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Abstract: Linear tool path is widely used in high-speed NC machining. However, the geometrical
discontinuity of the corner between the linear tool paths will lead to fluctuations in speed, acceleration
and jerk, which can excite machinery vibration and reduce the machining efficiency and surface
quality. To solve these problems, a novel corner smoothing method based on error feasible area and
curvature optimization is proposed in this paper. Compared with most traditional corner smoothing
methods using higher-order curves with all control points lying in the straight segment and inside
of the tool path, the proposed method constructs B-spline transition curves with smaller curvatures
to smooth the corners by reasonably distributing the curve control points inside and outside the
straight line segment of the tool path (i.e., error feasible area). Furthermore, the corner transition
curve is optimized by the minimum curve curvature extreme to improve the smoothness of the corner
transition curve and reduce fluctuation in the kinematic profiles while respecting the G3 continuity
(i.e., curvature-smooth), transition length limits and the uniqueness of curvature extremum. Finally,
the simulation results show that the proposed method can reduce the curvature value and improve
the smoothness of the curve and the minimum transitional velocity of the corner, which means that it
can enhance machining efficiency and weaken machining vibration. The feasibility and effectiveness
of the method are also verified.

Keywords: high-speed machining; error feasible area; curvature; G3 continuity; corner smoothing

1. Introduction

With the development of manufacturing technology, the requirement of machining
efficiency and quality is becoming more and more important in the field of molds, im-
pellers, aerospace and other complex parts [1]. Some commercial computer-aided design
(CAD)/computer-aided manufacturing (CAM) software is also widely used to generate
the tool path of complex parts, which is usually represented by straight-line segments [2,3].
However, due to the discontinuity of the tangent and curvature of the corner point between
the linear tool paths, the speed, acceleration and jerk are discontinuous and the phenomena
of acceleration and deceleration occur frequently. These factors will reduce the machin-
ing efficiency and produce violent vibration, which will also affect the machining quality
and accuracy [4]. Therefore, it is of great significance to improve the smooth transition
performance of the linear tool path.

In recent years, the corner smoothing method has been an effective method for achiev-
ing a high-speed continuous motion along a linear tool path, which has been widely studied.
Pessles et al. [5] and Yang KM et al. [6] inserted an arc in the middle of the double linear
tool path to make the tool path reach G1 continuity (i.e., speed-continuous). Subsequently,
higher-order curves, such as Bezier, B-spline, PH or other curves were used to smooth
corners and achieve G2 continuity (i.e., curvature-continuous), which can obtain good
acceleration characteristics and low machining vibration. Bi et al. [7] developed a curva-
ture smoothing algorithm based on a cubic Bezier curve to smooth the linear tool path of
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high-speed machining. This method realized G2 continuity and improved the feed speed. A
similar curve with eight control points lying in the straight segment and inside the tool path
was constructed to smooth the linear tool path in Du et al. [8] and they further optimize the
curvature variation energy (CVE) to obtain good motion performance. The similar distribu-
tion of control points also appears in the following literature. Pateloup et al. [9] utilized
triple B-spline to connect adjacent liner tool paths and achieve G2 continuity. The accuracy
of the tool path and the smoothness of the feed speed were improved. Zhang et al. [10],
Zhao et al. [11] and Han et al. [12] also used the same B-spline for realizing smaller cur-
vature extrema to increase the transition speed. Sencer et al. [13] used quintic B-spline
to smooth the path corners to ensure G2 continuity and optimal curvature. Farouki [14]
developed a corner smoothing algorithm with G2 continuity based on the quintic PH curve.
Shi et al. [15] also used the quintic PH curve to smooth the corners of a three-axis tool
path, which can accurately limit the approximation error. Huang et al. [16] applied clothoid
splines to develop a novel corner smoothing method with G2 continuity.

