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Abstract: One of the most critical tasks for pavement maintenance and road safety is the rapid and
correct identification and classification of asphalt pavement damages. Nowadays, deep learning
networks have become the popular method for detecting pavement cracks, and there is always a
need to further improve the accuracy and precision of pavement damage recognition. An improved
YOLOv4-based pavement damage detection model was proposed in this study to address the above
problems. The model improves the saliency of pavement damage by introducing the convolutional
block attention module (CBAM) to suppress background noise and explores the influence of the
embedding position of the CBAM module in the YOLOv4 model on the detection accuracy. The K-
means++ algorithm was used to optimize the anchor box parameters to improve the target detection
accuracy and form a high-performance pavement crack detection model called YOLOv4-3. The
training and test sets were constructed using the same image data sources, and the results showed
the mAP (mean average precision) of the improved YOLOv4-3 network was 2.96% higher than that
before the improvement. The experiments indicate that embedding CBAM into the Neck module and
the Head module can effectively improve the detection accuracy of the YOLOv4 model.

Keywords: pavement maintenance; YOLOv4; crack identification; CBAM

1. Introduction

Cracking is a common type of pavement damage. The appearance of cracks accelerates
the deterioration of road performance, and serious cracks may endanger traffic safety [1]. A
study by Lee et al., found that 16% of traffic accidents were related to road environmental
factors (mainly caused by poor pavement conditions) [2]. The deterioration of pavement
surface conditions increases the probability of multi-vehicle collisions and aggravates the
severity of accidents [3], so timely repair of pavement cracks is imperative. In addition,
early repair of cracks before they develop also helps to reduce road maintenance costs and
extend pavement life [4]. Yu et al., found that the continued use of preventive maintenance
on asphalt pavements resulted in a 27% reduction in maintenance costs compared to contin-
uous corrective maintenance [5]. Therefore, timely repair of pavement cracks is necessary,
and the prerequisite for timely repair is the early detection and proper documentation
of cracks.

The initial pavement crack detection was conducted by manual visual inspection, but
it had the disadvantages of high subjectivity, low detection efficiency, and high personnel
safety risk [6,7]. With the rapid development of information technology over the last three
decades, the application of computer vision techniques for pavement crack detection has
gained a large amount of attention. Many studies have used image processing techniques
for pavement crack detection. Among these techniques, the traditional image processing
methods mainly include edge detection [8], threshold segmentation [9], and region grow-
ing [10] methods. The edge detection algorithm identifies the edges of pavement cracks by
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using edge detection operators such as the Sobel operator [11], the Prewitt operator [12],
and the Canny operator [13,14]. The threshold segmentation method separates the target
cracks from the background by setting a suitable pixel threshold [15,16]. The region grow-
ing method is a method to separate cracks by merging neighboring pixels with similar
properties (e.g., grayscale, texture color) into one region [17,18]. All of these traditional
image processing methods have promoted the development of automatic pavement dam-
age detection and identification technology to different degrees [19,20], but there are also
quite a few limitations in practice. Both the edge detection algorithm and the threshold
segmentation method are sensitive to image noise [21,22], so it is difficult to separate the
crack morphology completely and accurately. The region growing method, on the other
hand, has difficulties in the reasonable selection of initial pixel points. In summary, these
types of processing techniques based on single image pixel feature analysis have poor
generalization ability and low robustness, and thus are difficult to be applied on a large
scale in a real sense.

The emergence of deep learning algorithms has given rise to new ideas for pavement
image processing in this context. Deep-learning-based target detection techniques can learn
the deep features of existing image data and use the similarity between data to predict
unknown images. Compared with the traditional image processing methods, this method
has higher generalization ability and more accurate detection accuracy. Many studies have
been conducted to explore this.

Girshick et al., proposed region convolutional neural networks (R-CNN) in 2014 [23],
a deep learning-based target detection and recognition algorithm that is able to detect
the desired target on the basis of the extracted features. Then, in 2015, Girshick et al.,
improved on the R-CNN by proposing the fast R-CNN algorithm [24]. This algorithm
enables the classification and localization tasks to not only share convolutional features
but also boost each other through region of interest (ROI) pooling and joint multi-task
training, and thus the detection accuracy is greatly improved. In the same period, Ren
et al., also proposed the faster R-CNN algorithm framework [25]. This algorithm replaced
the selective search algorithm with the region proposal network (RPN), which improves
the detection speed by sharing convolutional layer features to achieve candidate region
extraction and category prediction.

