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Abstract: LiDAR sensors are extensively used in autonomous vehicles and their optimal use is a
critical concern. In this paper, we propose an embedded software architecture for multiple LiDAR
sensors, i.e., a fusion system that acts as an embedded system for processing data from multiple
LiDAR sensors. The fusion system software comprises multiple clients and a single server. The client
and server are connected through inter-process communication. Multiple clients create processes
to process the data from each LiDAR sensor via a multiprocessing method. Our approach involves
a scheduling method for efficient multiprocessing. The server uses multithreading to optimize the
internal functions. For internal communication within the fusion system, multiple clients and a single
server are connected using the socket method. In sequential processing, the response time increases
in proportion to the number of connected LiDAR sensors. By contrast, in the proposed software
architecture, the response time decreases in inverse proportion to the number of LiDAR sensors. As
LiDAR sensors become increasingly popular in the field of autonomous driving, the results of this
study can be expected to make a substantial contribution to technology development in this domain.

Keywords: fusion system; multiple LiDARs; data processing; embedded software

1. Introduction

In recent times, interest in autonomous driving has increased. Technology that recog-
nizes the surrounding environment is the core technology of autonomous driving. Recogni-
tion technology recognizes the surrounding environment using cameras, LiDAR, and radar.
Object detection and tracking are very important processes for recognizing the surrounding
environment and maintaining control in autonomous driving. These technologies are
directly related to the development of sensor technology.

A camera is the most popular sensor for recognizing surroundings. It is relatively
easy to implement software that can detect static and dynamic obstacles within a camera.
Such a camera can also provide high-resolution images. By means of these features, objects
such as road signs, traffic lights, lanes, and obstacles can be recognized, and multiple
objects can be recognized concurrently [1–4]. The disadvantage of a camera is that it is
difficult to extract distance information from camera images. In order to overcome this
disadvantage, many studies have focused on producing stereo cameras and developing
algorithms to extract distance information [5–7]. Furthermore, owing to the error ratio of
distance based on the unique characteristics of the camera, it is generally difficult to ensure
consistent performance in varied environments [8,9]. A LiDAR sensor can replace a camera
as recognition technology. LiDAR sensors emit a laser and measure distance by calculating
the time it takes for the laser to reflect off an object and return. LiDAR sensors are classified
into one-dimensional, two-dimensional, and three-dimensional based on the number of
beams [10]. Three-dimensional LiDAR sensors are one of the most popular recognition
sensors in the field of autonomous driving. These sensors have several advantages: they can
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measure distances precisely, have a long range, and can be used in dark field environments.
A 3D LiDAR sensor can have better performance than a camera in collecting the shape and
posture of an object using a point cloud, making it better at object recognition [11]. Radar
emits electromagnetic waves and receives scattered or reflected waves generated from
objects. Based on the Doppler effect, using changes in the frequency, the relative speed
and relative position of the detected obstacle are determined [12]. Radar is not affected by
bad weather conditions and has the advantage of being independent of light intensity [13].
However, it has a disadvantage in that it is difficult to accurately detect metal objects such
as road signs, guardrails, and static objects using radar.

Thus, a technology that maximizes the advantages of individual sensors through
sensor fusion and improves the performance reliability of object recognition for the sur-
rounding environment is essential. Approaches to improve the reliability of recognition
technology for obstacles and surrounding environments using fusion LiDAR sensors and
cameras are being extensively researched. Given that a context-awareness system needs
multiple cameras, LiDAR sensors, and radar, the technology to achieve fusion between
their respective data is also needed. Multiple LiDAR must be installed in the moving
vehicle in order to recognize the omnidirectional environment. As autonomous vehicles
require five or more LiDAR sensors, a fusion system that can control the data of multiple
LiDAR sensors is needed. Such a fusion system must consider various technical elements
such as synchronization among sensors, the processing time of input data, and the accuracy
of object recognition.