In addition, some scholars [17–21] found that there are potentials of the G3 (i.e.,
curvature-smooth) continuous tool path in suppressing machining vibration in experiments.
Fan et al. [17] used two quartic Bezier curves to obtain a G3 continuous tool path where the
curvature variation energy was optimized and the G3 tool path could generate smaller jerk
than a G2 tool path. Similarly, in our previous work, we introduced a method of generating
a G3 continuous tool path from a symmetric Bezier curve [18]. Tulsyan et al. [19] and
Zhang et al. [20] applied quintic B-spline curves to obtain tool paths with G3 continuity.
An analytical NURBS curve was inserted into the corners between linear segments for
improving the smoothness of the linear toolpath and the machining efficiency [21]. In
addition, others also extend the smoothing methods with G3 continuity to four-axis and
five-axis tool paths [22–24]. Hu et al. [22,23] successfully developed a quintic PH spline
to obtain a G3 continuous smoothing toolpath. Sun et al. [24,25] used the Bezier curve to
construct a G3 continuous tool path in five-axis machining. This literature also verifies
that a G3 continuous path can generate smoother speed and acceleration curves, and
fluctuation in the acceleration and jerk profiles is effectively constrained to obtain good
machining quality.

From the above related literature, we know that a transition curve with better curvature
performance can enhance machining efficiency and surface quality. When constructing
the corner transition curve, the main feature of these methods is that the control points
are located in the straight segment and inside between the linear tool paths and the error
constraint, mainly referring the maximum error of the midpoint of a corner between
linear tool paths. To obtain the smaller curvature extreme of the corner transition curve,
Sun et al. [26] developed a method of connecting the linear tool path with nine control
points, which lay two control points outside the straight segment of the tool path, but this
method only ensured G2 continuity. This also shows that there is still potentiality for the
decrease in curvature extreme value and the improvement of smoothness at the corners.
According to the above discussion, in order to ensure the surface quality and machining
efficiency of the workpiece, this study reasonably determines all control points of the curve
within the error feasible area of the tool path, that is, all control points can be distributed
inside and outside the straight line segment of the tool path. Moreover, the curvature will
be further optimized and the G3 continuous tool path can be obtained.

The rest of this paper is arranged as follows. Section 2 introduces the principle of the
corner-smoothing method. In Section 3, two examples are designed to verify the proposed
method, and the simulation results are analyzed. The conclusion is given in Section 4.

2. B-Spline Corner Smoothing Method

This section introduces a corner smoothing method using B-spline to generate contin-
uous smooth motion and improve machining efficiency.
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2.1. B-Spline Curve

The B-spline curve C(u) is applied to smooth the corner between the linear tool paths,
which can be defined as follows [27]:

C(u) =
n

∑
i=0

Ni,p(u)Pi u ∈ [0, 1] (1)

where n + 1 and p represent the number of control points and the order of B-spline,
respectively. They are set as 9 and 4, respectively. The knot vector is constructed as [0 0 0 0
0 1/5 2/5 3/5 4/5 1 1 1 1 1]. The basic functions Ni,p(u) are given as:

Ni,0(u) =

{
1 if ui ≤ ui+1

0 else
Ni,p(u) =

u−ui
ui+p−ui

Ni,p−1(u)+
ui+p+1−u

ui+p+1−ui+1
Ni+1,p−1(u)

(2)

where 0/0 = 0.
Additionally, the B-spline curve can be simplified as:

C(u) =
8

∑
i=0

Ai(u)Pi u ∈ [0, 1] (3)

where Ai(u),(i = 0, 1, . . . , 8) is a polynomial, which can be deduced from the basis function
Ni,p(u). The detailed descriptions Ai(u) are given in Appendix A.

The derivative of B-spline can be expressed as:

C(u)′ =
dC(u)

du
=

8

∑
i=0

Ai(u)′Pi u ∈ [0, 1] (4)

C(u)′′ =
d2C(u)

du2 =
8

∑
i=0

Ai(u)′′ Pi u ∈ [0, 1] (5)

C(u)′′′ =
d3C(u)

du3 =
8

∑
i=0

Ai(u)′′′ Pi u ∈ [0, 1] (6)

In the process of moving along the transition curve C(u), the velocity v, acceleration a
and jerk j are typical kinematic parameters, whose vector form can be expressed:

→
v = dC(u)

ds
ds
dt = v

→
T

→
a = d2C(u)

ds2 ( ds
dt )

2
+ dC(u)

ds
d2s
dt2 = kv2

→
N + a

→
T

→
j = d3C(u)

ds3 ( ds
dt )

