft clay using many important
soft clay soil properties. The ML models have been formulated using a realistic dataset.
The advantage of the ML model is to make an accurate prediction for the undrained shear
strength of alluvial sensitive soft clay, in order to avoid disturbance difficulty during its
extracting and sampling. Moreover, handling and performing shear strength tests on very
soft and soft soil, either in the field or in the laboratory, typically comes with high costs, is
time-consuming, and requires hard work and effort from geotechnical staff. ML prediction
of the undrained shear strength of sensitive clay is expected to introduce significant savings
in the above-mentioned factors. The ML models predict undrained shear strength based
on soft clay essential properties, which can be easily determined in the laboratory. Soft
soil properties, acting as predicting features, include moisture content, specific gravity,
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void ratio, dry unit weight, liquid limit, plasticity and consistency indexes, and pocket
penetration shear. In this context, the ML model has been formulated using precise realistic
datasets (features) for the sensitive soft clay samples collected from the delta region of
Egypt, located in northern areas of the Nile River. Generally, alluvial soft clay regions are
very crowded all over the world, with various structures like roads, embankments, bridges,
railways, tunnels, airports, buildings, etc. The accuracy of the ML models is evaluated by
the coefficient of correlation method. An accurate ML prediction of the undrained shear
strength will achieve sustainably for the structures on non-treated or treated sensitive soft
clay by gathering between its long-term high performance and economic side. The used
undrained shear strength values of the sensitive clay were determined from the results
of precise field vane shear tests. Collecting realistic and feature-enriched datasets, along
with the selection of the appropriate algorithm, led to a substantial improvement in the
prediction accuracy of the model.

2. Materials and Methods

The soft clay is located in northern areas of the Nile River, in Egypt. The sensitive
clay was formed in alluvial sediments. For the ML model study, 111 soft clay samples
were collected from the northern Nile delta. The data set included geotechnical features
of natural water content (W), dry unit weight (γd), liquid limit (LL), plasticity index (PI),
consistency index (CI), void ratio (e), specific gravity (Gs), and pocket penetration shear (qp).
The utilized features were easily determined or calculated from the geotechnical laboratory
tests. The performed experimental tests were natural water content, specific gravity, bulk
density, liquid and plastic limits, and Pocket penetration, according to ASTM numbers
D 2216, D 854, D1556, D 4318, and WK27337, respectively. The latter tests are traditional
geotechnical tests, and are also more cost-effective and less time-consuming.

Moreover, the adopted dataset was selected because the included soil features sig-
nificantly influence the undrained shear strength of the studied soft clay. For example,
increasing the natural water content causes a decrement in the cohesive force between
soil particles, which leads to a weakening of soil consistency and reduces shear strength.
Increasing dry density leads to a minimizing of the pores between soil particles and void
ratio, causing an effective increment in the undrained shear strength. The void ratio of soil
not only affects its permeability, but it also significantly influences the undrained shear
strength of the soil. The increments of the liquid limit, plasticity index, and consistency
index offer strong evidence for the existence of clay content. Consequently, increasing
clay content in soft soil directly increases its undrained shear strength. Specific gravity is
considered the main factor in predicting shear strength. Pocket penetration shear value
represents an important indication of the undrained shear strength of the saturated cohe-
sive soil value, which has a significant correlation with the undrained shear strength of the
sensitive soft clay.