These studies have improved the accuracy and speed of target detection to varying
degrees but still cannot meet the requirements of real-time image detection. Therefore,
regression-based detection algorithms have been introduced, mainly including the You
Only Look Once (YOLO) [26] and Single Shot MultiBox Detector (SSD) [27] algorithms.
Redmon et al. proposed the YOLO algorithm in 2015 on the basis of the regression concept.
This algorithm first divides the image into a number of equally sized grids and subsequently
selects the position among them with the highest probability of target detection. It helps to
improve the recognition accuracy in general, but the detection capability for fine targets
is still weak and the generalization capability is not satisfactory. To address the above
issues and to further improve the recognition accuracy and speed, Redmon proposed
YOLOv2 [28] in 2017, which introduced the Anchor box mechanism and used the K-means
clustering algorithm to obtain a more suitable Anchor box for the model. Shortly thereafter,
Redmon proposed YOLOv3 [29] in 2018, using the darknet-53 feature extraction network,
while using multi-category cross-entropy as well as binary cross-entropy to allow the
model’s classification power to be further improved. In the same period, the SSD algorithm
proposed by Liu in 2016 makes full use of the information of the feature maps in each layer
of the feature pyramid to improve the detection accuracy of small target objects to some
extent. However, compared with the YOLO series algorithm, the generalization ability and
detection accuracy of the SSD algorithm still needs to be improved [30–32]. YOLOv4 [33]
and YOLOv5 [34] are the most recent versions of the YOLO family of target detection
algorithms, both of which have significantly improved accuracy and speed compared to
previous versions [35]. YOLOv4 and YOLOv5 have the ability to recognize abstract features
of an image by extracting deeper target features through convolutional neural networks,
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which are able to fuse features at different scales. Thus, both outperform traditional
algorithms in terms of speed and accuracy. Although the two are generally similar in
terms of performance [36], YOLOv4 is generally considered to be more robust [37,38]. In
addition, each component of the Yolov4 model is more independent and thus more suitable
for observing the impact of embedding CBAM modules at different locations on YOLO
network performance. Therefore, the YOLOv4 algorithm was used in this study to detect
the pavement cracking images.

Meanwhile, to improve the detection accuracy, this paper improved the K-means [39]
clustering algorithm for obtaining the Anchor box in YOLOv4 and embedded the convolu-
tional block attention module (CBAM) [40].

The CBAM combines the channel attention mechanism and spatial attention mecha-
nism [34], which can enhance crack features in the channel and space of the feature map
while suppressing unimportant features such as noise [35]. In addition, the CBAM occupies
only a small number of parameters in the network and does not affect the iteration speed
of the network model, thus ultimately achieving the effect of improving crack detection
accuracy without reducing the computational speed. Similar attempts have been made in
some studies. For example, Zhang [41] added a CBAM to the YOLOv3 model to improve
the detection accuracy of bridge crack images, but the study did not describe the embed-
ding location of the CBAM. Yang [42] tried to embed the CBAM in the Neck region when
using YOLOv4 to detect the number of wheat spikes but did not explain the reason for
choosing this location. Therefore, in order to better understand the relationship between
the embedding position of the CBAM module and the network performance, this paper
tried to embed the CBAM module in the Backbone, Neck, and Head regions of YOLOv4,
respectively, and tested the corresponding network performance changes.

In data mining, clustering is one of the most commonly used methods. The K-means
algorithm has been widely used due to its inherent advantages of good clustering, simplicity
of thought, and fast clustering. However, the shortcoming of the K-means algorithm is
also obvious, which is that it is not stable enough in the selection of initial points [43].
The K-means++ algorithm was able to optimize the size and position of the Anchor box,
resulting in a YOLOv4 network that is more suitable for pavement crack detection [37].
Therefore, the K-means clustering algorithm in the original model was replaced by the K-
means++ clustering algorithm in order to make the model more adaptable to the detection
of pavement cracks.

2. Data Preparation

The image data used in this study were collected by CiCS, a rapid road condition
detection system widely used in China. The original image format is “jpg” with a resolution
of 96 dpi (3024 × 1887 pixels). A total of 1923 pavement cracking images were used, of
which 1538 were used as the training set and 385 were used as the test set. Both the training
and test sets were randomly selected.

On the basis of the damage composition of the original pavement image, the cracking
images can be classified into four categories: transverse cracks, longitudinal cracks, alligator
cracks, and crack sealing. Therefore, in this paper, the open-source deep learning annotation
tool LabelImg was used to manually annotate the cracking images as follows (Figure 1),
and the labeled region was called the Bounding box.