3
+ 3 d2C(u)

ds2
ds
dt

d2s
dt2 + d3s

dt3
dC(u)

ds = ( dk
ds v3 + 3avk

)→
N + (j− k2v3

)→
T

(7)

where

v =
ds
dt

, a =
d2s
dt2 , j =

d3s
dt3 ,

→
T =

dC(u)
ds

/‖dC(u)
ds
‖ ,
→
N =

d2C(u)
ds2 /‖d2C(u)

ds2 ‖ (8)

k =
‖C(u)′ × C(u)′′ ‖
‖C(u)′‖3 (9)

In Equation (7), t, s and k denote time, arc length and curvature, respectively. As shown
in Equation (7), the actual machine motion along the tool path is related to the profiles of
the kinematic parameters (i.e., v, a and j) and the continuity of geometric parameters (i.e.,
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k and dk/ds). Therefore, in order to enhance the machining efficiency, it is necessary to
strengthen the smoothness of the tool path.

For convenience of description, the control point Pi(i = 0, 1, . . . , 8) of the transition
curve in the multi segment linear tool path can be given as Pj,i(j = 0, 1, . . . , N, i = 0, 1, . . . , 8),
N represents the number of corners. In order to obtain the control points, the error feasible
area, G3 continuity and curvature optimization are discussed as follow.

2.1.1. Error Feasible Area

As shown in Figure 1, {C0 , . . . ,C4} represents a linear tool path. The transition
allowable error ε denotes the distance between the dotted line and the tool path. The area
between two dashed lines is defined as the error feasible area. θ is the angle between

the unit vector
→
T1 and

→
T2.

→
T1 =

→
CiCi−1/‖CiCi−1‖,

→
T2 =

→
CiCi+1/‖CiCi+1‖,

→
T3 = (

→
T1 +

→
T2)/‖

→
T1 +

→
T2‖ and

→
T4 = (

→
T2 −

→
T1)/‖

→
T2 −

→
T1‖. To achieve the allowable error of tool path

corner transition, the reconstructed tool path should be within the error feasible area.
Depending on the convex hull characteristics and symmetry of B-spline, nine control points
of the corner transition curve must be within the error feasible area. Therefore, Pj,4 is
located the angular bisector of θ. Pj,3 and Pj,5 are located at the boundary of error feasible
area, respectively. ‖Pj,4Cj‖ = 0.8ε and ‖Pj,3Pj,5‖ = 2l. l can be expressed as:

l = ε/cos(θ/2) + 1.1ε/tan(θ/2) (10)
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Figure 1. The distribution of corner-smoothing curve.

In order to obtain better corner smoothness, the control points Pj,0, Pj,1 and Pj,2 lie
on the linear segment Pj,3Pj−1,5; Pj,6, Pj,7 and Pj,8 lie on the linear segment Pj,5Pj+1,3. Addi-
tionally, when j = 1, P0,5 → C0 . Meanwhile, when j = N, PN+1,3 → C4 . Thus, the control
points of B-spline are calculated as follows:

Pj,0 = Pj,1 + b
→
T1

Pj,1 = Pj,2 + c
→
T1

Pj,2 = Pj,3 + d
→
T1

Pj,3 = Cj + 1.1ε
→
T3 − l

→
T4

Pj,4 = Cj + 0.8ε
→
T3

Pj,5 = Cj + 1.1ε
→
T3 + l

→
T4

Pj,6 = Pj,5 + d
→
T2

Pj,7 = Pj,6 + c
→
T2

Pj,8 = Pj,7 + b
→
T2

(11)
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2.1.2. G3 Continuity

In Figure 1, two linear tool paths are connected using the B-spline at junction points
Pj,0(u = 0) and Pj,8(u = 1). Pj,0, Pj,1, Pj,2, Pj,3 and Pj,5Pj,6, Pj,7, Pj,8 lie on the line segment,
respectively. As mentioned above, the B-spline C(u) is 4th order with nine control points
to keep G3 continuity at (0, 1). Since the derivative of the straight line segment is 0 at the
connection points, the corresponding derivative of the B-spline should be 0 to obtain G3

continuous tool path. That is,
C′′ (s)|u=0,1 = 0 (12)

