Linear Tool Path-Smoothing Method in High-Speed Machining Based on Error Feasible Area and Curvature Optimization
Abstract
:1. Introduction
2. B-Spline Corner Smoothing Method
2.1. B-Spline Curve
2.1.1. Error Feasible Area
2.1.2. G3 Continuity
2.1.3. Corner Transition Length Constraint
2.2. Curvature Optimization
2.3. Summary of the Proposed Method
3. Simulation Experiment Verification
3.1. Example 1: The 2D Tool Path
3.1.1. Curvature and Curvature Derivative
3.1.2. Machining Time and Kinematic Fluctuation
3.2. Example 2: The 3D Tool Path
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ferry, W.B.; Altintas, Y. Virtual five-axis flank milling of jet engine impellers part I: Mechanics of five-axis flank milling. J. Manuf. Sci. Eng. 2008, 130, 11005. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, P.; Zhang, H.; Zhao, M. A Local and Analytical Curvature-Smooth Method with Jerk-Continuous Feedrate Scheduling along Linear Toolpath. Int. J. Precis. Eng. Manuf. 2018, 19, 1529–1538. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, M.; Ye, P.; Zhang, H. A G4 continuous B-spline transition algorithm for cnc machining with jerk-smooth feedrate scheduling along linear segments. Comput.-Aided Des. 2019, 115, 231–243. [Google Scholar] [CrossRef]
- Wu, K.; Krewet, C.; Kuhlenkötter, B. Dynamic performance of industrial robot in corner path with CNC controller. Robot. Comput.-Integr. Manuf. 2018, 54, 156–161. [Google Scholar] [CrossRef]
- Pessoles, X.; Landon, Y.; Rubio, W. Kinematic modelling of a 3-axis NC machine tool in linear and circular interpolation. Int. J. Adv. Manuf. Technol. 2010, 47, 639–655. [Google Scholar] [CrossRef]
- Yang, K.M.; Shi, C.; Ye, P.Q.; Lv, Q. Smooth transfer control algorithm for continuous segment trajectory in computer numerical control systems. J. Tsinghua Univ. (Sci. Technol.) 2007, 47, 1295–1299. [Google Scholar]
- Bi, Q.; Wang, Y.; Zhu, L.; Ding, H. A practical continuous curvature Bezier transition algorithm for high-speed machining of linear tool path. In Intelligent Robotics and Applications, Proceedings of the 4th International Conference, (ICIRA 2011), Aachen, Germany, 6–8 December 2011; Jeschke, S., Liu, H., Schilberg, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 465–476. [Google Scholar]
- Xu, D.; Jie, H.; Li-Min, Z. A locally optimal transition method with analytical calculation of transition length for computer numerical control machining of short line segments. Proc. Inst. Mech. Eng. 2018, 232, 2409–2419. [Google Scholar]
- Pateloup, V.; Duc, E.; Ray, P. B-spline approximation of circle arc and straight line for pocket machining. Comput.-Aided Des. 2010, 42, 817–827. [Google Scholar] [CrossRef]
- Zhang, L.B.; You, Y.P.; He, J.; Yang, X.F. The transition algorithm based on parametric spline curve for high-speed machining of continuous short line segments. Int. J. Adv. Manuf. Technol. 2011, 52, 245–254. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, L.M.; Ding, H. A real-time look-ahead interpolation methodology with curvature-continuous b-spline transition scheme for cnc machining of short line segments. Int. J. Mach. Tools Manuf. 2013, 65, 88–98. [Google Scholar] [CrossRef]
- Han, J.; Jiang, Y.; Tian, X.; Chen, F.; Lu, C.; Xia, L. A local smoothing interpolation method for short line segments to realize continuous motion of tool axis acceleration. Int. J. Adv. Manuf. Technol. 2018, 95, 1729–1742. [Google Scholar] [CrossRef]
- Sencer, B.; Ishizaki, K.; Shamoto, E. A curvature optimal sharp corner smoothing algorithm for high-speed feed motion generation of NC systems along linear tool paths. Int. J. Adv. Manuf. Technol. 2015, 76, 1977–1992. [Google Scholar] [CrossRef]
- Farouki, R.T. Construction of G2 rounded corners with Pythagorean-hodograph curves. Comput. Aided Geom. Des. 2014, 31, 127–139. [Google Scholar] [CrossRef]
- Shi, J.; Bi, Q.Z.; Wang, Y.H.; Liu, G. Development of real-time look-ahead methodology based on quintic PH curve with G2 continuity for high-speed machining. Appl. Mech. Mater. 2014, 464, 258–264. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, F.; Tao, T.; Mei, X. A newly developed corner smoothing methodology based on clothoid splines for high speed machine tools. Robot. Comput.-Integr. Manuf. 2021, 70, 102106. [Google Scholar] [CrossRef]
- Fan, W.; Lee, C.H.; Chen, J.H. A realtime curvature-smooth interpolation scheme and motion planning for CNC machining of short line segments. Int. J. Mach. Tools Manuf. 2015, 96, 27–46. [Google Scholar] [CrossRef]