� Transverse crack: Tcrack;
� Longitudinal cracks: Lcrack;
� Alligator crack: Acrack;
� Cracks sealing: Repair.
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Figure 1. Image annotation visualization. (a) Transverse cracks; (b) longitudinal cracks; (c) alligator
crack; (d) crack sealing.

3. Image Processing Algorithms
3.1. YOLOv4 Algorithms

YOLOv4 is an end-to-end algorithm for target detection. It was developed by Bochkovskiy
on the basis of YOLO, YOLOv2, and YOLOV3 by improving and optimizing the data pro-
cessing, backbone network, activation function, and loss function.

The network structure of YOLOv4 mainly consists of four parts: Input, Backbone,
Neck, and Head, where the Backbone module is the initial feature extraction of the input im-
age, the Neck module is to enhance the extracted image features, and the Head module uses
the extracted features for detection, as shown in Figure 2. The Input module compresses
random input images to the size of 416 × 416 and delivers them to the Backbone module.
The CSPDarknet53 of the Backbone module is composed of the DarknetConv2D_Batch
normalization_Mish (CBM) module and the CSP (cross-stage partial network) module; the
Backbone module outputs three initial feature layers with feature map height, width, and
the number of channels of 52 × 52 × 256, 26 × 26 × 512, and 13 × 13 × 1024, respectively.
The Backbone module and the Head module are inserted between the depth feature ex-
traction module, which is called Neck. The Neck module includes the spatial pyramid
pooling (SPP) [44] and the path aggregation network (PANet) [45]. Among them, the SPP
can fuse features of multiple dimensions together, and its structure uses pooling kernels at
different scales of 1 × 1, 5 × 5, 9 × 9, and 13 × 13 to maximize the pooling of the feature
layer result output from the backbone convolution, which can effectively increase the accep-
tance domain range of the backbone features and separate the most significant upper and
lower background features. The PANet structure proposed in 2018 is an innovation in the
field of the International Conference on Computer Vision and Pattern Recognition (CVPR)
image segmentation, having the advantage of accurately preserving spatial information
and helping to correctly locate pixel points, and its main role is to perform feature fusion on
the three initial effective feature layers so that better and more effective feature layers can
be extracted to improve the detection accuracy of the detection module Head. In the Head
module, the decoding operation is performed on the obtained feature maps, and YOLO
Head presets three anchor boxes to predict the target boxes. The input images are scored
and boxed on each of these three scales during detection, and the target to be detected is
finally selected.



Appl. Sci. 2022, 12, 10180 5 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 18 
 

 

Figure 2. YOLOv4′s structure chart. 

3.2. CBAM Module 

Embedding CBAM modules in the network of YOLOv4 can effectively improve the 

network performance by increasing the crack information weight [42] while suppressing 

other useless information [41]. The CBAM modules can be divided into two categories: 

channel attention modules and spatial attention modules, which are implemented in dif-

ferent ways. 

 Channel attention module 

The process of feature map enhanced by attention channels can be displayed in Fig-

ure 3. The input feature map F is assumed to be H × W × C, where H, W, and C are the 

length, width, and number of channels of the feature, respectively. The input feature map 

is firstly subjected to a pooling layer of 1 × 1 × c (c is the number of channels) and a global 

average pooling layer of 1 × 1 × c, and then performs the shared MLP (muti-layer percep-

tion) operation. Subsequently, feature extraction is performed once again to obtain the 

maximum pooling channel and the global average pooling channel. The two are superim-

posed in a one-dimensional vector summation to obtain the attention channel. Finally, the 

attention channel is multiplied with the initial input feature map to obtain the feature map 

FM’ enhanced by the attention channel. 

 

Figure 3. Flow of the channel attention module (when a feature map is used, the value of H × W × 

C is shown as 1 × 1 × 1). 

 Spatial attention module 

The process of a feature map enhanced by spatial channels is shown in Figure 4. The 

input layer of the spatial attention module (FM’) is exactly the output layer of the channel 

attention module. The input layer is merged over the channels to obtain the H × W × 2 

Figure 2. YOLOv4′s structure chart.

3.2. CBAM Module

Embedding CBAM modules in the network of YOLOv4 can effectively improve the
network performance by increasing the crack information weight [42] while suppressing
other useless information [41]. The CBAM modules can be divided into two categories:
channel attention modules and spatial attention modules, which are implemented in
different ways.

