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Abstract: Traditional precise engineering surveys adopt manual static, discrete observation, which
cannot meet the dynamic, continuous, high-precision and holographic fine measurements required
for large-scale infrastructure construction, operation and maintenance, where mobile laser scanning
technology is becoming popular. However, in environments without GNSS signals, it is difficult
to use mobile laser scanning technology to obtain 3D data. We fused a scanner with an inertial
navigation system, odometer and inclinometer to establish and track mobile laser measurement
systems. The control point constraints and Rauch-Tung-Striebel filter smoothing were fused, and
a 3D point cloud generation method based on multi-sensor fusion was proposed. We verified the
method based on the experimental data; the average deviation of positioning errors in the horizontal
and elevation directions were 0.04 m and 0.037 m, respectively. Compared with the stop-and-go
mode of the Amberg GRP series trolley, this method greatly improved scanning efficiency; compared
with the method of generating a point cloud in an absolute coordinate system based on tunnel design
data conversion, this method improved data accuracy. It effectively avoided the deformation of the
tunnel, the sharp increase of errors and more accurately and quickly processed the tunnel point cloud
data. This method provided better data support for subsequent tunnel analysis such as 3D display,
as-built surveying and disease system management of rail transit tunnels.

Keywords: mobile laser scanning; 3D point cloud; inertial navigation; RTS smoothing; recursive
average filter

1. Introduction

With its fast, accurate and convenient measurement advantages, mobile laser scanning
technology is widely used in areas such as unmanned driving, 3D map construction,
deformation monitoring, smart city construction, tunnel maintenance and measurement
tasks [1–4], and rail transit with high density and short windows at train stops. The most
common method to obtain 3D point cloud data in mobile laser scanning is to combine
laser scanners with global navigation satellite system (GNSS) and inertial measurement
units (IMUs) to collect data through time synchronization and calibration of unified spatial
coordinates and fuse them to generate 3D point cloud data in an absolute coordinate
system. [5,6].

Since there is no GNSS signal in the tunnel scene, the inertial navigation system
positioning and attitude errors rapidly accumulate over time and quickly increase to
the tolerance limit of the measurement [7]. To this end, some research institutions have
developed a tunnel mobile detection system based on relative scanning, which integrates
a laser scanner, a rail inspection car and an odometer. The three-dimensional data of the
tunnel are obtained by the two-dimensional section obtained by the helical scanning of the
laser scanner according to the mileage [8]. The acquired tunnel data does not have true
three-dimensional coordinates and true alignment since the system does not have attitude
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and position measurement sensors such as inertial navigation. To obtain 3D data of scenes
without satellite signals, such as tunnels, some research teams use auxiliary equipment to
correct coordinates and obtain point clouds.

The Amberg GRP series track measurement system [9] is equipped with a reflective
prism on a trolley body. During data acquisition, the total station measures the absolute
three-dimensional coordinates of the prism center at intervals to correct the trajectory. The
maximum deviation of the point cloud coordinates is 30.3 mm, and the average deviation is
10.4 mm. Despite the high accuracy, the measurement efficiency of this stop-and-go mode is
low. In 2017, Mei Wensheng et al. studied a method of fixing a reflector on the tunnel wall or
CPIII control pile, correcting the mileage through the target center, and then combining the
design data to restore the three-dimensional point cloud in the absolute coordinate system.
Based on the three-dimensional transformation matrix, Du Liming and Han Yulong et al.
studied the unified positioning of the cross-section related to coordinate transformation
based on the relative measurement mode and tunnel design data [10,11]. The points in
the coordinate system are converted into the design route coordinate system, and the
point cloud data obtained by the relative measurement technology are processed through
the three-dimensional coordinate conversion and various transformation parameters to
realize the unified positioning and attitude correction of the scanning section and obtain
the absolute point cloud data. However, the problem with this method is that the design
data may not match the actual construction, or obtaining the design data is difficult due to
the track’s age. In our previous study [12], we proposed methods such as fitting the design
data based on the measured data and correcting the trajectory based on the segmented
control points of the tunnel to generate 3D point clouds. However, these methods also
have low absolute accuracy, cannot solve inertial navigation drift, and are only suitable for
specific tunnels and other problems.

In indoor positioning, simultaneous localization and mapping (SLAM) are more
commonly used in 3D point cloud reconstruction. Since GNSS signals are not required, the
pose estimation can be performed in closed spaces by means of the matching algorithm
before and after the point cloud to achieve fast and accurate positioning. SLAM has also
been widely used in the complete measurement of urban rail transit projects and the
positioning and modeling of underground space [13,14]. However, due to the few features
and strong repeatability of the tunnel scene, it is difficult to complete the registration of
point clouds between the front and rear frames, resulting in low positioning accuracy.

A possible solution for the above problems and to obtain high-precision 3D point cloud
data with absolute coordinates is to use control points combined with inertial navigation
to obtain high-precision trajectory data. The rail transit scene is limited by the short
skylight time and high operating pressure, and the control points cannot be arranged in
a large number and densely distributed. Therefore, it is necessary to make full use of the
observation data of the control points to constrain the inertial navigation. This is a typical
fixed interval filtering and smoothing problem. The fixed interval smoothing focuses on
the optimal estimation of the state of a fixed measurement interval, and all the observations
in the measurement interval can be used to estimate the state at any time in the interval.

The two main types of fixed interval smoothing algorithms are the two-filter smoothing
algorithm [15–17] and Rauch-Tung-Striebel (RTS) smoothing algorithm [18]. The two-
filter smoothing algorithm includes two independent filtering processes, which makes it
more complicated to implement and requires storing more variables. The RTS smoothing
algorithm combines the reverse filter and the smoothing process into a single reverse
recursive form, including a forward filtering process and the reverse smoothing process.
The structure is relatively simple, the implementation is convenient, and the calculation
efficiency is relatively high. It is more extensively used in engineering [19,20]. Jiang [21]
used the RTS smoothing algorithm for track smoothness detection and proposed the
concept of dimensionality reduction using the Kalman filter in the vertical and horizontal
directions. We draw on the above concepts and apply the RTS smoothing algorithm to
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solve the problem of constrained inertial navigation and odometry to solve the trajectory in
a non-GNSS scenario.

