A System Architecture of a Fusion System for Multiple LiDARs Image Processing
Abstract
:1. Introduction
2. Background
2.1. Problem Definition
2.2. Contribution
3. Proposed System Architecture for Multiple LiDARs Image Processing
3.1. Inter-Process Communication
3.2. Client Structure
3.3. Server Structure
4. Implementation and Evaluation
4.1. Experimental Environment
4.2. Experimental Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, S.; O’Mahony, N.; Krpalcova, L.; Riordan, D.; Walsh, J.; Murphy, A.; Ryan, C. Sensor technology in autonomous vehicles: A review. In Proceedings of the 2018 29th Irish Signals and Systems Conference (ISSC), Belfast, UK, 21–22 June 2018. [Google Scholar]
- Jahromi, B.S.; Tulabandhula, T.; Cetin, S. Real-time hybrid multi-sensor fusion framework for perception in autonomous vehicles. Sensors 2019, 19, 4357. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Park, M.; Cho, K.; Mun, C.; Ahn, J. Intelligent hybrid fusion algorithm with vision patterns for generation of precise digital road maps in self-driving vehicles. KSII Trans. Internet Inf. Syst. 2020, 14, 3955–3971. [Google Scholar] [CrossRef]
- Kook, J. The design, implementation, demonstration of the architecture, service framework, and applications for a connected car. KSII Trans. Internet Inf. Syst. 2021, 15, 637–657. [Google Scholar] [CrossRef]
- Joglekar, A.; Joshi, D.; Khemani, R.; Nair, S.; Sahare, S. Depth estimation using monocular camera. Int. J. Comput. Sci. Inf. Technol. 2011, 2, 1758–1763. [Google Scholar]
- Bhoi, A. Monocular depth estimation: A survey. arXiv 2019, arXiv:1901.09402. [Google Scholar] [CrossRef]
- Grag, R.; Wadhwa, N.; Ansari, S.; Barron, J.T. Learning single camera depth estimation using dual-pixels. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2019, Seoul, Korea, 27 October–2 November 2019. [Google Scholar] [CrossRef]
- Cronin, C.; Conway, A.; Walsh, J. State-of-the-art review of autonomous intelligent vehicles (aiv) technologies for the automotive and manufacturing industry. In Proceedings of the 2019 30th Irish Signals and Systems Conference (ISSC), Maynooth, Ireland, 17–18 June 2019. [Google Scholar] [CrossRef]
- Harapanahalli, S.; Mahony, N.O.; Hernandez, G.V.; Campbell, S.; Riordan, D.; Walsh, J. Autonomous navigation of mobile robots in factory environment. Procedia Manuf. 2019, 38, 1524–1531. [Google Scholar] [CrossRef]
- Kodors, S. Point distribution as true quality of lidar point cloud. Balt. J. Mod. Comput. 2017, 5, 362–378. [Google Scholar] [CrossRef]
- Carballo, A.; Lambert, J.; Monrroy, A.; Wong, D.; Narksri, P.; Kitsukawa, Y.; Takeuchi, E.; Kato, S.; Takeda, K. Libre: The multiple 3d lidar dataset. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Niu, Q. Multi-sensor fusion in automated driving: A survey. IEEE Access 2019, 8, 2847–2868. [Google Scholar] [CrossRef]
- Yeong, D.J.; Barry, J.; Walsh, J. A review of multi-sensor fusion system for large heavy vehicles off road in industrial environments. In Proceedings of the 2020 31st Irish Signals and Systems Conference (ISSC), Letterkenny, Ireland, 11–12 June 2020. [Google Scholar] [CrossRef]
- Schneider, S.; Himmelsbach, M.; Luettel, T.; Wuensche, H.-J. Fusing vision and lidar—Synchronization, correction and occlusion reasoning. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium (IV), La Jolla, CA, USA, 21–24 June 2010. [Google Scholar] [CrossRef]
- Peterson, K.; Ziglar, J.; Rybski, P.E. Fast feature detection and stochastic parameter estimation of road shape using multiple lidar. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 2008, Nice, France, 22–26 September 2008. [Google Scholar] [CrossRef]
- Sualeh, M.; Kim, G.-W. Dynamic multi-lidar based multiple object detection and tracking. Sensors 2019, 19, 1474. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zare, A. Multiresolution multimodal sensor fusion for remote sensing data with label uncertainty. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2755–2769. [Google Scholar] [CrossRef]
- Borgmann, B.; Schatz, V.; Kieritz, H.; Scherer-Klöckling, C.; Hebel, M.; Arens, M. Data processing and recording using a versatile multi-sensor vehicle. In Proceedings of the ISPRS Annals of Photogrammetry. Remote Sensing & Spatial Information Science 2018 IV-1, Karlsruhe, Germany, 10–12 October 2018. [Google Scholar] [CrossRef]
- Paris, C.; Bruzzone, L. A three-dimensional model-based approach to the estimation of the tree top height by fusing low-density lidar data and very high resolution optical images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 467–480. [Google Scholar] [CrossRef]
- Moon, J.; Jung, M. Geometrical properties of spilled oil on seawater detected using a lidar sensor. J. Sens. 2020, 2020, 5609168. [Google Scholar] [CrossRef] [PubMed]
- Fortin, B.; Lherbier, R.; Noyer, J.-C. A track-before-detect approach for extended target tracking in multi-lidar systems using a low-level centralized fusion framework. In Proceedings of the 17th IEEE International Conference on Information Fusion (FUSION) 2014, Salamanca, Spain, 7–10 July 2014. [Google Scholar]
- Jung, M.; Kim, D.-Y.; Kim, S. Efficient remote software management method based on dynamic address translation for IoT software execution platform in wireless sensor network. Indian J. Sci. Technol. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Jia, S.; Zhan, Z.; Zhang, M.; Xu, M.; Huang, Q.; Zhou, J.; Jia, X. Multiple feature-based superpixel-level decision fusion for hyperspectral and lidar data classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1437–1452. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Ghamisi, P.; Jia, X.; Gu, Y. Deep fusion of remote sensing data for accurate classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1253–1257. [Google Scholar] [CrossRef]
- Jakub, S.; Anna, S.; Marina, C. Multi-sensor data fusion and parallel factor analysis reveals kinetics of wood weathering. Talanta 2021, 225, 122024. [Google Scholar] [CrossRef]
- Rövid, A.; Remeli, V. Towards Raw Sensor Fusion in 3D Object Detection. In Proceedings of the Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 24–26 January 2019. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, M.; Kim, D.-Y.; Kim, S. A System Architecture of a Fusion System for Multiple LiDARs Image Processing. Appl. Sci. 2022, 12, 9421. https://doi.org/10.3390/app12199421
Jung M, Kim D-Y, Kim S. A System Architecture of a Fusion System for Multiple LiDARs Image Processing. Applied Sciences. 2022; 12(19):9421. https://doi.org/10.3390/app12199421
Chicago/Turabian StyleJung, Minwoo, Dae-Young Kim, and Seokhoon Kim. 2022. "A System Architecture of a Fusion System for Multiple LiDARs Image Processing" Applied Sciences 12, no. 19: 9421. https://doi.org/10.3390/app12199421
APA StyleJung, M., Kim, D. -Y., & Kim, S. (2022). A System Architecture of a Fusion System for Multiple LiDARs Image Processing. Applied Sciences, 12(19), 9421. https://doi.org/10.3390/app12199421