• Channel attention module

The process of feature map enhanced by attention channels can be displayed in
Figure 3. The input feature map F is assumed to be H ×W × C, where H, W, and C are
the length, width, and number of channels of the feature, respectively. The input feature
map is firstly subjected to a pooling layer of 1 × 1 × c (c is the number of channels) and
a global average pooling layer of 1 × 1 × c, and then performs the shared MLP (muti-
layer perception) operation. Subsequently, feature extraction is performed once again to
obtain the maximum pooling channel and the global average pooling channel. The two
are superimposed in a one-dimensional vector summation to obtain the attention channel.
Finally, the attention channel is multiplied with the initial input feature map to obtain the
feature map FM’ enhanced by the attention channel.
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• Spatial attention module

The process of a feature map enhanced by spatial channels is shown in Figure 4.
The input layer of the spatial attention module (FM’) is exactly the output layer of the
channel attention module. The input layer is merged over the channels to obtain the
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H ×W × 2 features after global average pooling and maximum pooling. After that, the
spatial attention kernel of H × W × 1 is obtained after 7 × 7 convolution and sigmoid
function activation. Finally, by multiplying the spatial attention kernel with the input FM’
through the broadcast mechanism, the feature map FM” enhanced by the CBAM module
is obtained.
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3.3. K-Means++ Clustering Algorithm

In this study, the K-means++ clustering algorithm was used to cluster and analyze
the Anchor box of targets in the pavement crack dataset. Compared with the K-means
clustering algorithm used in the original YOLOv4 network, K-means++ optimizes the
selection of initial points and can obtain the size of the Anchor box that is more suitable for
the target dataset, thus improving the accuracy of target detection [46].

The K-means algorithm is an unsupervised learning and partitioning-based clustering
algorithm [36]. The Euclidean distance is commonly used as a measure of data object
similarity. The distance between data objects is inversely proportional to similarity. The
algorithm requires specifying the initial number of clusters in advance, i.e., specify k initial
clustering centers. Then, the positions of clustering centers are continuously updated on
the basis of the similarity between data objects and the clustering centers, and the sum of
squared clustering errors are continuously reduced. The clustering process ends when the
squeezing channel-wise and exciting spatially (SSE) index stops changing or the objective
function converges, and the final result is obtained. However, the choice of k initial center
locations has a significant impact on the final clustering results and running time. If the
selection is completely random, it may lead to slow convergence of the algorithm.

The K-means ++ algorithm is optimized for this problem [43]. The K-means++ algo-
rithm, after selecting the initial clustering center, subsequently prioritizes the points that
are farther from the initial point to avoid the situation where two points overlap.

To further analyze and compare the clustering effects of these two algorithms, a test
dataset including 4000 samples was created in this paper. Four sample centroids were set
in the dataset with coordinates of [−2, 0], [0, 2], [2, 0], [0, −2], and the variances of each
centroid were [0.1, 0.5, 0.2, 0.2], respectively. Then the dataset was clustered by K-means
and K-means++ algorithms. The results of both are shown in Figure 5 when the numbers
of cluster centers were 1, 4, and 7. It can be found that when the number of cluster centers
was 7, there was overlap in the cluster centers obtained by the K-means algorithm, while
the cluster centers of the K-means++ algorithm were more uniformly distributed.
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4. Improved YOLOv4 Algorithm

Theoretically, a CBAM module can be embedded as a universal module at any location
in the network structure [46], and embedding a CBAM module in a deep learning network
can help to improve the performance of the network in general [41,42]. However, the degree
and mechanism of the influence of embedding location on the performance enhancement
effect of CBAM modules are still not fully understood, so the performance of CBAM
modules embedded into different locations in the network model will be investigated in
this paper. The K-means++ clustering algorithm will also be used to cluster and optimize
the Anchor box.

4.1. Adding Attention Modules

In this study, six experimental models were obtained on the basis of the summary of
existing studies [41,42,47–51], as shown in Figure 6. Among them, Figure 6a–d represents
the modules of the original YOLOv4; Figure 6e,f shows the CBAM attention modules
embedded after the CBM and CBL modules in Figure 6a,b, respectively; and Figure 6g,h
shows the replacement of the CBM modules in Figure 6c,d with the CBMC modules.
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Subsequently, the modules were replaced separately for each region of the new module,
and a total of three new models were obtained, as shown in Figure 7, namely/YOLOv4B1
(for the Backbone, Figure 7a), YOLOv4N1 (for the Neck, Figure 7c), and YOLOv4H1 (for
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the Head, Figure 7e). After that, YOLOv4B2 was obtained by adding CBAM modules to
the three feature layers in the Backbone region that were to be input to the Neck region
(Figure 7b). YOLOv4N2 was obtained by placing the CBAM module after each of the
Concat layers in the Neck region (Figure 7d). Moreover, YOLOv4H2 was obtained by
placing the CBAM module after the three feature layers in the Head region that would be
accepted from the Neck region (Figure 7f).
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4.2. Anchor Box Optimization