For the convenience of expression, we took the high-precision laser scanning sensor as
the main body and integrated multi-type sensors (inertial navigation system, odometer,
inclination sensor, gauge sensor, etc.) as the track mobile laser measurement system. The
scanner was integrated with the inertial navigation system, odometer and inclinometer
to establish and track the mobile laser measurement system, and the control points were
integrated to establish inertial navigation and odometer constraints. Combined with the
RTS smoothing algorithm, a 3D point cloud generation method based on multi-sensor
fusion was established. The error between track center points was calculated according
to the inertial navigation trajectory and the control point coordinates. The mileage and
inertial navigation attitude angle were corrected by the RTS smoothing algorithm to obtain
high-precision trajectory data; high precision was used for the inertial navigation roll angle.
The static inclinometer was used to correct the inclination, and then the three-axis attitude
angle was optimized by the recursive average filtering algorithm to suppress the jitter
noise generated by the high-frequency acquisition. Finally, the corrected data were used
to generate high-precision three-dimensional point cloud data in the absolute coordinate
system, which effectively avoided the sharp increase of deformation and errors in the
tunnel-moving scanning-point cloud. The 3D point cloud data could be used for tunnel
leakage detection, intrusion detection, completion survey, disease system management and
other follow-up tunnel analyses. They also provided good data support for applications
such as rail transit three-dimensional scene reconstruction, intelligent railway construction
and track measurement.

2. Filtering and Smoothing Theory

We proposed a method of three-dimensional point cloud generation based on multi-
sensor fusion for the rapid accumulation of inertial navigation positioning and attitude
determination errors in tunnels and other scenes without GNSS signals. This method
used a few control points, constrained inertial navigation and odometer data through RTS
smoothing algorithm, and generated three-dimensional point cloud data by fusion. In this
section, we first analyze the inertial navigation position update and error equation and
introduce the RTS smoothing algorithm.

2.1. Subsection Location Update Algorithm

The attitude update adopted the quaternion algorithm, and the quaternion algorithm
is expressed as follows:

Q(q0, q1, q2, q3) = q0 + q1i + q2 j + q3k (1)

where q0, q1, q2, q3 are real numbers, i, j and k are mutually orthogonal unit vectors
and imaginary units

√
(−1). According to the quaternion algorithm, the position can be

updated as
rR = CR

ibrb (2)

The R system is the coordinate navigation system, and the local geographic coordinate
system is used as the coordinate navigation system. The origin is at the location of the
navigation system, and the three coordinate axes point to the North East High (NEH)
direction. The i system is the IMU coordinate system, and there is an installation deviation
between the car body coordinate system, b system and IMU coordinate system. The car
body coordinate system is recorded as the b system, and the three axes of the car body
coordinate system point to the front left and upper direction of the trolley, respectively. In
Equation (2), CR

ib = CR
b Cb

i , and Cb
i is the direction cosine matrix from the car system to the

IMU coordinate system, representing the installation relationship between the IMU and car
body. CR

b is the direction cosine matrix between the IMU and the navigation system, and
the relationship between it and the attitude quaternion is
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CR
b =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (3)

which equals

CR
b =

 cosγcosϕ + sinγsinϕsinθ sinϕcosθ sinγcosϕ− cosγsinϕsinθ
−cosγsinϕ + sinγcosϕsinθ cosϕcosθ −sinγsinϕ− cosγcosϕsinθ

−sinγcosϕ sinθ cosγcosθ

 (4)

where ϕ, θ, γ represent three Euler angles, the heading, pitch and roll angles, respectively.
The trajectory estimation method was based on the combination of the uses of the

IMU and odometer. The attitude information measured by IMU and the speed information
measured by odometer for trajectory estimation and its position update equation can be
expressed as

∆r̃R = CR
b Cb

i vb (5)

where ∆r̃R = [∆rN ∆rE ∆rH ]
T is the relative displacement vector of the track measurement

car relative to the last observation position under the navigation system. The speed of the
vector car was vb = [ṽ0 0 0]T under the car system, and ṽ0 is the forward speed of the car.
When the installation error angle is small, the matrix Cb

i can be expressed as

Cb
i =

 1
−εz
εy

εz
1
−εx

−εy
εx
1

 (6)

where εx, εy, εz is the axial installation error of the IMU relative to the X-axis, Y-axis and
Z-axis of the trolley. When the odometer had a measurement error, the true speed ṽ0 can be
expressed as

ṽ0 = (1 + δk)v0 (7)

where δk is the scale factor error of the odometer, v0 is the output speed of the odometer.
In trajectory measurement, the product of inertial navigation attitude angle error and
odometer error δk, and IMU installation error εx, εy, εz is a high-order small quantity and
can be ignored.

2.2. Error Equation

In the trajectory estimation, the source of position errors mainly included the initial
IMU attitude angle, drift, inertial navigation installation and odometer speed measurement
errors. The IMU attitude angle error is obtained from the attitude error equation. The
attitude error equation of the system is expressed, as in [22]:

.
Φ

R
= −ωR

iR ×ΦR + δωR
iR − CR

b δωb
ib (8)

where ΦR =
[
∅N ∅E ∅H

]T is the attitude error angle relative to the three axes of the
navigation system, δωR

iR is the angular velocity error vector of the rotation of the navigation
system relative to the inertial system; ωb

ib represents the drift error of the three axial
gyroscopes; × denotes a vector cross product.

Since the radius of curvature of the track is usually large and the slope of the track is
small, the horizontal attitude angle of the track measurement trolley is usually small, so
each element of the direction cosine matrix CR

b is approximately expressed as

CR
b ≈

cosϕ
sinϕ
−θ

−sinϕ
cosϕ

γ

θcosϕ + γsinϕ
−γcosϕ + θsinϕ

1

 (9)

By rotating the angle around the vertical direction, the two horizontal error angles
∅N ,∅E are projected onto the forward and side directions of the trolley. The attitude error
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angles in the two directions are represented by ∅γ,∅θ and the heading error is represented
by ∅ϕ. Its conversion relationship is expressed as∅γ

∅θ

∅ϕ

 =

 cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1

∅N
∅E
∅H

 (10)

Substituting Equation (8) into Equations (6) and (7) results in
.
∅γ.
∅θ.
∅ϕ

 = −

δwb
x

δwb
y

δwb
z

+

ωγ

ωθ

ωϕ

 (11)

where
[
δwb

x δwb
y δwb

z

]T
is the equivalent gyroscope zero bias, and

[
ωγ ωθ ωϕ

]T is
the equivalent gyro angle random walk noise.