We propose a software architecture for a fusion system that connects multiple LiDAR
sensors. First, we describe a CPU scheduler to efficiently manage the processes of multiple
clients that receive data from multiple LiDARs. Second, we propose a multithreading
method for efficient data processing on a server. Third, we propose the idea of inter-
processing communication between client and server. As mentioned above, we propose a
software architecture for a fusion system that merges data from multiple LiDAR sensors.
The proposed software architecture is loaded into the fusion system and the response time
is measured through performance evaluation. It was confirmed that the response time of
the client towards multiple LiDARs decreases, but the response time of the server increases.
However, the system could be stabilized by convergence at a specific time. These results
can be a basis for lightening of the fusion system.

2. Background

Research on algorithms for fusion systems using recognition sensors is being actively
conducted in various fields. Schneider et al. [14] proposed a method for fusion of the raw
data of a LiDAR sensor and a camera. In [15], a fusion system that works in real time is pro-
posed for a single 3D LiDAR sensor and multiple 2D LiDAR sensors. In [16], an algorithm
for collecting and recognizing data from recognition sensors is implemented using multiple
LiDAR sensors. In [17], their article proposes a multiple instance multiresolution fusion
(MIMRF) framework. The proposed MIMRF can fuse multiresolution and multimodal
sensor outputs from multiple sensors while effectively learning from bag-level training
labels. Borgmann et al. [18] implemented an algorithm to detect pedestrians in the same
way as [16]. In [19], they proposed a data fusion approach to integrate low-density LiDAR
data and a single optical image for a precise estimation of the tree top heights at single
tree level [20]. Refs. [16,18] propose low-level fusion methods, as they directly merge raw
point clouds. In [21], a detection algorithm using dual LiDAR is implemented for low-level
centralized fusion [22]. In [23], a multiple feature-based superpixel-level decision fusion
(MFSuDF) framework that takes full advantage of feature discriminability of different
modules and superpixel structure is proposed for hyperspectral images (HSIs) and LiDAR
sensor data classification. In [24], they propose a new feature fusion framework based on
deep neural networks (DNNs). The proposed framework employs deep convolutional
neural networks (CNNs) to effectively extract features of multi-/hyperspectral and light
detection and ranging data. This research deals with applications using fusion sensors. In
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order to improve their performance, they need an efficient data fusion algorithm. The data
fusion algorithm is the process that integrates the data of multiple sensors to produce more
consistent, accurate, and useful information than that provided by the data of an individual
sensor. Data fusion approaches can be distinguished according to the level at which data are
fused: fusion of raw data, fusion of features extracted from the data, and fusion of decisions
derived from the data [25]. Most of the research for data fusion is focused on the high
level, that is, integration of separately and independently processed sensor signals [26]. We
believe that the robustness gained through independent processing in a high-level fusion
setup does not have to be sacrificed if the low-level fusion architecture and the modeling
process are designed properly. Although some promising initial research into low-level
fusion has already been performed, raw data fusion still remains a challenging task. We
consider a low-level fusion architecture that deals with received raw data from each sensor
and can optimize processing delay.

2.1. Problem Definition

For data collection from multiple LiDAR sensors, the sequential data processing
method has a limitation in processing time. The fusion procedure for multiple LiDAR
sensors involves the collection, parsing, transformation, and formatting of LiDAR data.
Processing time in the fusion system is determined by system requirements. Data process-
ing should be completed within 33 ms in 16-channel 30 Hz LiDAR sensors. However, in the
data processing method based on a single process, the processing time increases linearly
according to the number of connected LiDAR sensors. Therefore, the single processing
method is difficult to apply in a highly complex sensor network. Figure 1 shows the
processing time of a client and a server using sequential processing. We can observe that
it is impossible when the number of connected LiDAR sensors is more than two. To use
n multiple LiDAR sensors where each sensor has the Tsensor processing time, total data
processing time (Tprocess) for multiple LiDAR sensors in the fusion system should be as low
as within the threshold, Tthreshold (i.e., 33 ms), as the service requirement.
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2.2. Contribution

