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Featured Application: Detecting faults in a machine in the early stage reduces loss due to dam-
age. This paper proposes a method to detect machinery anomalies through operation sounds that
combines the wavelet transform and state-of-the-art neural network architecture, and can be used
in an intelligent factory.

Abstract: The harmonic drive is an essential industrial component. In industry, the efficient and accu-
rate determination of machine faults has always been a significant problem to be solved. Therefore,
this research proposes an anomaly detection model which can detect whether the harmonic drive has
a gear-failure problem through the sound recorded by a microphone. The factory manager can thus
detect the fault at an early stage and reduce the damage loss caused by the fault in the machine. In
this research, multi-layer discrete wavelet transform was used to de-noise the sound samples, the
Log Mel spectrogram was used for feature extraction, and finally, these data were entered into the
EfficientNetV2 network. To assess the model performance, this research used the DCASE 2022 dataset
for model evaluation, and the area under the characteristic acceptance curve (AUC) was estimated
to be 5% higher than the DCASE 2022 baseline model. The model achieved 0.93 AUC for harmonic
drive anomaly detection.

Keywords: signal processing; anomaly detection; machine learning; harmonic drive

1. Introduction

As the world moves towards Industrial Revolution 4.0, integrating information tech-
nology into the manufacturing industry will promote industrial upgrading and allow
industry to maintain competitiveness. The development of intelligent manufacturing tech-
nology is vital for the manufacturing industry; enabling machinery to have smart functions
such as failure prediction is the current focus of industrial development.

A harmonic drive is a special gearbox device consisting of only three essential compo-
nents: the circular spline, flex spline, and wave generator. Harmonic drives are often used in
the aerospace field, medical equipment, and industrial robots, and have the advantages of
small size, high transmission efficiency, and low noise. They are crucial components of the
six-axis robot, which shows the importance of harmonic drives for industrial development.

When using a machine, it is often necessary to stop the machine so that an inspector can
check the mechanical condition, resulting in a cost of human resources and time. The current
mainstream inspection method still relies on the inspector’s experience; therefore, the
detection accuracy is not high. In terms of harmonic drive fault detection, G. Yang et al. [1]
proposed the use of multiple acceleration sensors for data fusion and Fast Fourier transform
to process the samples, and finally inputting these data into the neural network constructed
by the Convolutional Neural Network (CNN). Through this process, a 96.79% accuracy of
fault detection could be achieved, but the research did not include noise processing.
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However, a fault detection model must possess characteristics such as high accuracy
and noise processing in the real industrial environment. Therefore, there is a need for an
efficient and accurate method to solve this problem.

To solve the above-discussed problems, this paper proposes a method that uses ma-
chine learning methods and signal processing to deal with sound samples. The performance
of the proposed model was up to 0.93 AUC of the fault detection.

The proposed model will allow factory managers to swiftly detect any possible issue in
the harmonic drive without stopping the machine, and arrange personnel for maintenance
and repair in time to avoid subsequent accidents or losses.

This paper is organized as follows: Section 2 discusses discrete wavelet transform
(DWT), Log Mel spectrogram, neural network architecture, and the literature on anomaly
detection. Section 3 introduces the entire architecture of the proposed monitoring model.
Section 4 introduces the experimental results. Finally, Section 5 concludes this research.

2. Related Work
2.1. Log Mel Spectrogram

The Log Mel spectrogram, commonly used for speech emotion detection and acoustic
scene analysis [2,3] and machinery anomaly detection tasks [4], is a spectrogram based on
the human ear’s perception of sound, rather than linear frequencies.

After the sound sample is processed by Short Time Fourier Transform (STFT), the
spectrum is obtained; the spectrum energy is then passed through the Mel filter to obtain
the Mel Spectrum. The frequency f is the Mel Frequency, as shown in Equation (1), and
finally, the logarithmic operation of the result is obtained to give the Log Mel spectrogram.