Due to the weak mobility of the measuring trolley in the railway track surveying,
there was a coupling between the systematic errors. There were few observation control
points, so it was impossible to effectively estimate all systematic errors. In short-distance
measurements, the roll angle of attitude errors did not cause significant position errors in
three directions, and the roll angle error could be ignored when constructing the Kalman
filter model. Equation (9) is [ .

φθ.
φϕ

]
= −

[
wb

y
wb

z

]
+

[
wθ

wϕ

]
(12)

Based on the above analysis, the error term was put into Equation (5) to obtain the
estimated position value ∆rR with error. According to the position update equation, the
obtained position error equation is

δ∆rR = ∆r̃R − ∆rR ≈

0 sinϕ cosϕ
0 −cosϕ sinϕ
1 0 0

∅θ

∅ϕ

δk

v0 (13)

2.3. RTS Smoothing Algorithm

Since the position of the control point measured by the total station and the estimated
trajectory error of the original data were used as the observation update for the filter in
the generation of the 3D point cloud based on multi-sensor fusion, when there was an
observation update, the error of the measured position estimate and its covariance are both
very small. However, the position measurement estimated errors and their covariances
between the two observation updates increased over time owing to residual systematic
errors. To obtain a high-precision position estimation in the whole process, as is necessary
to introduce an appropriate estimation method in the measurement interval without an
observation update so as to fully use the observation information before and after the
observation time point. This was a typical fixed interval smoothing problem.

The commonly used methods to address the issues of fixed-interval smoothing include
two-filter and RTS smoothing. Although both algorithms are theoretically equivalent, the
RTS smoothing algorithm was relatively simple to implement. The two-filter smoothing
algorithm included two independent Kalman filtering processes, which made it more
complicated to implement and required more variables to be stored. The RTS smoothing
algorithm combined the reverse filter and the smoothing process into a single reverse
recursive form, including a forward Kalman filtering process and reverse smoothing
process. The structure was relatively simple, the implementation was convenient, and the
calculation efficiency was relatively high. The RTS smoothing algorithm, jointly proposed
by Rauch, Tung and Striebel, was a classic fixed interval filtering smoothing algorithm.
In this study, we used the RTS smoothing algorithm to process the track measurement
interval data.
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The RTS smoother consists of a typical forward Kalman filter and a reverse smoother.
After each system propagation and observation update, the system state vector, error
covariance matrix and state transition matrix were recorded. After the data reached the
end, the data were smoothed in reverse from the end to the starting point. The calculation
flow of the RTS smoothing algorithm is shown in Figure 1.
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The forward filtering of the RTS smoothing algorithm is a typical Kalman filter, and
the smooth estimated value of the state vector was a weighted combination of two filtering
estimated values. The calculation is as follows:

X−t, f = FtXt−1, f

P−t, f = FtPt−1, f Ft
T + ΓtQtΓt

T

Kt, f = P−t, f Ht
T
[

HtP−t, f Ht
T + Rt

]−1

Xt, f = X−t, f + Kt

[
Zt − HtX−t, f

]
Pt, f = [I − KtHt]P−t, f

(14)

where Xt, f and Pt, f represent the optimal filter estimate and its covariance matrix of the
forward filter state vector at time t; X−t, f and P−t, f represent the optimal one-step prediction
value of the forward filter state vector at time t and its covariance matrix. Ht is the
observation matrix at time t; Kt, f is the optimal gain matrix of forward filtering at time t; Ft
represents the system state transition matrix and can be obtained from the systematic error
matrix At . Γt is the discrete noise matrix at time t for forward filtering.

The inverse smoothing process can be expressed as

Kt,b = Pt, f Ft
T
(

P−t+1, f

)−1

Xt,b = Xt, f + Kt,b

[
Xt+1,b − X−t+1, f

]
Pt,b = Pt, f + Kt,b

[
Pt+1,b − P−t+1, f

]
Kt,b

T

(15)

where Xt,b and Pt,b are the optimal smoothed estimates at time t of the RTS smoothing
algorithm and its error covariance matrix, Kt,b is the optimal smoothing gain matrix of the
RTS smoother at time t.

3. A Method of 3D Point Cloud Generation by Multi-Sensor Fusion

To solve the coordinate calculation of 3D point cloud in non-GNSS scenarios, we
propose a 3D point cloud generation method based on multi-sensor fusion. In the track
mobile laser measurement system (TMLS), to solve the calibration of the relative position
relationship of the scanner, IMU and carrier space, we defined a coordinate system fixed on
the sensor integrated frame, which was called the car body coordinate system. Firstly, the
method calculated the displacement vector from the control point to the center of the car
body according to the calibration parameters using the cloud coordinates of the control
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point in the car body coordinate system and the attitude angle of the inertial navigation
system at the same time. Next was the calculation of the coordinates of the center point of
the same section track according to the coordinates of the control point and the displacement
vector. When the track inspection trolley was placed on the track, the center point of the
track coincided with the center of the car body. We used the original attitude angle and
speed data collected by the IMU and odometer to calculate the center trajectory coordinates
of the car body and compare the track center point calculated by the control point with
the error of the calculated trajectory point at the same time as the observation update in
the Kalman filter. The odometer speed and IMU pitch were corrected using the optimal
estimates obtained after filtering and smoothing.

After the attitude error was corrected, the displacement parameters from the control
point to the track center point of the same section were changed. The corrected attitude
angle was used to recalculate the displacement vector and track center, and the calculated
error was compared with the original data to perform secondary filtering. Figure 2 shows
the overall algorithm flow chart.
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3.1. Research on Track Mobile Laser Measurement System (TMLS)

We mainly integrated sensors such as a Z + F 5016 3D laser scanner, FSINS3X inertial
navigation system, inclinometer, rail car and laptop computer in the TMLS, as shown in
Figure 3. The track trolley contained a motor, odometer and gauge measuring instruments.
It drove at a constant speed on the track at three different speeds of 0.5 m/s, 1.0 m/s, and
1.5 m/s. The odometer scale error was 0.45‰. The scanner, IMU, inclinometer, etc. were all
controlled by the laptop to start and stop. The IMU, inclination, mileage and gauge data
were transmitted to the computer in real time through the serial port and the scanner data
was recorded on its own solid-state hard disk.
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System synchronization mainly included time synchronization and space synchroni-
zation. To ensure that the scanner and IMU in the system were consistent in the time sys-
tem, and that the scanner, IMU and rail car were consistent in the space coordinate system, 
it was necessary to unify the time and space coordinates of each sensor in the system [23]. 
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Figure 3. Track Mobile Laser Measurement System (TMLS).