It is known that determining undrained shear strength, either in the field or in the
laboratory, is highly difficult. Moreover, several problems were faced in extracting undis-
turbed samples of sensitive clay. According to the unified soil classification system, the
sensitive clay soil was categorized as a high plasticity clay (CH). The classification of CH
in soft soil was a result of the high values of the plasticity index. The liquid limit and
plasticity index ranged from 46% to 103%, and from 20% to 69%, respectively. The natural
water content ranged between 40% to 71%, as illustrated in Figure 1 and Table 1. The
undrained shear strength of the clay was determined by field vane shear tests (ASTM
D2573-08) [21]. The vane test was suitable for the studied soil, having saturation conditions
and a soft consistency. The field van shear equipment is shown in Figure 2. The results
of the undrained shear strength stated that the sensitive clay ranged from very soft to
soft soil (5 kPa–45 kPa). The sensitivity values of the clay were between 2.5 and 28.6, as
depicted in Figure 3. Clay sensitivity was the ratio of the undrained shear strength in the
field to that in the laboratory, for the same soil. According to the sensitivity classification
of Das and Sobhan (2014) [20], the current study soil included low, medium, and high
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sensitivity clay. To overcome the difficulties presented in extracting samples of sensitive
clay and determining its undrained shear strength, as well as saving time and reducing
costs, accurate ML models were utilized.
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Table 1. Statistical analysis of the dataset of soft clay features.

Soft Clay Feature (Unit) Minimum Maximum Mean Standard Deviation

γd (kN/m3) 8.926 12.40 10.49 0.769
Wn (%) 40.00 71.00 54.80 6.834
LL (%) 46.00 103.0 75.58 12.77
PI (%) 20.00 69.00 43.07 9.587

CI 0.060 1.150 0.491 0.243
e 1.149 2.017 1.586 0.191

Qp (kPa) 10.00 80.0 38.19 15.75
Gs 2.680 2.740 2.711 0.0135

USS (kPa) 5.00 45.00 20.815 8.199
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In this study, we considered eight input features to create an ML predictive modeling
of the soft clay soil. The datasets were initially preprocessed to eliminate any outliers that
were commonly observed in realistic datasets. To eliminate the impact of incompatible data
scales on model training time, and therefore make the computations much faster, the data
was normalized using the following equation:

xn =
x− xmin

xmax − xmin
(1)

where x refers to the original data, xn refers to the normalized data, xmin, and xmax signify the
minimum and maximum values detected in the dataset, respectively. The modified output
data was simply retrieved in its original form, after model training, utilizing the formula:

x = xn(xmax − xmin) + xmin (2)

We used a statistical procedure known as feature selection in order to identify the most
important features that have a significant influence on model predictions. The procedure
comprises a correlation matrix (CM) alongside a principal component analysis (PCA).
Following that, various supervised ML algorithms including linear regression, Gaussian
process regression, regression trees, ensembles of regression trees, and support vector
machine (SVM) approaches were adopted in the training phase.

The SVM approach [22] is widely used for ML modeling of classification or regression
problems. With a few minor exceptions, the support vector machine regression (SVR)
utilizes the same concepts as the SVM for classification [23–26]. In the case of regression,
a margin of tolerance (ε) is specified as a rough approximation to the SVM that the issue
would have already requested. However, there is a more problematic reason: the algorithm
is more intricate and, therefore, it must be considered. The SVM algorithm operates by
using the largest margin to identify the most optimum hyperplane that splits data into
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many classes. We used the regression function f(x) to optimally approximate the supplied
training dataset {(xi yi)}N

i , where xn is a multivariate collection of N observations with
observed response values yn. For the simplest case, the function f(x) is expressed as [22]:

f (x) = wx + b (3)

The optimized values of w and b can be acquired by minimizing the following expression [22]:

min
1
2
‖W‖2 + C ∑N

i=1(ξi + ξ∗i ) (4)

Subject to: 
yi − wxi − b ≤ ε + ξi
wxi + b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
(5)

where ε is an ε-insensitive tube indicating the error tolerance, and C is a compromise
between the empirical error and the general term. The regression function may be stated as
follows, using Lagrangian multipliers and optimum constraints [22]:

y =
N

∑
i=1

(αi + α∗i )K(xi, x) + b (6)

where K(xi, xj) is the kernel function. Examples of the most famous kernel functions are the linear,
polynomial, sigmoidal, Gaussian, and radial basis functions. The latter is expressed as [22]:

K
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

2σ2

)
(7)

where ‖xi − xj‖ denotes the Euclidean distance between the two feature vectors, and σ is
the spread of the kernel function’s distribution.