In order to overcome the limitations of sequential data processing methods, we propose
a fusion system architecture for multiple LiDAR sensors that considers multiprocessing
for multiple clients with multithreading within a server process. The proposed system can
reduce the processing time for multiple LiDAR sensors by maximizing the resource usage
of the dual core. In Figure 2, the left figure illustrates sequential data processing, in which
the client receives the data of LiDAR sensors through the socket, sends it to the server after
processing, and then receives the next data from the LiDAR sensors and processes them.
The sequential data processing method sequentially accesses each port input from LiDAR
sensors in a single process, and then collects, converts, and transmits data to the server.
In this process, the processing of a LiDAR sensor must be completed to process the next
data of the LiDAR sensor. This makes it difficult to ensure performance in real time in
the complete system because a delay proportionate to the number of connected LiDAR
sensors occurs. In Figure 2, the right side shows the processing method that can ensure
concurrency through multiprocessing by creating multiple clients and sockets to receive
data from multiple LIDAR sensors simultaneously. The proposed processing method can
ensure performance in real time because it processes data at a fast processing time, but the
efficiency varies as per the scheduling technique. We consider a scheduling method that is
suitable for processing data from multiple LiDAR sensors.
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3. Proposed System Architecture for Multiple LiDARs Image Processing

The data fusion system is divided into hardware and software. The hardware has
communication interfaces for receiving data from LiDAR sensors, a multi-core CPU and
memory for supporting multiprocessing, and communication interfaces to output the data
of processing results. The operation procedures of the fusion system are as follows. The
client sequentially receives data through sockets, and then the process collects, parses, and
converts the data. The converted data are transmitted to the server, where the data are
merged, compressed, and transmitted to the external system. Data processing involves a
client process for the individual LiDAR sensor and a server process for aggregation and
calculation of the point cloud. To process data input from an individual LiDAR sensor,
as many clients are created as the number of sensors. The functions of the client process
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are data conversion and parsing. Input data to multiple clients are transmitted to the
server using Internal Processor Communication (IPC). The Figure 3 shows the overall block
diagram of proposed architecture that consists of multiple clients, a server, and IPC.
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3.1. Inter-Process Communication

To effectively implement multiprocessing, it is most important to optimize the internal
communication method between processes. Communication between multiple processes
involves a shared memory model and a message-passing model. In shared memory, com-
munication between multiple processes can read and write to the shared memory area
through sharing a part of the address space. When the shared memory is set, communica-
tion between multiple processes is possible without utilizing the kernel. As a result, the
processing is fast and freedom of communication is ensured. However, a unique algorithm
for synchronization between processes is needed without the kernel. In order to control
concurrent access, an access control method such as locking or semaphores should be
introduced. In this study, it is difficult to solve the synchronization problem of shared
memory because there are many processes for multiple clients and a server.

Message passing can exchange data using buffering in the kernel without sharing
memory between processes. It has the disadvantage of slower processing speed than shared
memory, but it can be implemented in a simple manner. Message passing has a variety of
models such as PIPE, Message Queue, and Socket. In this study, the socket method is used
to implement communication between multiple clients and a single server. In the socket
method, multiple processes can access through the abstract port provided by the operating
system. In the IPC socket method, a process can communicate with another process using
the port. Unlike other IPC methods, it is independent of process location and machine
boundary. Communication between multiple clients and a server is conducted by UDP.
In a fusion system for multiple LiDAR sensors, it is more important to transmit all the
data in real time than to ensure the reliability of a packet. A UDP socket does not have a
transmission buffer, so data are copied to the kernel area and deleted immediately after
transmission. In this system, there is no transmission buffer in the client socket because of
unidirectional communication. Figure 4 shows the inter-process communication between a
client and a server through UDP protocol.
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3.2. Client Structure

The processes of a fusion system involve multiple clients and a server. A fusion system
receives data from multiple LiDAR sensors through UDP communication. The client is an
I/O-bound process and is deployed with the same number of LiDAR sensors. The client
repeatedly loads and executes a process on the CPU through context switching. Each client
includes each socket, so the processed data is transmitted to the server. As the client process
frequently switches context, scheduling for processes is needed to optimize the usage of
the core.