System synchronization mainly included time synchronization and space synchroniza-
tion. To ensure that the scanner and IMU in the system were consistent in the time system,
and that the scanner, IMU and rail car were consistent in the space coordinate system, it
was necessary to unify the time and space coordinates of each sensor in the system [23].
Figure 4 presents the coordinate definition of the main sensors in TMLS. The IMU defined
the three-dimensional coordinate axis according to the equipment design framework. One
X-axis and one Y-axis pointed to the front of the system and the others pointed to the left
side of the system. On the right side, the Z-axis was upward. The origin of the scanner co-
ordinate system was the laser emission point, the X-axis was perpendicular to the scanning
plane and pointed to the front of the scanner, that is, the front of the scanning section. The
Z-axis pointed vertically upward in the scanning plane, and the Y-axis was perpendicular
to the scanning plane. The axes were also in the scan plane and perpendicular to the XOZ
plane, forming a left-handed coordinate system.
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In terms of time synchronization, the system recorded the system time uniformly in the
IMU, inclination and trolley data using the laptop. A Z + F 5016 scanner can automatically
record the start time from the scan start time. The system time of the scanner was time
unified. In the space synchronization, we adopted the method of system calibration to
unify the space coordinate system.
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3.1.1. Hardware Equipment

The TMLS mainly included sensors such as 3D laser scanner, IMU, inclinometer and
odometer. The specific models and parameters are as follows.

(1) 3D Laser Scanner

The 3D laser scanner is a sensor that uses the principle of laser ranging to efficiently
obtain information such as the 3D coordinates and reflectivity of the measured object. We
used the Z + F 5016 three-dimensional laser scanner produced by the Z + F Company in
Germany, as shown in Figure 5, and the main technical parameters are shown in Table 1.
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Table 1. Main technical parameters of the s Z + F 5016canner.

Parameter Standard

Angle measurement accuracy 14.4”
Distance measuring error ≤1mm ± 10 ppm within range

Vertical view 320◦

Horizontal view 360◦

Scan range 0.3–365 m
Maximum point rate 1,100,000/s

Rotating speed Maximum 55 Hz
Laser divergence 0.3 mrad

Reflection system Fully enclosed rotating lens,
built-in HDR camera and LED flash

(2) Inertial measurement unit (IMU)

An IMU is a device used to measure the attitude angle and acceleration of an object.
We used a FSINS3X optical fiber strapdown inertial navigation system produced by the
Harbin Hangshi Enterprise Group, shown in Figure 6. A FSINS3X consists of fiber optic
gyroscopes, quartz flexible accelerometers, navigation computers, power modules, etc.
It can quickly measure the attitude, speed and position of moving carriers (cars, ships,
aircraft, etc.).

Through corresponding settings, the system can be combined with a GNSS, odome-
ter (ODO), Doppler log (DVL) and ultra-short baseline (USBL) to obtain more accu-
rate navigation information. Figure 6 shows the FSINS3X, and Table 2 shows its main
technical parameters.
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Table 2. Main technical parameters of a FSINS3X inertial navigation system.

Index Parameter Remark

Initial alignment
Horizontal attitude 0.02◦

0.05◦ (max) horizontal attitude angle < 80◦

Course 0.06◦

0.10◦
static start < 5 min

dynamic start < 10 min

Navigation attitude And Course hold 0.01◦/h pure inertial navigation

Positioning accuracy 0.8 nm/h pure inertial navigation
0.2%L (L is voyage) combined odometer

Maximum frequency of data transmission 2000 Hz

Other indicators

Operating temperature −40–65 ◦C

Input voltage 18~36VDC

Input current <0.6 A

Power consumption <14 W

Electrical interface RS422/CAN/NET

Dimensions 166 mm × 151 mm × 126 mm

Weight <4 kg

(3) Inclination Sensor

The inclination sensor mainly measures the track pitch angle and lateral inclination
angle in the stationary phase and is used to assist in correcting the horizontal attitude
angle of the IMU. This system selects a BW-VG527 dual-axis inclination sensor (as shown
in Figure 7). The weighing accuracy is 0.01◦, and the RS232 communication mode was
adopted. The performance indicators are shown in Table 3.

3.1.2. System Software Design

We developed a program related to the processing of point cloud data in tunnel
scanning based on TMLS using the Visual Studio 2017 platform and C++ language, which
mainly included integrated system control, data acquisition, data post-processing and other
modules. The diagram of the program design structure is shown in Figure 8.
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Table 3. Main technical parameters of a BW-VG527 inclinometer.

Index Parameter

Attitude parameters

Dynamic accuracy 0.1◦

Static accuracy 0.01◦

Resolution 0.01◦

Tilt range ±90◦

Other indicators

Maximum output frequency 100 Hz

Voltage 9–35 V DC

Working current 30 mA

Operating temperature −40–85 ◦C

Electrical interface RS232

Weight <360 g
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The program can decode the original file and generate the point cloud data in the Las
format, generate trajectory data and generate three-dimensional point cloud coordinates.
The main interface is shown in Figure 9. The main functions include system control,
data collection, ZFS format conversion to LAS format, trajectory data solution, generation
of point cloud data in relative coordinate system and point cloud data in an absolute
coordinate system.
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3.1.3. System Calibration

To complete the spatial synchronization of each TMLS sensor, we used a method of
system calibration to unify the spatial coordinate system. By calibrating the scanner, the
relative position between the scanner center and the car body was obtained, and the scanner
coordinate system and the car body coordinate system were unified. By calibrating the IMU,
the attitude angle error between IMU and the car body in the engineering coordinate system
was obtained, and the IMU coordinate system and the car body coordinate system were
unified. To prevent the horizontal attitude angle of IMU and zero-degree value of angle
measurement of the inclinometer from being parallel to the horizontal plane and closure
error of the IMU heading angle [24], the zero-degree deviation of horizontal inclination and
the closure error of the heading angle were calibrated.

(1) Scanner Calibration

In the scanner calibration, the total station and target points were used to calculate the
conversion parameters between the scanner coordinate system and the car body coordinate
system. First, we stuck four reflectors on the tunnel wall at the same section and stuck four
reflectors on the rail car. We used the total station to measure the coordinates of the centers
of these seven reflectors. The scanner was turned on to scan the area where the target
was located and extracted the target center coordinates from the point cloud, as shown in
Figure 10.
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Figure 10. Scanner Calibration.