Fmel( f ) = 2595× log10

(
1 + f

700

)
(1)

2.2. Wavelet Transform

Wavelet Transform contains rapidly decaying or finite-length waveforms to express
the original signal through scaling and translation, which can avoid inaccurate frequency-
domain or time-domain analysis results caused by fixed-length window functions. Accord-
ing to Equation (2), the wavelet transform uses the wavelet function ψ(t) and the scaling
function φ(t) to generate each sub-wavelet function ψa,b(t), thereby fitting the original wave-
form, where the wavelet function is called the Mother Wavelet, and the scaling function is
called the Father Wavelet.

ψa,b(t) = 1√
a ψ

(
t−b

a

)
(2)

Wavelet transforms can be categorized into discrete or continuous wavelet transforms.
The judgment is based on whether scaling parameter a and translation parameter b in
Equation (2) are discrete values. Discrete wavelet transforms were used in this research.

2.3. EfficientNetV2

In CNN, the bigger the picture resolution, the wider the neural network layer; a
deeper neural network improves the accuracy with high computing costs. Although a few
studies [5,6] have discussed the influence of resolution, width, and depth, most have only
discussed one or two aspects. The research by Tan et al. [7] simultaneously explored the
influence of the above three aspects on computing speed and accuracy.

Tan et al. proposed the EfficientNet neural network family, a type of CNN family,
which can achieve an accuracy of 84.3% on the ImageNet Dataset [8]. Their research used
the Neural Architecture Search technology to search the network structure, with rapid
computing speed and high prediction accuracy, and found the best magnifications by
adjusting the size of the resolution, width, and depth of the discovered network.

In 2021, Tan et al. proposed the EfficientNetV2 [9] neural network family, an im-
provement network based on the EfficientNet networks. The EfficientNetV2 networks can
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achieve 87.3% accuracy on the ImageNet Dataset; these have reached state-of-the-art level,
and have higher prediction accuracy than the previous generation, as shown in Table 1.

Table 1. The performance results of EfficientNetV2-XL and EfficientNet-B7 on the ImageNet Dataset.

Top-1 Accuracy Params (M) FLOPs (B)

EfficientNet-B7 84.7% 66 38
EfficientNetV2-XL 87.3% 208 94

2.4. Anomaly Detection

The fault detection task of the harmonic drive can be regarded as a kind of rotating
machinery fault detection task. The fault in the rotating machinery can be detected through
temperature, vibration, image, and sound. An industrial environment requires a fast and
accurate detection method with noise processing.

In terms of rotating machinery fault detection, the current mainstream research di-
rection is to use a Support Vector Machine (SVM) or CNN with various preprocessing
methods for training. The SVM method can obtain an excellent model but requires a long
computing time [10], while the latter has excellent feature mining ability but requires more
samples to train a high-performance model [11].

Sahoo et al. [12] built a wind turbine scale-down model and categorized blade failures
into three types. Data were collected through an accelerometer, and the vibration signal
was passed through a total of 12 statistical methods, such as standard deviation, Root
Mean square, and Kurtosis, before being processed as input parameters of the prediction
model. The team compared different rotational speeds and different architectures. In this
study, the data of different rotational speeds were passed through Decision Tree, K-Nearest
Neighbors (KNN), and SVM for blade fault detection. Sahoo et al. found that the accuracy
of the fault detection model increased with the increase in rotational speed. Since noise
was not processed, the model accuracy of this study was estimated to be 87%, which was
slightly lower than that of other studies.

Chen et al. [10] preprocessed the samples by using an improved version combining
wavelet transforms and Empirical Mode Decomposition, and used Particle Swarm Opti-
mization to select hyper-parameters of SVM; the accuracy of the fault detection for many
types of bearings exceeded 99%.