When compared to the traditional K-means clustering algorithm, the K-means++
algorithm optimizes the initial Anchor box selection, which can significantly improve
the error of classification results in order to obtain the size of Anchor box that is most
appropriate for this crack dataset and improve the accuracy of small target detection.

The original K-means++ clustering algorithm of the YOLOv4 network was first used
to obtain nine pre-selected boxes (Anchor box = 48,181; 53,401; 85,398; 124,156; 12,861;
169,402; 23,195; 388,166; 39,499) for the 52 × 52, 26 × 26, 13 × 13, and 13 × 12 scales. These
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Anchor boxes are obtained by clustering the Bounding box annotated with LabelImg on
the dataset.

The following are the steps for obtaining the Anchor box using the K-means ++algorithm:

1. Extract the width and height of the rectangular boxes of all Bounding boxes;
2. Selected an Anchor box as the initial clustering center at random from all Bounding

boxes;
3. It calculates the distance D(xi) between the centroids of all Bounding boxes and the

centroids of existing Anchor boxes, and thus calculates the probability P(xi) of each
Bounding box being selected as the next clustering center; the further the bounding
box was from the initial clustering center, the more likely it was to be selected. P(xi) is
calculated as shown in Equation (1):

P(xi) =
D(xi)

2

∑n
i=1 D(xi)

2 (1)

4. After that, the IOU value of each bounding box and each anchor box is calculated as
shown in Figure 8, and the Anchor box with the largest IOU value is selected in each
Bounding box and attributed to that Anchor box;
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5. Repeat the four step until the classification of the Bounding box no longer changes,
and obtain the final Anchor box.

The IOU is obtained from the intersection of the Anchor box and the Bounding box by
combining them, as shown in Equation (2):

IOU =
A ∩ B
A ∪ B

(2)

A larger IOU value indicates that the Anchor box obtained by the K-means algorithm
is closer to the value of the various types of labeled Bounding boxes.

5. Results and Analysis

Intel (R) Core (TM) i5-9300H.CPU@2.40 GHz.gtx1650, Windows 10, 64-bit OS was the
experimental environment in this paper. The validation set to training set ratio was 1:9, the
learning rate was 0.001, the batchsize was 4, and the training Epochs were 50.

5.1. Evaluation Criteria

The most commonly used evaluation criteria for the target detection task are Precision
(P), Recall (R), F1-Score, mean average precision (mAP), and Detection Rate (fps, number
of frames recognized in one second) [50]. When performing transverse crack detection,
transverse cracks are defined as positive samples, while non-transverse cracks are defined
as false samples (class of disturbances). The samples can be classified into four types on the
basis of the combination of true and predicted values [50]:

• True positives (TP): the positive sample is correctly identified as a positive sample (i.e.,
the transverse crack image is correctly identified);
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• True negatives (TN): negative samples are correctly identified as negative samples (i.e.,
the non-transverse crack images are correctly identified as non-transverse cracks);

• False positives (FP): negative samples are incorrectly identified as positive samples (i.e.,
the non-transverse crack images are incorrectly identified as the transverse cracks);

• False negatives (FN): positive samples are incorrectly identified as negative samples
(i.e., the transverse crack images are incorrectly identified as the non-transverse cracks).

Therefore, the above evaluation indicators can be described as follows.
Precision: it is used to measure the accuracy of the model for positive samples and

indicates the ability of the classifier to discriminate between positive and negative samples,
which can be defined as

P =
TP

TP + FP
(3)

Recall: it is used to measure the completeness of a classifier for positive samples and
indicates the sensitivity or coverage of the classifier for positive samples, which can be
defined as

R =
TP

TP + FN
(4)

F1-Score: the summed average of the Precision and Recall metrics, defined as

F1 =
2× P× R

P + R
(5)

AP: the performance of a model is measured by examining both Precision and Recall
metrics, representing the performance of the model in identifying a particular category,
with the following expression:

AP =
∫ 1

0
P(R)dR (6)

mAP: the mean value of AP values for each category, reflecting the average classification
performance of the model for all categories, defined as

mAP =
∑n

i=1 APi

n
(7)

5.2. Test Results
5.2.1. Comparison of the Effect between K-Means++ and K-Means Algorithms

To examine the effect of the K-means++ clustering algorithm on the model alone, the
attention module was not embedded in this experiment.