To calculate the calibration parameter, we first defined the car body coordinate system
(RC), the scanner coordinate system (RS) and the total station coordinate system (RT). First,
the conversion parameters between RT and RS were calculated through the center points
of the four reflectors on the tunnel wall. Then we calculated the conversion parameters
between RT and RC through the three common points on the car body. Finally, the conver-
sion parameters between RS and RC were obtained through two translation rotations, and
then the point cloud data could be converted from RS to RC.

(2) IMU Calibration

The IMU coordinate system (RI) and RC could not be completely coincident due to
the influence of the instrument installation error; therefore, it was necessary to calibrate
the IMU installation angle error. Figure 11 shows the sensor coordinate systems and their
relative relations.
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In the IMU calibration, the total station was used to measure the engineering coordi-
nate system coordinates of the three points A, B and C, on the body of the rail car. According
to Equation (16), the attitude angle of the car at that time could be calculated and then
compared with the attitude angle observed by the IMU; the difference of the three-axis
attitude angle between RI and RC could be obtained. The average value was obtained
through multiple measurements of the error calibration of the IMU installation angle as
the result.
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Heading = arctan
(

yA−yB
xA−xB

)
Pitch = arcsin

(
zA−zB√

(xA−xB)
2+(yA−yB)

2+(zA−zB)
2

)

Roll = arcsin

(
zC−(zA+zB)/2√

(xC−(xA+xB)/2)2+(yC−(yA+yB)/2)2+(zC−(zA+zB)/2)2

) (16)

(3) Horizontal inclination zero deviation and heading angle closure difference calibration

We used a method of positive and negative measurement for calibration. Before
operation, we placed the stationary trolley on the track facing the direction of measurement
to measure the angle, then turned the trolley 180◦ and measured again. As shown in
Figure 12, the error between the measured horizontal inclination angle and the actual
inclination angle was ∆α. The actual inclination angle as β; therefore, the measured
value was A1 = β + ∆α. The correct inclination β = (A1−A2)

2 . The inclination correction
number between the inclinometer and the track coordinate system could be obtained using
ε1 = −∆α = − (A2+A1)

2 . The forward measurement value of IMU heading angle was ϕ f and
the reverse measurement value was ϕb. The sum of the round-trip measured values of IMU
direction angle should be 360◦. The heading closure difference was ∆ϕ = 360−

(
ϕ f + ϕb

)
and the heading angle correction number was ε2 = −∆ϕ.
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3.2. Trajectory Correction Algorithm

During the trajectory correction of the scanning trolley, first the coordinates of the
track center point of the same section were calculated according to the target point cloud
coordinates and IMU attitude angle in RC. The IMU attitude angle and odometer speed
were used to calculate the track center coordinates of the next point from the previous point
and compare the calculated coordinates of the target control point to obtain the estimated
error as an observation update to correct the odometer speed and IMU attitude angle.
Since the calculated track center point changed after correcting the attitude angle, the track
center point was recalculated using the corrected attitude angle and compared with the
original target to determine whether the error exceeds the threshold. If the error exceeded
the threshold, a secondary filtering was performed to correct it, but it did not exceed the
calculated trajectory. Figure 13 shows the trajectory correction process.
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(1) Track center point calculation

After extracting the target point cloud, according to the IMU attitude angle and car
body parameters, we calculated the displacement vector (∆X, ∆Y and ∆Z) of each target
and the center point of the track after the conversion.

The body correction in RS was:

dh = Hcarcosγ + Lcarsinγdl = Hcarsinγ− Lcarcosγ (17)

where Hcar is the vertical translation of the scanner center relative to the car body center,
and Lcar is the lateral translation of the scanner center relative to the car body center, and γ
is the roll angle at this moment.

The point cloud coordinates in the car body coordinate system were:x1
y1
z1

 =

 x0
y0 + dl
z0 + dh

 (18)

According to time alignment, we calculated the rotation parameters of each scanning
section according to the IMU attitude angle and then obtained the displacement vector of
the target relative to the track center at the same section, as shown in Figure 14:xct

yct

zct

 = RXRYRZ

x1
y1
z1

 (19)

where RX , RY, RZ are calculated by the following equations:

RX =

1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

RY =

cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

RZ =

 cosγ sinγ 0
−sinγ cosγ 0

0 0 1

 (20)

where ϕ, θ, γ represent three Euler angles, which are heading, pitch and roll angles.
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According to the position of the control point, the track center point of the section
staabs could be inversely calculated. This was used as a control point to compare the error
with the trajectory calculated from the original acquisition data of the IMU and odometer.

staabs =

xtag
ytag
ztag

−
xct

yct

zct

 (21)

where
(

xtag, ytag, ztag
)

is the coordinate of the target center measured by the total station.

(2) Original data estimation error

According to the position update algorithm, the IMU attitude angle and odometer
speed were used to calculate the line trajectory, and according to the position update
equation, the approximate displacement increment ∆S of the time t + ∆t relative to the time
t was calculated, and the time t + ∆t coordinates were

rt+∆t = rt + ∆S (22)

We obtained the track center point at the same time as the target center point, and
translated the original data to estimate the trajectory, so that the previous target calculated
track center point coincided with the corresponding time estimated trajectory point, and
the error [δ∆rN δ∆rE δ∆rH ]

T between the trajectory coordinates and the target calculated
track center point at the next moment could be calculated.

(3) RTS filter correction

In the system, the IMU zero bias instability was 0.01/h, the angle random walk noise
was 0.02/h, the odometer measurement accuracy was 0.45/1000, the target center point
coordinate measurement was measured by Leica high-precision optical total station, the
angle measurement accuracy was 0.5”, and the ranging accuracy was 1 mm + 2 × 10−6.