Yang et al. [1] proposed a harmonic drive fault detection model using the multiscale
convolutional neural network (MSCNN). MSCNN includes the coarse-grained layer, the
classification layer, the multiscale feature learning layer, and the multisensor data fusion
layer. After the fusion of multiple sensor data, the original signal data were decomposed
into four layers, and the processed data were subjected to feature learning through a multi-
scale feature learning layer. Their research obtained 96.79% for the normal-anomaly binary
classification. The method proposed in this study did not include noise processing but
reduced the negative impact of noise through data from multiple sensors.

3. The Proposed Approach

This section introduces the architecture and processing flow of the proposed
monitoring model.

3.1. Monitor Model Architecture Diagram

The process of the proposed monitoring model is shown in Figure 1. In this study,
two different datasets were used for model training and evaluation of the model’s ability;
these were the DCASE 2022 task 2 Dataset [13], which is called the DCASE 2022 Dataset
(as discussed below), and the Harmonic Drive Dataset, which contains the harmonic drive
operation sounds.
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For the DCASE 2022 Dataset, data preprocessing was performed first. For each type
of machine operating sound sample, the multi-layer Discrete Wavelet Transforms (DWT)
were used to remove noise; then, the logarithmic Mel spectrogram was used to extract the
features, and finally, the feature data were entered into the deep neural network for training.

For the Harmonic Drive Dataset, each sound sample was cut to increase the number
of samples first, and the same process was subsequently applied.

3.2. Dataset
3.2.1. DCASE 2022 Dataset

The DCASE 2022 Dataset is a combination of two datasets, namely the TOYAD-
MOS2 Dataset established by Harada et al. [14] and the MIMII DG Dataset established by
Dohi et al. [4]. The TOYADMOS2 Dataset includes sounds of toy trains and toy cars, two
different types of industrial machinery, and about 7200 operating sounds recorded under
normal and abnormal conditions. The MIMII DG Dataset includes sounds of bearings, fans,
gearboxes, slides, and valves. About 18,000 recordings of operating sounds under normal
and abnormal conditions were collected from the five different industrial machines.

The TOYADMOS2 Dataset was recorded using a SURE SM11-CN dynamic microphone
and a TOMOCA EM-700 condenser microphone. Each sample was of 10 s duration. The
team damaged the machine parts and then categorized the damage levels into low, medium,
and high levels, finally adding additional factory noises. On the other hand, the sound
samples in the TOYADMOS2 Dataset were categorized as the source domain and the
target domain. The difference between the two domains lies in the different noise types,
signal-to-noise ratios (SNRs), microphone arrangements, and mechanical operating speeds.

The MIMII DG Dataset was recorded using the TAMAGO-03 microphone. Each
sample is of 10 s duration. The abnormal types include fan blade damage, gearbox gear
damage, valve blockage, etc. Much like the TOYADMOS2 Dataset, the noises of the factory
environment were added, and the samples were also categorized as the source domain and
the target domain.

3.2.2. Harmonic Drive Dataset

The model of the harmonic drive used in this study was Liming DSF17-100. The
recording device was an Adafruit I2S SPH0645 omnidirectional microphone. The micro-
phone performed the recording at 3 cm from the harmonic drives. The recorded 32-bit
floating-point audio file with the sample rate was 44,100 Hz, and the SNR was 60 dB (Lin).
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The Harmonic Drive Dataset was marked by experts and contained sound files of
the same model of machine with different rotation speeds, while the abnormal type only
included gear failure. Since the length of each original sample varied, and also to avoid
overfitting problems caused by few samples, this research reduced the original sound
sample into those with fixed lengths. After cutting a sound file, if the length was less
than the specified cutting length, it was discarded. The number of normal and abnormal
samples is shown in Tables 2 and 3.

Table 2. The number of original samples.

Normal Abnormal

The number of samples 7 4

Table 3. The number of cutting samples.

Normal Abnormal

Number of samples in one second 285 171
Number of samples in three seconds 95 57

3.3. Data Preprocessing

The sound samples may have contained unnecessary sounds, such as environmental
noise and factory noise; therefore, the method of separating the sound of machinery
from the original samples was an essential step in the monitoring model. In this study,
discrete wavelet transforms were used to process sound samples and discard some audio
components to remove undesirable noises.