C′′′ (s)|u=0,1 = 0 (13)

where
C′′ (s) = C′′ (u)

(
u′(s)

)2
+ C′(u)u′′ (s) (14)

C′′′ (s) = C′′′ (u)
(
u′(s)

)3
+ 3C′′ (u)u′(s)u′′ (s) + C′(u)u′′′ (s) (15)

By mathematic calculation, the sufficient conditions for the establishment of
Equations (12) and (13) can be given:

C′′ (u)|u=0,1 = 0, C′′′ (u)|u=0,1 = 0 (16)

u′′ (s)|u=0,1 = 0, u′′′ (s)|u=0,1 = 0 (17)

For corner smoothing B-spline curve, the derivatives of curve parameter u with respect
to arc length s can be described as follows.

u′(s) = ‖C′(u)‖−1 (18)

u′′ (s) = −C′(u)C′′ (u)/‖C′(u)‖4 (19)

u′′′ (s) = −
{[

(C′′ (u))2 + C′(u)C′′ (u)
]
‖C′(u)‖2 − 4

[
C′(u)C′′′ (u)

]2}/‖C′(u)‖7 (20)

From Equations (18) to (20), it can be seen that the establishment of Equation (16) will lead to
the establishment of Equation (17). Substituting Equations (5) and (6) into Equation (16) yields: C′′ (u)|u=0 = 15(−10c + 20b)

→
T1 = 0

C′′′ (u)|u=0 = (−(10/3)d + 15b− 20c)
→
T1 = 0

and

 C′′ (u)|u=1 = 15(10c− 20b)
→
T2 = 0

C′′′ (u)|u=1 = ((10/3)d− 15b + 20c)
→
T2 = 0

(21)

Solving Equation (21) obtains,

c = 2b, d = 3b (22)

2.1.3. Corner Transition Length Constraint

As seen in Figure 1, the corners are smoothed by applying B-spline, where Lt,j denotes
the transition length, which is expressed as:

Lt,1 = Pj,3Pj,0 = 6b (23)

To avert the overlap of the two corners transition curves, the corners transition length
should satisfy the following conditions. That is

Lt,1 ≤ min
(

P1,0C0, P1,5P2,3/2
)

Lt,j ≤ min
(

Pj,3Pj−1,5/2, Pj,5Pj+1,3/2
)
(j = 2, · · · , n− 2)

Lt,n−1 ≤ min
(

Pn−1,3Pn−2,5/2, Pn−1,5Cn
) (24)
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2.2. Curvature Optimization

In the machining process of the corners, the minimum transition velocity vmin−t of
corner is the most important factor that limits the machining efficiency, and also affects
the acceleration An and jerk Jn. According to the literature [28,29], the velocity can be
expressed as

vmin−t = min

(√
An

k
, 3

√
Jn

k2

)
(25)

As can be shown in Equation (25), the velocity vmin−t is inversely proportional to
the curvature. In order to improve the velocity, smaller curvature should be ensured to
obtain higher machining efficiency. In addition, when the curvature reaches the extreme
value, it also means that the velocity reaches the extreme value. The increase in the number
of curvature extremes leads to the redundant deceleration or acceleration at the corner,
which can cause violent fluctuation in speed and the vibration of machining. Therefore,
to obtain the unique curvature extremum, the curvature of transitional curve should
monotonously increase within [0, 0.5] and monotonically decrease within [0.5, 1]. This
constraint relationship can be expressed as:{

k′s =
dk
du

du
ds ≥ 0 u ∈ [0, 0.5]

k′s =
dk
du

du
ds ≤ 0 u ∈ [0.5, 1]

(26)

According to the above description, a smoother curve can be obtained by optimizing
the curvature to enhance the machining efficiency. Considering the constraints mentioned
above, the optimization model can be given:

Objective function:
f = min(k(0.5)) (27)

Constraint functions:

Lt,1 ≤ min
(

P1,0C0, P1,5P2,3/2
)

Lt,j ≤ min
(

Pj,3Pj−1,5/2, Pj,5Pj+1,3/2
)
(j = 2, · · · , n− 2)

Lt,n−1 ≤ min
(

Pn−1,3Pn−2,5/2, Pn−1,5Cn
)

k′s =
dk
du

du
ds ≥ 0 u ∈ [0, 0.5]

k′s =
dk
du

du
ds ≤ 0 u ∈ [0.5, 1]

(28)

Design variables: b
To solve the above problems, linear programming method is usually used to find the

optimal solution. However, these optimal methods would consume much time. Therefore,
this paper proposes a simple searching algorithm, which is given as follows.