To evaluate and verify ML models, several assessment indices are commonly utilized. In
this study, the following measures were used to evaluate the model prediction performance:

(1) Residuals, ri, which characterizes the error for each data point. Most regression
metrics are typically derived using ri given by:

ri = (yi − ŷi)
2 (8)

where yi denotes the measured or original data, while ŷi denotes the predicted data obtained
by the model.

(2) Root mean square error (RMSE), which is computed by:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (9)

(3) Furthermore, the coefficient of determination, R2, is frequently used to assess and
compare various regression models and is calculated by:

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (10)

where yi denotes the mean values of the predicted output.
Following the choice of the most optimal regression modeling, hyperparameters

were optimized (tuned) using further optimization techniques. In this regard, model
hyperparameters are special configurations that are externally set to the model, using
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optimization procedures, and their values cannot be estimated from data. As a result, for
correctly configured model hyperparameters, the objective function, known as the loss
function, is minimized. In this process, for each training iteration, the mean squared error
(MSE) statistics are obtained and computed using:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (11)

After optimizing the model hyperparameters, they are deployed and can be employed
to predict soft clay undrained shear strength. The framework of the modeling procedure is
further illustrated as shown in Figure 4.
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3. Results and Discussion

For the examined soft clay soil, descriptive statistics of its geotechnical parameters,
as well as the linear correlation chart, are illustrated in Figure 5. The studied clay soils
exhibited a wide range of dry density (8.93–12.4 kN/m3), initial void ratio (1.149–2.017),
specific gravity (2.68–2.74), consistency index (0.06–1.15), and pocket penetration shear
(10–80 KPa,). Table 1 summarizes the statistical analysis of the dataset.

The increments in the sensitive clay initial properties, like dry unit-weight, liquid limit,
plasticity index, and consistency index, caused an increase in the values of the undrained
shear strength, as illustrated in Figure 5. The undrained shear strength expressed the
cohesion shear strength parameter of the normally consolidated clayey soil. The dry
density increase led to additional inter-cohesion between clay particles. Consequently,
the increment of liquid limit, plasticity, and consistency indexes was an indication of the
high values of clay contents in the studied sensitive soil. The higher value of clay contents
caused higher values of cohesion (undrained shear strength). The later results were found
also by [7]. On the other hand, the water content and the void ratio had a negative influence
on the USS of the sensitive soil. This is because the excessive voids and water in the
soil logically decreased the shear resistance of the soil. Finally, the specific gravity had
approximately no impact on the soil USS values, as depicted in Figure 5.

Data partitioning using a procedure known as cross-validation (CV) is essentially
required for accurate modeling. Using this technique, the training dataset was randomly
partitioned into two groups: the training set and the validation set. The training set was
used in the learning phase and was typically the largest dataset and was mainly utilized
to obtain the parameters of the model under development, while the validation set was
basically used to tune the model hyperparameters. CV assisted data partitioning into a
set of folds (k-folds). This process was run either during training or when estimating the
average test error across all folds. Subsequently, this technique guards against overfitting
better than others; however, it requires numerous fits, and consequently, it is suitable for
small and medium-sized datasets. In this modeling approach, we used a CV partitioning of
5 folds. Sequentially, several ML techniques, including linear regression, regression trees,
Gaussian process regression, the ensemble of trees, and support vector regression, were
trained and validated to attain their optimum hyperparameters. For the SVR, the most
important hyperparameters were the box constraint, denoted by the parameter C, which
was a positive numeric variable that determined the penalty imposed on samples that fell
beyond the epsilon edges (ε) and assisted in the prevention of overfitting or satisfying model
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regularization. In addition, the selection of the kernel function, as well as its optimized
kernel scale, plays an important role in scaling the input features. The model performance
is further evaluated using a new dataset, namely the testing set. This set is used to assess
the model’s performance and guarantees that it can generalize effectively to new and
unknown data points. The evaluation metrics for RMSE and R2 for both the training and
testing sets are listed in Table 2. Among the adopted algorithms, the fine Gaussian SVR
gave the best-fit results. The RMSE of the training and testing sets of the optimized model
were 2.57 and 1.65 kPa, respectively. The model hyperparameters, including box constraint,
ε, kernel function, and kernel scale of the optimized model based on SVR, are outlined
in Table 3. The attained values of the determination coefficient, R2-Score, were 0.90 and
0.96, respectively. These results indicate that the formulated model is reliable and accurate
enough to be employed for forecasting the USS of soft clay soil.
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Table 2. Evaluation metrics of soft clay ML models for both the training and testing sets.