The change in the target detection performance of the YOLOv4 algorithm for pavement
cracks after optimizing the Anchor box using the K-means++ clustering algorithm was
first verified using the test dataset established above. The test results are shown in Table 1.
From Equations (3) and (4), it can be seen that accuracy and recall are mutually constrained;
the higher the accuracy, the lower the recall will be in relative terms. Therefore, the recall
obtained by using the K-means++ algorithm is substantially increased, and instead the
accuracy will be slightly decreased. The F1-Score as a comprehensive index is to balance
the influence of accuracy and recall; the higher the F1-Score, the higher the accuracy of
the model. A total of 11.5% improvement in F1-Score indicated that the model was more
comprehensive after optimizing the Anchor box. It was also because the K-means++
algorithm optimized the parameters of the Anchor box that the recall rate of the model was
improved significantly. Moreover, the mAP was improved by 0.93%, which also indicates
that the improved network model also had good accuracy improvement.
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Table 1. Comparison of K-means++ and K-means algorithms.

Methods
Types

P (%) R (%) F1-Score (%) mAP (%) FPS (f/s)

YOLOv4 (K-means) 96.47 37.92 54 79.99 15.43
YOLOv4 (K-means++) 95.81 50.48 65.5 80.92 15.38

Four types of crack images were randomly selected, and their comparison results are
shown in Figure 9. YOLOv4 (K-means) and YOLOv4 (K-means++) had similar APs for
transverse cracks and alligator cracks; however, the latter had 25 percentage points higher
AP for longitudinal cracks and 23 percentage points higher AP for right-hand crack sealing
and detects crack sealing that are not detected by the former. It indicates that the Anchor
box calculated by K-means++ has more stability of detection than K-means and is more
suitable for detecting pavement damage. It can be seen that F1-Score enhancement allowed
the model to detect longitudinal cracks and crack sealing with better accuracy.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 18 
 

improved by 0.93%, which also indicates that the improved network model also had good 

accuracy improvement. 

Table 1. Comparison of K-means++ and K-means algorithms. 

Types        

Methods 
P (%) R (%) F1-Score (%) mAP (%) FPS (f/s) 

YOLOv4 (K-means) 96.47 37.92 54 79.99 15.43 

YOLOv4 (K-means++) 95.81 50.48 65.5 80.92 15.38 

Four types of crack images were randomly selected, and their comparison results are 

shown in Figure 9. YOLOv4 (K-means) and YOLOv4 (K-means++) had similar APs for 

transverse cracks and alligator cracks; however, the latter had 25 percentage points higher 

AP for longitudinal cracks and 23 percentage points higher AP for right-hand crack 

sealing and detects crack sealing that are not detected by the former. It indicates that the 

Anchor box calculated by K-means++ has more stability of detection than K-means and is 

more suitable for detecting pavement damage. It can be seen that F1-Score enhancement 

allowed the model to detect longitudinal cracks and crack sealing with better accuracy. 

Original  

Image 

    

Annotation 

Image 

    

YOLOv4  

(K-means) 

    

YOLOv4  

(K-means++) 

    
 Transverse cracks Longitudinal cracks Crack sealings Alligator crack 

Figure 9. Detection effect of YOLOv4 (K-means) and YOLOv4 (K-means++). 

5.2.2. Comparison of the Effect on Adding Different Attention Modules 

The six models listed in Figure 7 were evaluated using the test dataset in order to 

investigate the performance differences resulting from the embedding of the CBAM 

modules into different locations of the YOLOv4 network. All these models used the K-

means++ clustering algorithm in obtaining the Anchor box. The results are shown in 

Figure 10. As shown in Figure 10, YOLOv4-B1, YOLOv4-B2, and YOLOv4-N1 expressed 

worse results compared to YOLOv4 (K-means++); the YOLOv4-B1 model almost failed; 

and for the YOLOv4-B2 model, the detection accuracy of transverse cracks decreased. In 

the YOLOv4-N1 model, there were transverse cracks, longitudinal cracks, crack sealing, 

and Alligator cracks, and YOLOv4-N2, YOLOv4-H1, and YOLOv4-H2 were otherwise 

Figure 9. Detection effect of YOLOv4 (K-means) and YOLOv4 (K-means++).