The scheduler is composed of a task scheduler and a CPU scheduler. The task scheduler
is responsible for deciding the process to insert into the ready queue. The CPU scheduler
considers the priority among the processes loaded in memory and decides which process
should be loaded on the CPU in the order of priority. The CPU scheduler chooses a process
to allocate to the CPU as per a defined scheduling algorithm. Performance metrics for
scheduling are generally based on processor utilization, throughput, turnaround time, waiting
time, and response time. In this study, the scheduling algorithm is implemented considering
the turnaround time, waiting time, and response time. Turnaround time refers to the time
wait from arrival to the first start. Waiting time refers to waiting time in the Ready Queue.
Response time refers to the total time taken from arrival to completion. To optimize the
scheduler, the turnaround time, waiting time, and response time need to be minimized.

Scheduling for the client processes operates by non-preemptive scheduling. In this
study, a round-robin method is introduced to process the point cloud from multiple LiDAR
sensors in real time. When the point cloud for multiple LiDAR sensors is input in real time,
it is difficult to determine the priority based on a numerical value such as the amount of
work. To have a multiple LiDAR system, a round-robin method that can be performed only
within a limited processing time (called a quantum) without priority was considered. The
quantum is set within the time when the next data is input from multiple LiDAR sensors.
If the quantum is set to be long, it operates in a similar manner to the non-preemption
method, whereas if it is set to be short, context switching occurs frequently, increasing
overhead. The performance of the round-robin method depends on the quantum setting.
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3.3. Server Structure

The server is a CPU-bound process, i.e., it implements algorithms having a large
number of calculations. The receive buffer is set based on the size of one frame of each
LiDAR sensor and the number of connected LiDAR sensors. In the server, the threshold
value of the unit frame processing time of each LiDAR sensor is set based on the input
period of the LiDAR sensors. The server has three functions: data aggregation, compression,
and transmission. The server process operates continuously by monopolizing one core
and consists of three threads. Multithreading involves two or more threads performing a
task simultaneously within one process. Multithreading has the advantage of reducing the
overload of system resources by sharing the memory of the process. There are operations
such as object recognition by collecting the data of multiple LiDAR sensors, but we do not
consider them in this study. We consider only the operation of collecting and compressing
data and transmitting them to the external system. Scheduling is necessary to implement
efficient multithreading. Multithreading occupies less memory space and context switching
is fast because of the absence of cache updates. This system applies a multi-threading
method with concurrency instead of parallelism. Scheduling is implemented in a way
that considers the priority. Among the three functions, the thread collecting data has the
highest priority, followed by data compression and transmission to the external system.
The priority can be controlled using code assigned to the thread object. Thread scheduling
is divided into two types: local scheduling, in which thread scheduling is determined by
the process to which the thread belongs, and global scheduling, in which the kernel’s CPU
scheduler determines scheduling. In this study, there is no system call for synchronization,
and multithreading is implemented based on local scheduling without context switching to
maximize performance. The server operates the collection thread until data reception from
all connected clients is completed, and the collection thread occupies the CPU whenever
the socket receive buffer is full. Figure 5 shows the structure of multiple threads within
the server process. A thread library provides the programmer an API for creating and
managing threads. It provides a library entirely in user space with no kernel support and
makes it possible that invoking a function in the library results in a local function call in the
user space.
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4. Implementation and Evaluation
4.1. Experimental Environment

The fusion system is connected to up to four LiDAR sensors through Ethernet. It
exports the processed data to the external system through wired or wireless communication.
A high-resolution LiDAR sensor requires a lot of resources for data processing because
the amount of data is very large. We consider a software architecture of the fusion system
using the lightening of the algorithm in the embedded system environment. The hardware
platform for the proposed system is manufactured using NXP’s LS1028A dual-core general-
purpose process. Five Ethernet ports are configured to connect multiple LiDAR sensors.
It also includes wireless interfaces such as WiFi and LTE to communicate with external
systems. The LiDAR sensors are made by Carnavicom Co., Ltd. and the sensors employ
16 channels. Each LiDAR sensor has a wide field of view which has up to 145◦, 18,560
points per frame, and a sampling rate of 30 Hz. LiDAR sensors and the fusion system
communicate with UDP based on port and IP. The fusion system includes functions such
as collection, parsing, conversion, and formatting of data. Figure 6 shows an embedded
hardware and block diagram of the fusion system for the experiment.
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Figure 6. Hardware platform of the fusion system.