Training Set Testing Set

ML Algorithm RMSE (kPa) R2 RMSE (kPa) R2

Linear regression 3.65 0.80 2.89 0.87
Regression trees 3.66 0.80 2.68 0.89

Gaussian process regression 3.17 0.85 3.17 0.85
Ensemble of trees 3.79 0.79 2.79 0.88

Fine Gaussian SVR 2.57 0.90 1.65 0.96
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Table 3. List of hyperparameters of the optimized model.

C ε Kernel Function Kernel Scale

11.8255 0.02199 Gaussian 8.6869

Figure 6 demonstrates assessment plots of the predicated undrained shear strength
against the actual one for the modeled dataset. As depicted in the figure, most values of the
measured samples lie close to the line of equality with the predicted values. Furthermore,
Figure 7 represents the correlation between the actual and the predicted data as regression
curves. As can be observed, the model’s predictability is good, especially for the testing
dataset. As a result, the use of an SVR model to forecast soil USS is achievable with high
accuracy and low error.
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Based on the above results and analysis, accurate ML prediction of the undrained
shear strength of the alluvial sensitive soft clay has an important and positive impact
on the field of geotechnical engineering. The current ML model achieved more accuracy
compared with other previous studies [6,19]. Precise determination of USS for the sensitive
clay is a challenging task, being time-consuming, requiring great effort, and incurring high
financial costs. The input data of the basic soil properties effectively and directly influence
the USS values with positive or negative impacts. The selected features in the present
model are essential properties of the studied soil that can be easily determined in a short
time. The collected realistic and feature-enriched datasets, as well as the selection of the
appropriate ML algorithm, resulted in a significant improvement in the prediction accuracy
of the presented model. The accurate ML prediction of USS of the alluvial sensitive clay
contributes toward solving many problems, such as saving time, effort, and costs. This is
achieved by reducing the number of samples and tests that are essentially required using
traditional methods.
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Figure 7. Soft clay USS plotted against sample number of the measured, predicted, and tested dataset.

4. Conclusions

This study presents ML predictive modeling of the alluvial sensitive soft clay soil
undrained shear strength, an essential parameter, and intensively investigated topic in
geotechnical engineering. The creation of an accurate machine learning model facilities
to achieve a significant cost reduction in field testing. In this regard, data is essential in
machine learning challenges in order to build an accurate and reliable prediction model.
One aspect of this investigation was the collection of extra data comprising many important
features of the soft clay soil. Collecting realistic and rich datasets along with the selection
of the appropriate algorithm leads to substantial improvement of prediction accuracy. The
dataset that was utilized to forecast soil undrained shear strength has eight input variables,
namely the moisture content, specific gravity, void ratio, dry unit weight, liquid limit,
plasticity and consistency indexes, and Pocket penetration shear. Several ML approaches
were trained including linear regression, regression trees, Gaussian process regression, the
ensemble of trees, and SVR. Among those, the fine Gaussian SVR accurately exhibited
the best fit model. Many evaluation metrics of the model prediction performance were
computed including MSE, RMSE, and R2 metrics. The latter value for the investigated soft
clay dataset was evaluated to be 0.96 for the testing dataset. The attained results confirm the
model reliability to accurately forecast the sensitive alluvial soft clay vane-test undrained
sheer strength. This accurate prediction of ML model has a great positive impact in the
geotechnical and structural engineering field saving hard work, high costs, and long time.
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