5.2.2. Comparison of the Effect on Adding Different Attention Modules

The six models listed in Figure 7 were evaluated using the test dataset in order
to investigate the performance differences resulting from the embedding of the CBAM
modules into different locations of the YOLOv4 network. All these models used the K-
means++ clustering algorithm in obtaining the Anchor box. The results are shown in
Figure 10. As shown in Figure 10, YOLOv4-B1, YOLOv4-B2, and YOLOv4-N1 expressed
worse results compared to YOLOv4 (K-means++); the YOLOv4-B1 model almost failed;
and for the YOLOv4-B2 model, the detection accuracy of transverse cracks decreased. In
the YOLOv4-N1 model, there were transverse cracks, longitudinal cracks, crack sealing,
and Alligator cracks, and YOLOv4-N2, YOLOv4-H1, and YOLOv4-H2 were otherwise
better than YOLOv4 (K-means++), but the detection of crack sealing showed a weakness
after adding the CBAM module.
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As shown in Table 2, it can be found that among the six models, YOLOv4B1 was the
least effective and directly led to network failure. The reason may be that the weights of
useless features were enhanced before the feature data deepened the features through the
residual network, which led to the decrease in target weights and poor detection effect.
In addition, the accuracy of YOLOv4B2 and YOLOv4N1 also showed different degrees
of degradation compared with the original network without the attention module added
(YOLOv4 (K-means++)). This phenomenon may have been caused by the presence of too
much irrelevant data prior to concatenating the feature data, and the attention mechanism
amplified the weight of these irrelevant data.
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Table 2. Comparison of six models with different attention modules.

Methods
Types

P (%) R (%) F1-Score (%) mAP (%) FPS (f/s)

YOLOv4 (K-means++) 95.81 50.48 65.5 80.92 15.38
YOLOv4B1 4.17 0.09 0 3.18 7.16
YOLOv4B2 95.05 50.38 64.75 75.84 6.44
YOLOv4N1 94.72 36.23 48.5 74.77 5.08
YOLOv4N2 95.84 53.23 68 82.51 6.52
YOLOv4H1 95.00 54.39 64.5 81.16 9.52
YOLOv4H2 96.07 57.30 70.25 82.45 14.85

In addition, in terms of mAP, YOLOv4N2 improved by 1.59%, YOLOv4H1 by 0.24%,
and YOLOv4H2 by 1.53% compared to YOLOv4 (K-means++). All three models added the
attention module after the Concat feature data layer, indicating that the attention module
can indeed improve the accuracy of the YOLOv4 algorithm, but the embedding position
should be after the Concat layer.

5.2.3. Comparison Experiments of the Four Improved Models

The above analysis shows that YOLOv4N2, YOLOv4H1, and YOLOv4H2 outper-
formed the original network in all aspects, so these three networks can be combined in
different forms to obtain the following four new models and trained iteratively again.

• YOLOv4-1 = YOLOv4N2 + YOLOv4H1;
• YOLOv4-2 = YOLOv4N2 + YOLOv4H2;
• YOLOv4-3 = YOLOv4H1 + YOLOv4H2;
• YOLOv4-4 = YOLOv4N2 + YOLOv4H1 + YOLOv4H2.

The performance of these four networks was compared, and the results are shown in
Table 3. Compared with the six models described in the previous section, the performance
of YOLOv4-1, YOLOv4-2, and YOLOv4-4 showed little improvement or even a slight
decrease, but the detection accuracy of YOLOv4-3 improved significantly and the mAP
improved by 2.03% compared to the original YOLOv4 (K-means++) model. This indicates
that the attention module works relatively best when embedded in the Head region.

Table 3. Average P, R, F1-Score, and mAP of each model.