The trajectory estimation error of the control point corresponding to the track center
was used as the observation update and the optimal estimation of the IMU attitude angle
error and the odometer velocity error was obtained by filtering, which was used to correct
the original data and solve the track center line. The discrete Kalman filter equations in the
horizontal and vertical directions were:
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Xl(t) = FlXl(t− 1) + wl(t− 1)

Zl(t) = HlXl(t) + µl(t)

Xv(t) = FvXv(t− 1) + wv(t− 1)

Zv(t) = HvXv(t) + µv(t)

(23)

Since there was no coupling between the horizontal and vertical directions, Kalman
filter models could be established for the horizontal and vertical directions, respectively.
We selected the pitch angle, heading angle attitude error ∅θ and ∅ϕ, gyro offset sum δwb

y

and δwb
z, position error δ∆rN ,δ∆rE, δ∆rH , and odometer scale factor δk as Kalman filter

state quantities. The system state variables in the horizontal and vertical directions were

Xl(t) =


δ∆rN
δ∆rE

δk
∅ϕ

δwb
z

, Xv(t) =

δ∆rH
∅θ

δwb
y

 (24)

The displacement error observation was used as the filter update, the position obser-
vation value was provided by the total station, and the difference between the position
value and the position value measured by dead reckoning was used as the observation
update of the Kalman filter, namely,

Zl(t) =
[

δ∆rN
δ∆rE

]
, Zv(t) = δ∆rH (25)

where the system transition matrix Fl is

Fl =


1 0 v0tcosϕ v0tsinϕ − 1

2 v0t2sinϕ

0 1 v0tsinϕ v0tcosϕ 1
2 v0t2cosϕ

0 0 1 0 0
0 0 0 1 −t
0 0 0 0 1

 (26)

Fv =

1 v0t 1
2 v0t2

0 1 −t
0 0 1

 (27)

Horizontal system noise wl(t) =
[
wδk wϕ

]
, wl(t) ∼ N(0, Ql(t)), vertically wv(t) = wθ ,

wv(t) ∼ N(0, Qv(t)), where Ql(t) = diag
([

σ2
wδk

σ2
wϕ

])
, Qv(t) = σ2

wθ
is the system noise

power spectral density.
The observation matrices in the horizontal and vertical directions were

Hl =

[
1 0 0
0 1 0

0 0
0 0

]
(28)

Hv =
[
1 0 0

]
(29)

The horizontal direction observation noise could be expressed as µl(t) = [µrN µrE ]
T ,

µl(t) ∼ N(0, Rl(t)); the vertical direction is µv(t) = µrH , where µrH (t) ∼ N(0, Rv(t)) and
Rl(t) = diag

([
σ2

r σ2
r
])

; Rv(t) = σ2
r is the observed noise power spectral density.

When there are observations, they were updated to get the best estimate:

Kt, f = P−t, f Ht
T
[

HtP−t, f Ht
T + Rt

]−1

Xt, f = X−t, f + Kt

[
Zt − HtX−t, f

]
Pt, f = [I − KtHt]P−t, f

(30)
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If there was no observation update time, only the filter estimation was performed:

X−t+1, f = FtXt, f

P−t+1, f = FtPt, f Ft
T + Qt

(31)

Reverse smoothing started at the last moment, and the stated estimate and covariance
matrix obtained at the last moment by forward recursion were the initial state estimate.
The covariance matrix of the backward recursion process, which were X0,b = XM, f and
P0,b = PM, f , smoothed backward calculation according to Equation (15).

After the attitude error was corrected, the displacement vector of the target to the center
point of the track of the same section changed so that the track center was recalculated using
the corrected displacement vector. The calculated error was compared with the original
data of the IMU and odometer, and the calculated error was filtered for a second time. The
IMU attitude angle and odometer speed were corrected using the error parameters obtained
after secondary filtering, and the corrected trajectory data was obtained by calculation.

3.3. Attitude Angle Optimization Algorithm

RTS filtering smoothing only corrected the two attitude angles of heading and pitch
and not the roll angle. The roll angle error in the generation of three-dimensional point
cloud led to a torsion of point cloud. We used a high-precision inclinometer to constrain
the roll angle of the entire inertial navigation system. Due to the high acquisition frequency
of inertial navigation data, the attitude angle was prone to periodic high-frequency jitter,
resulting in the deformation of the generated three-dimensional point cloud data. For this,
the recursive average filtering algorithm was used to optimize the three-axis attitude angle
and suppress the periodic noise interference at high acquisition frequency.

(1) Inclinometer correction

The roll angle was first corrected according to the high-precision inclinometer. Since
the static measurement accuracy of the inclination angle is high, the error in the dynamic
measurement becomes larger; therefore, the IMU roll angle is corrected using the static
angle measurement at the start and end of the trolley scan. The IMU and inclinometer
roll angles measured in the static state before the trolley scanning starts are recorded
as γimua and γinca, and the difference between the two is calculated as ∆γa. After the
trolley scanning, the statically measured IMU and inclinometer roll angles are recorded as
γimub and γincb, and the difference is calculated as ∆γb. Figure 15 shows the inclinometer
roll angle and IMU roll angle.
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First, the roll angle of the IMU was modified according to the inclinometer data, and
then the error was evenly distributed according to the scan time. Assuming that the overall
scan time was Tab, and the starting time was t0, then the IMU data ti now are γimui, and the
roll angle at this moment is

γi = γimui + ∆γa + (ti − t0)
∆γb − ∆γa

Tab
(32)

(2) Recursive Averaging Filter

Since the attitude angle collected by IMU had the characteristics of a high collection
frequency and periodic change, the attitude angle was prone to periodic high-frequency
jitter. To avoid impact on the point cloud generation, a method of recursive average filtering
was used to optimize the corrected three-axis attitude angle to suppress this high-frequency
periodic error interference.

The recursive average filtering method regarded N consecutive sampling values as
a queue, and the length of the queue was fixed as N. Each time a new data point was
sampled and placed at the end of the queue, the original data at the head of the queue
were discarded according to the principle of first-in, first-out. The N data in the queue
were arithmetically averaged to obtain a new filtering result. It had a good inhibitory
effect on periodic interference, and the smoothness was high, which was suitable for high-
frequency oscillation systems. Figure 16 shows the comparison curve before and after
recursive average filtering. It was seen from the filtered and the original attitude angles
that while maintaining the overall consistency, the method eliminated high-frequency jitter
and oscillation, and the data was smooth and more stable.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 27 
 

 
Figure 16. Recursive average filter effect. 

3.4. 3D Point Cloud Data Generation Method 
According to the transformation relationship between the coordinate systems and 

the model parameters, the scan data were converted from RS to RC using the calibration 
parameters of the system. Combined with the optimized attitude angle data and RTS 
smooth correction and solution trajectory data, the point cloud data in the absolute coor-
dinate system were obtained by converting the point cloud data in RC. 