Step 1: Initialize bm = 0, m = 1, · · · , M.
Step 2: Determine the control point by Equation (11) and obtain the curve Equation (3)

with parameter b.
Step 3: Set bm = bm + ∆b and ∆b = 0.01.
Step 4: Calculate the curvature of the transition curve with Equation (27); if Equation (28)

is satisfied, the curvature and the corresponding bm are stored and repeat step 3; if m = M,
go to step 5.

Step 5: Select b corresponding to the minimum curvature.

2.3. Summary of the Proposed Method

The flowchart of the proposed method can be summarized in Figure 2. Firstly, the
error constraint and linear tool path are given. Then, the control points of the B-spline
distributing inside and outside the straight line segment of the tool path (i.e., error feasible
area) can be calculated with Equation (11). Then, the B-spline C(u) is constructed with
Equation (4). To improve the smoothness of transition curve, the optimization model
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is established using Equations (27) and (28) and the optimization problem solved using
the above linear programming method. Finally, the hybrid tool path with G3 continuity,
including the transition curves and the linear segments, are obtained.
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tinuity, including the transition curves and the linear segments, are obtained. 

Input: allowable error     , linear 
tool path data (Ci−1, Ci, Ci+1). 

Compute the angle

Compute the control points Pj,i 
by Eq. (11) 

lθ  ，

Construct B-spline C(u) by Eq. 
(4) 

Simplify B-spline expression by 
Eq. (22)

Establish optimization model by 
Eq. (27) and Eq. (28) 

Solve the optimization problem  
by  linear programming method 

in section 2.2

Output: The corner smoothing 
tool path with G3 continuity

ε

The best feasible solution b

NO

YES

 
Figure 2. Flowchart of the proposed method. Figure 2. Flowchart of the proposed method.

3. Simulation Experiment Verification

In this section, the proposed algorithm is verified by two examples and compared
with Zhao’s [11] and Sun’s [26] methods. All programs were implemented with MATLAB
2014a on the PC with i7-8700cpu and 16 GB memory.

3.1. Example 1: The 2D Tool Path

As seen in Figure 3, a rhombic tool path is smoothed by the three methods. The curves
after transition are drawn with different colors. All methods used the same parameters.
Specifically, the transition allowable error ε is 0.05 mm and the maximum velocity is
30 mm/s. The axis velocity, acceleration and jerk limits are 100 mm/s, 1000 mm/s2 and
120,000 mm/s3, respectively. From Table 1a, the maximal contour deviation obtained using
three methods can satisfy the error constraint. To further compare the feasibility of the
proposed method, some criteria (i.e., curvature, curvature derivative, machining time and
kinematic fluctuation) were used to evaluate the quality of the smooth tool path.
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Table 1. The comparison between three methods.

Maximal Curvature (mm−1) Maximal Curvature
Derivative (mm−2) Machining Time (s) Maximal Contour

Deviation (mm)

(a) The 2D tool path
Zhao’s method 13.3 162.3 0.478 0.05
Sun’s method 6.1 43.2 0.457 0.05
Proposed method (base) 5.1 37.5 0.428 0.05
(b) The 3D tool path
Zhao’s method 22.8 446.8 1.58 0.05
Sun’s method 9.6 89.4 1.53 0.05
Proposed method (base) 7.0 65.8 1.5 0.05