For the evaluation, the response time is measured by varying up to four LiDAR sensors
connected to the fusion system. This response time refers to the process life cycle of the
clients and the server in the fusion system for multiple LiDAR sensors. The response time
of the client process means the sum of initialization time, waiting time, operation time,
and transmission time to the server. The response time of the server process means the
time taken to receive data from the clients and export the data to the external system. As
many client threads are created as the number of connected LiDAR sensors. These threads
are allocated to core1, and the server exclusively allocates core2. The proposed system
architecture is mounted on the fusion system. We implemented GUI to evaluate the point
cloud and response time of the LiDAR sensor.

In Figure 7, the top figures show the connection of LiDAR sensors and the proposed fusion
system, the bottom figures show the GUI to evaluate the point cloud of the LiDAR sensors and
the overall block diagram of the proposed fusion system for multiple LiDAR sensors.
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4.2. Experimental Result

We measured the response time of the fusion system according to the number of
connected LiDAR sensors. In the experiment, when a single LiDAR sensor is connected to
the data fusion system, the client response time is approximately 20 ms. In contrast, the
server response time is 4 ms.

Figure 8 represents the response time comparison between sequential processing
(Server_s, Client_s) and multiprocessing (Server_m, Client_m). The red vertical lines present
the differential of response time between sequential processing and multiprocessing. As
the number of LiDARs is increasing, the differential of response time also has increased.
Although the server response time is the same, the client response time is different. As we
mentioned earlier, the sequential processing leads to linear increase in response time when
the number of LiDAR sensors is increased. However, since the multiprocessing is capable
of concurrent processing, the response time gradually converges as the number of LiDAR
sensor increases. Therefore, as the number of connected LiDAR sensors increases, the gap
of the response time between sequential processing and multiprocessing is growing.
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Figure 8. Response time comparison between sequential processing and multiprocessing.

Figure 9 represents the response time of the clients when varying from one to four
the number of connected LiDAR sensors. As the number of connected LiDAR sensors
increases, the response time of the fusion system stabilizes. It is observed that the client
response times converge to approximately 13 ms as shown in Figures 8 and 9. Furthermore,
in the experiment results the response time of the client decreases, but the response time
of the server increases based on the amount of merged data. The reason is that inside the
fusion system, multiple clients process concurrently and only one server processes the
clients’ data. In the fusion system, although a single server is used to process multiple
LiDAR sensors’ data, the response time does not exceed the processing threshold.
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5. Conclusions

This paper proposes an efficient software architecture for a fusion system that processes
data from multiple LiDAR sensors. Through an experiment it was confirmed that when the
LiDAR sensor was processed through a client, the response time increased linearly, and
therefore it is generally difficult to process multiple LiDAR sensors. Multiple clients were
implemented to process data from multiple LiDAR sensors, and a round-robin scheduler
was implemented to run multiprocessing. In the experiment, the response time decreased
as the number of LiDAR sensors increased. It was confirmed that the response time could
be shortened by preferentially processing the client whose receive buffer is full while
other clients are receiving data. The server process was implemented as a priority-based
multithread to improve efficiency. When the receive buffer is full, the collection thread
is prioritized through an interrupt. The server process confirmed that the response time
increased in proportion to the number of LiDAR sensors. In terms of the overall system, it
was confirmed that the response time converges at a specific time as the number of LiDAR
sensors increased. We can predict that if the point cloud increases, response time also
increases because of the increasing of processing time.

The results of this study can be utilized in autonomous driving systems where the
number of installed sensors is high. In the future, system optimization can be achieved
through analyses of various scheduling techniques. We will also design a software architecture
that applies an object recognition algorithm for use in the field of autonomous driving.
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