- Yang, X.; You, Y.; Yang, W.A. Simultaneous optimization of curvature and curvature variation for tool path generation in high-speed milling of corners. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 68. [Google Scholar] [CrossRef]
- Tulsyan, S.; Altintas, Y. Local toolpath smoothing for five-axis machine tools. Int. J. Mach. Tools Manuf. 2015, 96, 15–26. [Google Scholar] [CrossRef]
- Zhang, Y.; Mingyong, Z.; Peiqing, Y.; Jiang, J.; Zhang, H. Optimal curvature-smooth transition and efficient feedrate optimization method with axis kinematic limitations for linear toolpath. Int. J. Adv. Manuf. Technol. 2018, 99, 169–179. [Google Scholar] [CrossRef]
- Du, X.; Wang, B. A C3-continuous NURBS transition scheme for the CNC machining of short linear segments. Precis. Eng. 2022, 73, 1–10. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, Y.; Yang, J.; Zhang, D. An analytical C3 continuous local corner smoothing algorithm for four-axis computer numerical control machine tools. J. Manuf. Sci. Eng. 2018, 140, 051004. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, Y.; Jin, X.; Yang, J. A real-time C3 continuous tool path smoothing and interpolation algorithm for five-axis machine tools. J. Manuf. Sci. Eng. 2020, 142, 041002. [Google Scholar] [CrossRef]
- Sun, S.; Altintas, Y. A G3 continuous tool path smoothing method for 5-axis CNC machining. CIRP J. Manuf. Sci. Technol. 2021, 32, 529–549. [Google Scholar] [CrossRef]
- Sun, S. A G3 continuous five-axis tool path corner smoothing method with improved machining efficiency and accurately controlled deviation of tool axis orientation. Int. J. Adv. Manuf. Technol. 2022, 119, 7003–7024. [Google Scholar] [CrossRef]
- Xu, F.; Sun, Y. A circumscribed corner rounding method based on double cubic B-splines for a five-axis linear tool path. Int. J. Adv. Manuf. Technol. 2018, 94, 451–462. [Google Scholar] [CrossRef]
- Moore, P.; Molloy, D. Efficient Energy Evaluations for Active B-Spline/NURBS Surfaces. Comput.-Aided Des. 2014, 47, 12–31. [Google Scholar] [CrossRef]
- Lee, A.C.; Lin, M.T.; Pan, Y.R.; Lin, W.Y. The feedrate scheduling of nurbs interpolator for CNC machine tools. Comput.-Aided Des. 2011, 43, 612–628. [Google Scholar] [CrossRef]
- Lai, J.Y.; Lin, K.Y.; Tseng, S.J.; Ueng, W.D. On the development of a parametric interpolator with confined chord error, feedrate, acceleration and jerk. Int. J. Adv. Manuf. Technol. 2008, 37, 104–121. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Yang, J.; Ding, H. An adaptive feedrate scheduling method with multi-constraints for five-axis machine tools. In Proceedings of the International Conference on Intelligent Robotics and Applications 2015, Portsmouth, UK, 24 August 2015; Springer: Cham, Switzerland, 2015; pp. 553–564. [Google Scholar]
- Barre, P.; Bearee, R.; Borne, P.; Dumetz, E. Influence of a jerk controlled movement law on the vibratory behaviour of highdynamics systems. J. Intell. Robot. Syst. 2005, 42, 275–293. [Google Scholar] [CrossRef]
Maximal Curvature (mm−1) | Maximal Curvature Derivative (mm−2) | Machining Time (s) | Maximal Contour Deviation (mm) | |
---|---|---|---|---|
(a) The 2D tool path | ||||
Zhao’s method | 13.3 | 162.3 | 0.478 | 0.05 |
Sun’s method | 6.1 | 43.2 | 0.457 | 0.05 |
Proposed method (base) | 5.1 | 37.5 | 0.428 | 0.05 |
(b) The 3D tool path | ||||
Zhao’s method | 22.8 | 446.8 | 1.58 | 0.05 |
Sun’s method | 9.6 | 89.4 | 1.53 | 0.05 |
Proposed method (base) | 7.0 | 65.8 | 1.5 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; You, Y. Linear Tool Path-Smoothing Method in High-Speed Machining Based on Error Feasible Area and Curvature Optimization. Appl. Sci. 2022, 12, 9443. https://doi.org/10.3390/app12199443
Yang X, You Y. Linear Tool Path-Smoothing Method in High-Speed Machining Based on Error Feasible Area and Curvature Optimization. Applied Sciences. 2022; 12(19):9443. https://doi.org/10.3390/app12199443
Chicago/Turabian StyleYang, Xuefeng, and Youpeng You. 2022. "Linear Tool Path-Smoothing Method in High-Speed Machining Based on Error Feasible Area and Curvature Optimization" Applied Sciences 12, no. 19: 9443. https://doi.org/10.3390/app12199443
APA StyleYang, X., & You, Y. (2022). Linear Tool Path-Smoothing Method in High-Speed Machining Based on Error Feasible Area and Curvature Optimization. Applied Sciences, 12(19), 9443. https://doi.org/10.3390/app12199443