After filtering and correction, the coordinate of the center point of the track were [𝑋௖ 𝑌௖ 𝑍௖]், the coordinates of the point cloud in RC were [𝑥ଵ 𝑦ଵ 𝑧ଵ]், and then 
the coordinates of the point cloud in the absolute coordinate system were 

൥𝑋𝑎𝑏𝑠𝑌𝑎𝑏𝑠𝑍𝑎𝑏𝑠൩ = ൥𝑋௖𝑌௖𝑍௖൩ + 𝑅𝑋𝑅𝑌𝑅𝑍 ൥𝑥1𝑦1𝑧1൩ (33) 

Through the point cloud calculation formula of Formula (33), the original data ob-
tained by the scanner were solved into three-dimensional point cloud data in the absolute 
coordinate system by using the post-processing data of the inertial navigation unit and 
the transformation principle of the coordinate system. Figure 17 shows the overall effect 
of the points after the absolute 3D point cloud was generated, in which the tags were the 
positions of the four target points measured by the total station. 

 
Figure 17. Point cloud generation overall effect. 

Figure 16. Recursive average filter effect.

3.4. 3D Point Cloud Data Generation Method

According to the transformation relationship between the coordinate systems and the
model parameters, the scan data were converted from RS to RC using the calibration pa-
rameters of the system. Combined with the optimized attitude angle data and RTS smooth
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correction and solution trajectory data, the point cloud data in the absolute coordinate
system were obtained by converting the point cloud data in RC.

After filtering and correction, the coordinate of the center point of the track were[
Xc Yc Zc

]T , the coordinates of the point cloud in RC were
[
x1 y1 z1

]T , and then the
coordinates of the point cloud in the absolute coordinate system wereXabs

Yabs
Zabs

 =

Xc
Yc
Zc

+ RXRYRZ

x1
y1
z1

 (33)

Through the point cloud calculation formula of Formula (33), the original data ob-
tained by the scanner were solved into three-dimensional point cloud data in the absolute
coordinate system by using the post-processing data of the inertial navigation unit and
the transformation principle of the coordinate system. Figure 17 shows the overall effect
of the points after the absolute 3D point cloud was generated, in which the tags were the
positions of the four target points measured by the total station.
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4. Results

To verify the 3D point cloud generation method based on multi-sensor fusion, a test
experiment was conducted at a track test site in Beijing. The test section was about 260 m
and included straight and curved sections. As shown in Figure 18, there were multiple
pairs of CPIII control point piles beside the experimental track line. In the experiment,
a GNSS and IMU integrated navigation system was installed to obtain trajectory data,
which were used to compare the deviation with the trajectory data calculated by the RTS
smoothing algorithm. We used the integrated navigation method to generate 3D point
cloud data and compared it with the multi-sensor fusion method to generate a 3D point
cloud to verify the point accuracy and root mean square error.

4.1. Experimental Overview

We verified the experimental data of the test site, hardware system and research
algorithm. In the experiment, the car with the integrated navigation system was installed as
a reference to obtain the trajectory data and generate the 3D point cloud. These values were
compared to the 3D point cloud generation method based on multi-sensor fusion. In the
integrated navigation system, the GNSS obtained the satellite observation information, and
the IMU obtained the three-axis attitude angle. The GNSS reference station was manually
erected to improve positioning accuracy. The GNSS and IMU integrated navigation track
measurement system [25] had a lateral deviation accuracy of 2 mm and a vertical deviation
measurement accuracy of 2 mm.

This section of the track consisted of straight and curved sections. Four CPIII control
pile points with different distances were selected as control points on the line to verify the
correction effect and accuracy at different distances. The control points were measured
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by a high-precision Leica total station and polar coordinate method. At the same time,
satellite receivers were installed at a Leica total station and outside the site to facilitate
the orientation of the total station and the conversion between satellite coordinate data
and the engineering coordinate system. Figure 19 shows the overall distribution of targets,
Figure 20 shows the target photo (left) and the point cloud extraction target (right).
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4.2. Filtered Smooth Trajectory Verification

In the experiment, firstly, the trajectory was calculated before and after the correction
of the IMU attitude angle, and the odometer speed was compared with the trajectory
obtained by integrated navigation. Figure 21 shows the error comparison of the trajectories
before and after the filter correction and the integrated navigation solution. Before the
filter correction, the trajectory deviation gradually increased with an increase in distance.
After the filter correction, the error level was greatly improved. In Figure 21, “a simple
IMU position calculation deviations”, the track coordinate was obtained by using only the
original data of the IMU and odometer.
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As shown in Table 4, the trajectory deviation before filter correction gradually in-
creased with the distance. After filtering and correction, the maximum lateral deviation
was 0.0482 m, the average deviation was 0.0239 m, the vertical maximum deviation was
0.0405 m, and the average deviation was 0.0138 m.

Table 4. Comparison of trajectory deviation between before and after filter correction and
integrated navigation.

Mileage Location(m) Deviation before Filtering Correction Deviation after Filtering Correction
Lateral Deviation(m) Vertical Deviation(m) Lateral Deviation(m) Vertical Deviation(m)

5 0.0347 0.0307 0.0347 0.0307
30 −0.0145 −0.0089 0.0052 −0.0009
55 −0.0633 −0.0492 0.0086 −0.0056
80 −0.1116 −0.0862 0.0060 −0.0026

105 −0.1523 −0.1229 0.0028 0.0038
130 −0.1644 −0.1685 0.0080 0.0018
155 −0.1794 −0.2135 0.0021 0.0000
180 −0.1916 −0.2592 0.0312 0.0026
205 −0.2538 −0.3729 0.0482 −0.0330
230 −0.2150 −0.3895 0.0440 −0.0301
255 −0.1420 −0.3692 −0.0420 0.0405

Average 0.1384 0.1882 0.0239 0.0138

4.3. Accuracy of Point Cloud Restoration

To verify the accuracy of the point cloud restoration, the restored point cloud target
and the control point target were first compared, and then several combined navigation
solution point clouds and multi-sensor fusion generated point cloud data were selected
for comparison with the same name feature points. Analysis showed that the root mean
square error of the feature points with the same name was 0.0214 m. Figure 22 shows the
point cloud extraction target and target measurement position. Table 5 is the Point cloud
extraction target and target measurement error. Figure 23 shows the multi-sensor fusion
generated point cloud and integrated navigation generated point cloud with the same
name point selection.
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Figure 22. Point cloud extraction target and target measurement position.

Table 5. Point cloud extraction target and target measurement error.