The filter used in this research was the Sym10 wavelet shown in Figure 2, which
belongs to the Symlet wavelet family. The Symlet wavelet has the advantage of fast
calculation, and is exactly reversible without edge effect problems and memory-saving [15].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 13 
 

The MIMII DG Dataset was recorded using the TAMAGO-03 microphone. Each sam-
ple is of 10 s duration. The abnormal types include fan blade damage, gearbox gear dam-
age, valve blockage, etc. Much like the TOYADMOS2 Dataset, the noises of the factory 
environment were added, and the samples were also categorized as the source domain 
and the target domain. 

3.2.2. Harmonic Drive Dataset 
The model of the harmonic drive used in this study was Liming DSF17-100. The re-

cording device was an Adafruit I2S SPH0645 omnidirectional microphone. The micro-
phone performed the recording at 3 cm from the harmonic drives. The recorded 32-bit 
floating-point audio file with the sample rate was 44,100 Hz, and the SNR was 60 dB (Lin). 

The Harmonic Drive Dataset was marked by experts and contained sound files of the 
same model of machine with different rotation speeds, while the abnormal type only in-
cluded gear failure. Since the length of each original sample varied, and also to avoid 
overfitting problems caused by few samples, this research reduced the original sound 
sample into those with fixed lengths. After cutting a sound file, if the length was less than 
the specified cutting length, it was discarded. The number of normal and abnormal sam-
ples is shown in Tables 2 and 3. 

Table 2. The number of original samples. 

 Normal Abnormal 
The number of samples 7 4 

Table 3. The number of cutting samples. 

 Normal Abnormal 
Number of samples in one second 285 171 

Number of samples in three seconds 95 57 

3.3. Data Preprocessing 
The sound samples may have contained unnecessary sounds, such as environmental 

noise and factory noise; therefore, the method of separating the sound of machinery from 
the original samples was an essential step in the monitoring model. In this study, discrete 
wavelet transforms were used to process sound samples and discard some audio compo-
nents to remove undesirable noises. 

The filter used in this research was the Sym10 wavelet shown in Figure 2, which be-
longs to the Symlet wavelet family. The Symlet wavelet has the advantage of fast calcula-
tion, and is exactly reversible without edge effect problems and memory-saving [15]. 

 
Figure 2. The Sym10 wavelet function. Figure 2. The Sym10 wavelet function.

The process of the wavelet transforms is shown in Figure 3. In the first step, the sample
was decomposed into 15-level discrete wavelet decompositions to obtain 15 detail coeffi-
cients and 1 approximation coefficient, representing higher frequency audio components
and the lowest frequency audio components.

In the second step, after the wavelet decomposition was completed, the coefficients
generated in the previous step were reconstructed through the wavelet reconstruction.
The reconstructed sounds were the corresponding audio component of the original sound
sample in each frequency interval.

The wavelet decomposition process is shown in Figure 4. For example, considering the
two-level one-dimensional wavelet decomposition, the original audio signal X was a one-
dimensional input signal, which was passed through a low pass filter g[k] of length K and
high pass filter h[k], thus separating the low-frequency and high-frequency components of
the signal.
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The signal through the down-sampling filter obtained the high-frequency detail co-
efficient cD1 and the approximate coefficient cA1 of low frequency. Then, cA1 was used
as the subsequent input, and the same decomposition steps were performed to obtain the
detail coefficient cD2 and the approximate coefficient cA2. The corresponding equations,
Equations (3)–(6), are as follows:

This research used 15-level wavelet decomposition to obtain the coefficients set S =
{cD1, cD2, cD3, cD4, cD5, cD6, cD7, cD8, cD9, cD10, cD11, cD12, cD13, cD14, cD15, cA15}

cD1[n] =
K−1

∑
k=0

X [n + 1− k]h[k] (3)

cA1[n] =
K−1

∑
k=0

X [n + 1− k]g[k] (4)

cD2[n] =
K−1

∑
k=0

cA1[n + 1− k]h[k] (5)

cA2[n] =
K−1

∑
k=0

cA1[n + 1− k]g[k] (6)