Methods
Types

P (%) R (%) F1-Score (%) mAP (%) FPS (f/s)

YOLOv4(K-means++) 95.81 50.48 65.5 80.92 15.38
YOLOv4-1 95.19 54.95 69 81.00 13.81
YOLOv4-2 94.89 52.46 67 81.34 14.06
YOLOv4-3 96.23 56.22 70.25 82.95 13.90
YOLOv4-4 95.60 56.01 69.75 81.50 13.93

6. Discussion

According to the experimental results, CBAM modules embedded in different po-
sitions of YOLOv4 have different effects. Yolov4-3 improves accuracy, robustness, and
generalization ability compared to YOLOv4 (K-means ++). Through two experiments, the
effect of CBAM on the model performance is discussed. It can be found that by increasing
the weight of ROI and adding the CBAM attention mechanism, the performance of the
model was effectively optimized, and the detection accuracy of the model was improved.
By comparing the results of YOLOV4-3, YOLOV4-H1, and YOLOV4-H2, it can be found
that the model proposed by the improved embedding method had a slight improvement in
AP and mAP. The effective feature information extraction and multi-scale feature fusion
enabled the model to detect pavement damage better. In general, the embedded position of
the CBAM module in the YOLO-3 algorithm proposed in this paper effectively improved
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the detection accuracy, met the actual detection requirements, and verified the feasibility of
the model.

To better explain the results of the above experiments, the Grad CAM method [42]
was used in this study to visualize and analyze the feature maps of different models.
This is a recently proposed visualization method that uses the gradient weights obtained
from backpropagation calculations to compute the importance of spatial locations in the
convolutional layers. Firstly, the Grad-CAM algorithm was used to calculate the back-
propagation gradient weights of the three output feature layers in YOLOv4 to obtain
the visualized feature maps with three different weights. Secondly, considering that
the three output feature layers were equally important in the target detection stage, the
corresponding three visualization feature maps were superimposed with 1:1:1 weight (as
shown in Figure 11) to more clearly demonstrate the differences in the visualization feature
maps of different models.
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As can be seen in Figure 11, the positions of interest of the feature layers were different
at different scales. Therefore, the visual feature maps can be superimposed on all six models
built in Section 5.2.3 of this paper to visually compare the effect of embedding the CBAM
module in different locations of the network, and the results are shown in Figure 12.

As can be seen from Figure 12, for longitudinal cracks, both YOLOv4 and the improved
models can pinpoint the target region, but the YOLOv4 model focused on the target region
less than the other four improved models, while the YOLOv4-3 model focused on the
target region more. The other YOLOv4-3 model can focus on the target region in the image
more accurately and with less background interference. This shows that the improved
mechanism in the YOLOv4-3 model can effectively suppress the background noise and
enhance the target features, which further proves that the method proposed in this study
has a strong attention learning capability and improves the detection performance of the
model for cracks.

As for the reasons why the CBAM attention module appears to have very different
effects when embedded into different locations of the network, this study speculated that
there were the following reasons:

First, in the Backbone network, the semantic features of the feature map were mainly
in the extraction stage with a large amount of information to be extracted, while there was
more interference information in the pavement image, and various complex texture contour
information existed. Therefore, in the use of CBAM modules in the backbone network,
non-primary information will increase, causing bad results. Second, long cracks (spanning
the whole image area) were often found in pavement damage images. When embedding
the CBAM module in the Backbone network, the location information of small targets was
more easily noticed, while in the Head regions, the perceptual field was larger and more
favorable for detecting large targets such as pavement cracks. Therefore, embedding the



Appl. Sci. 2022, 12, 10180 15 of 18

CBAM module in Head regions can better strengthen the spatial features and channel
features of the feature maps, thus enhancing the robustness of the network.
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7. Conclusions

This paper proposes the YOLOv4-3 target detection model, which was based on the
YOLOv4 network model combined with CBAM module and the K-means++ clustering
algorithm to optimize the YOLOv4 model in order to improve the detection accuracy of
cracks in the target detection task. The construction of the improved YOLOv4-3 crack
detection model was finally completed, and experimental analysis and evaluation were
carried out. The YOLOv4 algorithm was used to study, analyze, and demonstrate that the
attention module is not embedded in every location of the network to improve performance.
To analyze and understand the impact of the CBAM module on the YOLOv4 model when
embedded in different positions of the model, the CBAM module was installed in the Neck,
Backbone, and Head regions of the model to verify the stability, noise suppression, and
feature extraction of the cracked regions of the improved model. The improved target
detection model was tested for comparison. The results showed that the mAP of the
improved YOLOv4-3 network was 2.96% higher than that of YOLOv4. Although the
performance of the YOLOV4-3 model proposed in this paper has been improved more than
that of YOLOv4, there are still many problems that need to be further improved in the
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future. For example, YOLOV4-N2 had the highest accuracy after embedding the CBAM
module, but the accuracy decreased after superimposing the CBAM module in the later
stage. For this special case, the robustness of the model can be enhanced by introducing
different attention mechanisms in future experiments. This study verified the feasibility of
the model, but the experiments in special cases still need to be further improved.
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