Target North
Error(m)

East
Error(m)

Height
Error(m)

Horizontal
Deviation(m)

Elevation
Deviation(m)

tag1 0.0107 0.0000 0.0000 0.0107 0.0000
tag2 −0.0081 0.0008 0.0003 0.0081 0.0003
tag3 −0.0107 0.0038 0.0005 0.0113 0.0005
tag4 0.0276 0.0129 0.0012 0.0305 0.0012

Average 0.0143 0.0044 0.0005 0.0152 0.0005
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Figure 23. Multi-sensor fusion generated point cloud and integrated navigation generated point
cloud with the same name point selection.

As shown in Table 6, comparing the three-dimensional point cloud data generated by
multi-sensor fusion and the three-dimensional point cloud data generated by integrated
navigation, the overall point error could be controlled within 0.04 m. The maximum
deviation of points in the horizontal direction was 0.036 m, and the average deviation was
0.0226 m; the maximum deviation in the elevation direction was 0.0391 m, and the average
deviation was 0.0136 m.
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Table 6. Error of the same name point generated by multi-sensor fusion and point cloud generated
by integrated navigation.

Point ID North
Error(m)

East
Error(m)

Height
Error(m)

Horizontal
Deviation(m)

Elevation
Deviation(m)

1 −0.0126 0.0105 0.0009 0.0164 0.0009
2 0.0081 −0.0082 0.0031 0.0115 0.0031
3 −0.0089 0.0294 0.0391 0.0307 0.0391
4 0.0072 0.0294 −0.0054 0.0303 0.0054
5 −0.0073 0.0341 −0.0132 0.0348 0.0132
6 −0.0089 0.0349 −0.0199 0.0360 0.0199

Average 0.0088 0.0244 0.0136 0.0266 0.0136

5. Discussion

The value of the tunnel laser measurement system and 3D point cloud generation
method can be discussed from the following aspects.

First, from the working mode, most of the existing railway scanning systems obtain
3D point cloud data based on GNSS and IMU integrated navigation and scanner fusion.
Since there is no GNSS signal in the tunnel scene, the traditional tunnel relative scanning
system mainly integrates the scanner and odometer to obtain the point cloud data under
the relative coordinate system expanded by mileage. To solve the problem of obtaining the
absolute coordinates and real geometric forms of point cloud data in a relative coordinate
system, Mei et al. and Du et al. both adopted the method of combining design data with
point cloud data in a relative coordinate system to generate three-dimensional point cloud
data in an absolute coordinate system based on mileage correspondence. However, this
method has problems in that construction may not conform to the design. To solve this
problem, Han et al. proposed a method of designing a data correction trajectory based on
measurement data fitting to generate 3D point cloud data in an absolute coordinate system.
Some other teams have adopted another method, directly establishing an absolute scanning
system, integrating scanners, inertial navigation and odometers and other auxiliary means
to make it suitable for tunnel scenes. A typical case is the Amberg GRP5000. The Amberg
GRP5000 integrates a scanner, inertial navigation and odometer; a prism is placed above
the scanner. Stopping the trolley at intervals during scanning and using the total station to
measure the prism coordinates corrects the trajectory. The TMLS established in this study
integrates a scanner, inertial navigation, odometer and inclinometer. Placing targets in
the scanning section does not need to stop measuring control points halfway, which can
improve efficiency, simplify the operation process and make the generated point cloud data
more uniform and stable.

Secondly, from the perspective of measurement accuracy, generally based on the
combination of relative scanning and design data, the absolute accuracy of the point cloud
is about 0.1 m. The maximum error of the Amberg GRP5000 point cloud is 30.3 mm. The
absolute measurement accuracy of the point cloud in this study is 40 mm. In the tunnel
scene, the measurement accuracy of this method was slightly lower than Amberg’s, but the
efficiency was improved.

Finally, at present, we are also studying the point cloud SLAM algorithm. SLAM is
more often used for 3D point cloud reconstructions in GNSS-free scenarios. However, due
to the characteristics of the tunnel scene with few feature points, the SLAM algorithm is
challenged, and corresponding research is needed to adapt it to the tunnel scene.

The method we proposed in this study could effectively avoid the deformation of the
tunnel and the sharp increase of the error and provide better data support for follow-up
tunnel analyses of the rail transit tunnel, such as three-dimensional displays, completion
measurements, disease system management and so on.

This study has achieved certain results in the research of mobile scanning point cloud
generation, but there are still problems that need to be further studied. In the system
integration, since the PPS pulse signal cannot be used in a non-GNSS environment, the
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time synchronization between the scanner and the IMU equipment is synchronized with
the computer system time, and there is a risk of time misalignment. We need to continue to
explore more accurate time synchronization methods in our follow-up.

6. Conclusions

In areas where there is no GNSS signal, such as in the tunnels, relying solely on IMU
calculation results in positioning and attitude errors rapidly accumulating beyond the limit.
We proposed TMLS, a mobile laser scanning measurement system with a high-precision
laser scanning sensor as the main body and integrated multi-type sensors mounted on
rail cars. The method mainly integrated sensors such as a Z + F 5016 3D laser scanner,
FSINS3X inertial navigation system, inclinometer, rail car and laptop computer in the
TMLS, and developed related processing programs to realize the original point cloud. The
decoding of the file generated Las data, the solution generated trajectory data, and the three-
dimensional point cloud coordinates were solved. A 3D point cloud generation method
based on multi-sensor fusion was designed. The method used the target as the control
point, applied the RTS smoothing algorithm to correct the attitude angle and odometer
speed of the IMU, calculated the trajectory data, used a high-precision inclinometer to
correct the IMU roll angle, and used a recursive average filtering algorithm to optimize the
three-axis attitude angle and suppress high-frequency jitter noise. Finally, 3D point cloud
data were generated.

Finally, the hardware system and the algorithm were experimentally verified in a test
experiment. The 3D point cloud generation method based on multi-sensor fusion was
verified in the track scene. The experimental data was scanned at a test site of about 260 m in
Beijing, using a Z + F 5016 three-dimensional laser scanner and FSINS3X inertial navigation
system. In the experiment, the car with the GNSS and IMU integrated navigation system
installed was used to calculate and compare the trajectory and trajectory deviation before
and after filter correction. The accuracy of the 3D point cloud generation method based on
multi-sensor fusion was experimentally verified. Controlled at 0.037 m, the elevation error
was controlled at 0.04 m.

Our proposed method in this study can process the tunnel point cloud data more
accurately and quickly and can effectively avoid the deformation of the tunnel and the
sharp increase of the error.
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