Since this research only required the audio components of each coefficient, except for
the detail coefficients of the audio components slated for reconstruction, the remaining
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coefficients were replaced by 0 arrays. The audio components were obtained after one or
more reconstructions. Taking the cD1 audio component as an example, the 0 arrays and
the high-frequency coefficients cD1 were passed through the low-pass reconstruction filter
g*[k] and the high-pass reconstruction filter h*[k], respectively, then two signals were added
to obtain the cD1 audio component, as shown in Figure 5.
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After obtaining the audio components at each frequency interval, this research adopted
different audio components for each machinery type. Removing unnecessary noise im-
proves the prediction performance of the neural network. The audio components selected
for each category are shown in Tables 4 and 5.

Table 4. The audio components selected for machinery type in the DCASE 2022 Dataset.

Type Audio Components

Toy Car cD1, cD2, cD3
Toy Train cD1, cD2, cD3

Bearing cD1, cD2, cD3, cD4, cD5, cD6, cD7, cD8, cD9, cD10,
cD11, cD12, cD13, cD14, cD15, cA15

Fan cD1, cD2, cD3, cD4, cD5, cD6, cD7, cD8, cD9, cD10,
cD11, cD12, cD13, cD14, cD15, cA15

Gearbox cD1, cD2, cD3
Slide rail cD1, cD2, cD3

Valve cD1, cD2, cD3

Table 5. The audio components selected for the Harmonic Drive Dataset.

Type Audio Components

Harmonic Drive cD1, cD2

Next, the logarithmic Mel spectrogram was used as the audio feature extraction
method, as shown in Figure 6. The sound sample was processed through the short-time
Fourier transforms (STFT) shown in Equation (7), the window function w adopted the
Hamming window function shown in Equation (8), the STFT frame size was 64 ms, and
the frame hop size was 32 ms. The spectrum was obtained after STFT processing.

STFT{x(n)}(m, ω) = X(m, ω) =
∞

∑
n=−∞

x(n)w(n−m)e−jωn (7)

w(n) = 0.5
(

1− cos
(

2πn
N − 1

))
, 0 ≤ n ≤ N − 1 (8)
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x(n) is the audio with the length of N. The power spectrum can be obtained by squaring
the spectrum, as shown in Equation (9), then the power spectrum was processed through
128 Mel filters, and finally, the Power To Decibel (PTB) operation was performed, as in
Equation (10), to obtain the Log-Mel-Spectrogram, which was the input data for the deep
neural network.

Power = |X(m, ω)|2 (9)

PTB(S) = 10× log10(S) (10)

3.4. Deep Neural Network Architecture

The EffienctNetV2S [9] network was used to build the monitoring model. The net-
work architecture is shown in Figure 7. The EffienctNetV2S network was first proposed
by Tan et al.; their team used the Fused-MB convolution layer in the early stage of the
EffienctNetV2S network and then the MB convolution layer in the later stage to enhance
the training efficiency and model performance.
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2.2. Wavelet Transform 
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The architecture of Fused-MB convolution and MB convolution are shown in
Figures 8 and 9, respectively. The primary difference is whether the neural layer con-
tains the deep-wise convolution structure or the traditional convolution structure.
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In this study, an image of 64 × 128 was the input of the deep neural network, Adam
optimizer was used for optimization, and the learning rate was 0.001.

4. Methods

This section introduces the experimental process and results.

4.1. The Experimental Process

For the DCASE 2022 Dataset, this research used the monitoring model constructed by
the log Mel-spectrogram, wavelet transforms, and the EfficientNetV2S network to compare
with the other two proposed monitoring models. Then, the two Baseline models provided
by the organizers of the DCASE 2022 challenge were compared. The hyper-parameters
used by the model are shown in Table 6; the mixed precision was used to speed up the
computation. The model with the lowest loss in the validation set was saved and examined
in the final test phase. Adam was used for optimization in the training phase.