3.1.1. Curvature and Curvature Derivative

The speed and the machining efficiency can be improved by minimizing the curvature.
The curvature and curvature derivative profiles are depicted in Figures 4 and 5, respectively.
Table 1a shows the maximal curvature and maximal curvature derivative of the tool paths
generated by the three methods. As seen in Figure 4, the profiles of the curvatures obtained
by the three methods are continuous, and the proposed method has a lower curvature value
than the methods in Zhao’s [11] and Sun’s [26] works. Especially, in Table 1a, compared
with Sun’s method and Zhao’s method, the maximal curvature extrema is reduced by about
19.6% and 161%, respectively. As shown in Figure 5, the profile of the curvature derivative
obtained by Zhao’s method is discontinuous at the junction points and middle point of the
corner transition curve, which would cause violent machining vibration. The curvature
derivative profile of Sun et al. [26] changes frequently, resulting in more fluctuating profiles
of the velocity. However, the curvature derivative profile obtained by the proposed method
is continuous and the derivative value is also smaller than other methods, which can satisfy
the requirements of G3 continuity and improve the smoothness of corner transition curves.
From Table 1a, the G3 path proposed has lower curvature derivative extrema than the
G2 path generated by the other two methods. The result demonstrates that the proposed
method performs better in smoothness, which contributes to obtaining higher machining
speed and machining stability.
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3.1.2. Machining Time and Kinematic Fluctuation

Machining time is a significant criterion of estimating machining efficiency. Low
kinematic fluctuation can decrease machining vibration. As shown in Figure 6, kinematic
profiles were calculated using the method developed by Zhao et al. [30]. From Table 1a, it
can be seen that the proposed method improves the efficiency since the machining time is
11.7% and 6.8% shorter, respectively. In Figure 6a, the profile of this method also shows
that the feedrate along the tool path has little fluctuation and the minimum speed increases
significantly, but the fluctuation is obvious with the methods proposed by Zhao et al. [11]
and Sun et al. [26]. As can be seen in Figure 6b,c, the acceleration and jerk of the novel
corner smoothing method can respect the driving limits. Meanwhile, compared with other
methods, the smoothness of acceleration is enhanced by applying the proposed corner
smoothing method. Obviously, the example illustrates that the novel smoothing method
can enhance the machining efficiency at the corners.
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3.2. Example 2: The 3D Tool Path

To further verify the feasibility of the novel corner smoothing method, a multi segment
3D linear tool path with different transition angles is shown in Figure 7. The parameters
are the same as those in example 1. The transition curves obtained by the three methods are
also drawn in Figure 7. The curvature and the curvature derivative with respect to the arc
length are shown in Figures 8 and 9. As illustrated in the two figures, the smoothing tool
path generated by the proposed method has G3 continuity and there is only one curvature
extrema in each transition curve. The curvature value is also smaller than that obtained
by the other two methods from Table 1b, which proves the effectiveness of the proposed
transition method. In addition, the simulation results show that the smooth performance
of the transition curve is good. In addition, the simulation results show that the transition
curves have satisfactory smoothness.
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The profiles of the velocity are shown in Figure 10a. Since the transition curve is
smoother, the proposed method can obtain the minimum machining time among the three
methods, which can be seen in Table 1b. As observed in Figure 10b–d, the XYZ-axis velocity
profiles become smoother. Figures 11a and 12a show the acceleration and jerk profiles
generated by the three methods. As shown, the limits of the acceleration and jerk for the
drives are fully used and respect the given limits, but the corresponding profiles of the
proposed method are smoother and the fluctuation is smaller. Especially in the corner
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C5 and C6, compared with the frequent acceleration and deceleration processes occurring
in the other two methods, the fluctuation in the acceleration and jerk profiles generated
by the proposed method is significantly reduced. In addition, it is well-known that the
profiles of axial acceleration and jerk would affect the vibration behavior of the machining
process [31]. In the Figures 11b–d and 12b–d, the XYZ-axis acceleration and jerk profiles of
the proposed method are smoother with less fluctuation, which can reduce the machining
vibration. In this case, our optimal method may achieve better contour performance and
surface quality.
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4. Conclusions