Table 6. Hyperparameters of the monitoring model.

This Paper DCASE 2022
Dataset

Harmonic Drive
Dataset

Training Epochs 200 200
Optimizer Adam Adam

Learning Rate 0.001 0.001
Input Image Size 64 × 128 64 × 128

Log Mel Spectrogram Frame Size 1024 1024
Batch Size 128 16

For the Harmonic Drive Dataset, the monitoring model with the best performance in
the DCASE 2022 Dataset experiment was used as the anomaly monitoring model of the
harmonic drive. The test process was the same as the above-described process.

4.2. The Experimental Results

The harmonic drive is a type of gearbox, so the gearbox audio samples could be used
to evaluate the anomaly detection model for the harmonic drive. For the sample source of
the gearbox, the DCASE 2022 Dataset Gearbox audio samples were used.

The model with the highest AUC was selected by comparison through experiments.
Three models were proposed in this study for gearbox machinery anomaly detection.
The AUC of the three models is shown in Table 7. Model one, which combined logarith-
mic Mel spectrogram, wavelet transforms, and the EfficientNetV2S network architecture,
achieved the best prediction performance. Thus, this research used model 1 for subsequent
comparisons with methods proposed in other studies.
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Table 7. The performance of the proposed gearbox anomaly detection models.

Model 1
Log Mel Spectrogram
+ Wavelet Transforms

+ EfficientNetV2S

Model 2
Log Mel Spectrogram

+ EfficientNetV2S

Model 3
Log Mel Spectrogram
+ Wavelet Transforms

+ MobileNetV2

Source_test Target_Test Source_Test Target_Test Source_Test Target_Test

ID_01 0.7176 0.6804 0.6968 0.7032 0.6484 0.6884

ID_02 0.7992 0.7579 0.67 0.6291 0.6554 0.5802

ID_03 0.8573 0.5222 0.8384 0.4454 0.717 0.6452

Average 0.7914 0.6535 0.7351 0.5926 0.6736 0.6379

Average of
two

domains
0.7224 0.6638 0.6558

The proposed model outcomes were compared with those of two baseline models
provided by the organizers of the DCASE 2022 Challenge. The results presented in Table 8
show that the average AUC of the proposed model was about 6% higher than those of the
two baseline models, suggesting that the proposed model performed better than the two
baseline models for gearbox anomaly detection tasks in real factory scenarios.

Table 8. Comparison with other studies on gearbox samples.

This Paper Log Mel Spectrogram
+ AutoEncoder [4]

Log Mel Spectrogram
+ MobileNetV2 [4]

Gearbox Source_Test Target_Test Source_Test Target_Test Source_Test Target_Test

ID_01 0.7176 0.6804 0.6463 0.6479 0.6354 0.6702

ID_02 0.7992 0.7579 0.6766 0.5812 0.6668 0.6696

ID_03 0.8573 0.5222 0.7538 0.6557 0.8087 0.4315

Average 0.7914 0.6535 0.6922 0.6283 0.7037 0.5904

Average of
two

domains
0.7224 0.6603 0.6471

Further, the model’s performance in fault detection tasks was examined for various
types of machinery in the DCASE2022 Dataset to assess whether the proposed model could
detect general machinery anomalies. The results in Table 9 suggest a good capability of the
proposed model for the detection of various types of machinery anomalies. The overall
AUC was 5% higher than that of baseline models on average, and the AUC of the Slider
category was nearly 20% higher.

After the proposed model was evaluated on the DCASE 2022 Dataset, the Log Mel
spectrogram, discrete wavelet transforms, and EffientNetV2S network were used to build
the harmonic drive anomaly monitoring model. As the training set of the experiment,
we randomly selected 60% of the data from the normal samples and abnormal samples
of the Harmonic Drive Dataset and considered 20% of the data as the validation set; the
remaining 20% of the data was used as the test set.

In this research, samples of 1 s duration were used for the experiments. The proposed
model was compared with other models for rotating machinery anomaly sound detection,
including the method that uses the Fast Kurtogram combined with deep convolution to
predict bearing anomalies proposed by Prosvirin et al. [16] and our previous research [17]
that uses the wavelet transforms combined with the fully connected network to predict the
wind turbine blade anomalies. The results are shown in Table 10.
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Table 9. Comparison with other papers when using the DCASE 2022 Dataset.

This Paper Log Mel Spectrogram
+ AutoEncoder [4]

Log Mel Spectrogram
+ MobileNetV2 [4]

Source_Test Target_Test Source_Test Target_Test Source_Test Target_Test

Toycar 0.678 0.6713 0.917 0.3664 0.6121 0.5281

Toytrain 0.6835 0.4339 0.7698 0.2636 0.604 0.463

Bearing 0.6309 0.5609 0.5695 0.5901 0.6307 0.6179

Fan 0.58 0.5487 0.7897 0.4919 0.7154 0.5176

Gearbox 0.7914 0.6535 0.6922 0.6283 0.7037 0.5904

Slider 0.9539 0.7175 0.7881 0.4904 0.6984 0.4859

Valve 0.6483 0.603 0.5209 0.4986 0.6877 0.6092

Average 0.7094 0.5984 0.7210 0.4756 0.6646 0.5446

Average of two
domains 0.6539 0.5983 0.6046

Table 10. Comparison of the proposed model with other models when using the Harmonic
Drive Dataset.

Accuracy AUC

This paper 0.901 0.9302
Prosvirin et al. [16] 0.91 0.911

Kuo et al. [17] 0.858 0.89

This research explored the impact of sample duration and noise on prediction perfor-
mance. Based on duration, the samples were categorized into one second and three seconds.

The results of the prediction accuracy of different sample durations are shown in
Table 11. The prediction AUC of the monitoring model for the three-second category was
lower than that for the one-second category, possibly because the model needs a larger
number of samples to detect the pattern of the anomaly sounds.

Table 11. The experiment results of different sample durations.

AUC

Samples with a 1-s duration 0.9302
Samples with a 3-s duration 0.881

Regarding the noise, additive white Gaussian noise was added to the 1 s duration
sound samples. The two kinds of SNRs for the experiments were of the 20 dB(Lin) and 10
dB(Lin) categories. The prediction AUC results with different SNRs in this research are
shown in Table 12.

Table 12. The experiment results of different SNRs.

AUC

Samples without adding noise 0.9302
SNR = 20 dB (Lin) 0.87
SNR = 10 dB (Lin) 0.86

Table 12 shows that the intensities of noise and the prediction AUC results of the
model are related. In the case of noise addition, the model could still maintain a good
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prediction performance, indicating that the proposed mode has noise processing ability
and can perform the anomaly detection task of the harmonic drive even in the presence of
background noise.

5. Conclusions

This research proposes a harmonic drive anomaly detection model by combining
discrete wavelet transforms, the Log Mel spectrogram, and the EffientNetV2S network
architecture. The model uses wavelet transforms to separate the original sample audio into
audio components representing each frequency interval, then uses the Log Mel spectrogram
to extract features, and finally enters features as inputs into the neural network for training.
The detection model exhibited an excellent prediction performance for the DCASE 2022
Dataset and the Harmonic Drive Dataset.

The proposed detection model uses only the sound of mechanical operation as the
anomaly judgment. If data such as vibration information or thermal energy are added to
the model, the prediction performance of the model may be further improved.

The parameter settings of the denoise algorithm were adjusted manually, and the best
combination was compared through experiments. The audio pre-processing efficiency may
be improved if the optimization algorithm is used to adjust each parameter, thus further
enhancing the prediction capability.
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