A geometrically smooth tool path plays an important part in realizing high-speed
and high-precision NC machining. Thus, a novel corner-smoothing transition method
is proposed in this paper. Compared with the previous literatures using higher-order
curves with all control points lying in a straight segment and inside of the tool path, the
proposed method is based on the error feasible area and reasonably selects the curve control
point. Moreover, the curvature of the B-spline transition curves is optimized to enhance the
smoothness and keep the G3 continuity of the mixed tool path, which has smaller curvature
and higher feed speed at the sharp corners between the linear tool paths. According to the
above advantages, the kinematic profiles of the machining process are relatively smooth
with less fluctuation and the machining stability is improved, which can increase machining
efficiency and surface quality. Finally, the feasibility and effectiveness of the proposed
method were validated by simulations and compared with other already existing methods.
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Appendix A

A0 =

{
625u4 − 500u3 + 150u2 − 20u + 1 u ∈ [0, 0.2)

0 u ∈ [0.2, 1]
(A1)

A1 =


−(9375u4)/8 + 875u3 − 225u2 + 20u u ∈ [0, 0.2)

(625u4)/8− 125u3 + 75u2 − 20u + 2 u ∈ [0.2, 0.4)

0 u ∈ [0.4, 1]

(A2)

A2 =


(53125u4)/72− (1375u3)/3 + 75u2 u ∈ [0, 0.2)

−(14375u4)/72 + (875u3)/3− 150u2 + 30u− 3/2 u ∈ [0.2, 0.4)

(625u4)/18− (250u3)/3 + 75u2 − 30u + 9/2 u ∈ [0.4, 0.6)

0 u ∈ [0.6, 1]

(A3)

A3 =



−(15625u4)/72 + (250u3)/3 u ∈ [0, 0.2)

(14375u4)/72− 250u3 + 100u2 − (40u)/3 + 2/3 u ∈ [0.2, 0.4)

−(8125u4)/72 + 250u3 − 200u2 + (200u)/3− 22/3 u ∈ [0.4, 0.6)

(625u4)/24− (250u3)/3 + 100u2 − (160u)/3 + 32/3 u ∈ [0.6, 0.8)

0 u ∈ [0.8, 1]

(A4)

A4 =



(625u4)/24 u ∈ [0, 0.2)

−(625u4)/6 + (625u3)/6− (125u2)/4 + (25u)/6− 5/24 u ∈ [0.2, 0.4)

(625u4)/4− (625u3)/2 + (875u2)/4− (125u)/2 + 155/24 u ∈ [0.4, 0.6)

−(625u4)/6 + (625u3)/2− (1375u2)/4 + (325u)/2− 655/24 u ∈ [0.6, 0.8)

(625u4)/24− (625u3)/6 + (625u2)/4− (625u)/6 + 625/24 u ∈ [0.8, 1]

(A5)
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A5 =



0 u ∈ [0, 0.2)

(625u4)/24− (125u3)/6 + (25u2)/4− (5u)/6 + 1/24 u ∈ [0.2, 0.4)

−(8125u4)/72 + (3625u3)/18− (1525u2)/12 + (625u)/18− 253/72 u ∈ [0.4, 0.6)

(14375u4)/72− (9875u3)/18 + (6575u2)/12− (4235u)/18 + 2663/72 u ∈ [0.6, 0.8)

−(15625u4)/72 + (14125u3)/18− (12625u2)/12 + (11125u)/18− 9625/72 u ∈ [0.8, 1]

(A6)

A6 =


0 u ∈ [0, 0.4)

(625u4)/18− (500u3)/9 + (100u2)/3− (80u)/9 + 8/9 u ∈ [0.4, 0.6)

−(14375u4)/72 + (9125u3)/18− (5675u2)/12 + (3485u)/18− 2123/72 u ∈ [0.6, 0.8)

(53125u4)/72− (44875u3)/18 + (37525u2)/12− (31075u)/18 + 25525/72 u ∈ [0.8, 1]

(A7)

A7 =


0 u ∈ [0, 0.6)

(625u4)/8− (375u3)/2 + (675u2)/4− (135u)/2 + 81/8 u ∈ [0.6, 0.8)

−(9375u4)/8 + (7625u3)/2− (18525u2)/4 + (4985u)/2− 4015/8 u ∈ [0.8, 1]

(A8)

A8 =

{
0 u ∈ [0, 0.8)

625u4 − 2000u3 + 2400u2 − 1280u + 256 u ∈ [0.8, 1]
(A9)
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