Dendritic Cells (DCs)-Based Cancer Immunotherapy: A Review on the Prospects of Medicinal Plants and Their Phytochemicals as Potential Pharmacological Modulators
Abstract
:1. Introduction
2. Effects of Plant Extracts on In Vitro Dendritic Cell Biology and Its Effects in Cancer Cells
2.1. Dendritic Cells Differentiation and Maturation
Plant Name/Extracts | Differentiation and Maturation of DCs | Phenotypic Marker | References |
---|---|---|---|
Polypodium leucotomos | Differentiation | - | [21,29] |
Polyporus umbellatus | Maturation | - | [32] |
Pueraria lobata | Maturation | CD40, CD80 and MHC I/II | [27] |
Dioscorea spp. | Maturation | - | [26] |
Nicotiana benthamiana | No differentiation, but induce maturation | - | [23] |
Neem leaf glycoprotein | Maturation | CD83, CD80, CD86, CD40 and MHCs | [33] |
Astragalus polysaccharide | Maturation | CD11c and MHCII | [34,35] |
Aged garlic extract | ---- | Increase CD40, but no effect on CD86 and MHCII | [36] |
Seed extract Plantago asiatica | Maturation | CD80, CD86 and MHCII | [37] |
Thymus vulgaris, Thymus daenensis, Zataria multifora | Maturation | CD40 | [38] |
Licorice roots containing 18-α and 18-β-glycyrrhetinic acid | Maturation | - | [39] |
Lupine acetate of cortex periplocae, the aqueous and organic fractions from Petiveria alliacea, acidigc polysaccharide from Ginseng (Panax ginseng) and Lycium bararum polysaccharide (LBP) | Both maturation and differentiation | - | [29] |
Chinese herb Achyranthes bidentata | Maturation | - | [40] |
Fermented mistletoe extract | Maturation | - | [41] |
2.2. Activation of T-Cells
2.3. Cytokines Production
2.4. Plant Extracts Pulsed DCs-Based Anti-Tumor Immunity through Various Signaling Pathways
3. Plant Extracts Pulsed DCs on In Vivo Cancer Immunotherapy
4. Application of Phytoextract in DCs-Based Clinical Study of Cancer Therapy
5. Methodology and Search Strategy
6. Conclusions and Future Aspects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Vulink, A.; Radford, K.J.; Melief, C.; Hart, D.N. Dendritic cells in cancer immunotherapy. Adv. Cancer Res. 2008, 99, 363–407. [Google Scholar] [PubMed]
- Segura, E.; Amigorena, S. Inflammatory dendritic cells in mice and humans. Trends Immunol. 2013, 34, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Boltjes, A.; Van Wijk, F. Human dendritic cell functional specialization in steady-state and inflammation. Front. Immunol. 2014, 5, 131. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, P.; Karimi, M.H.; Amirghofran, Z. Plant components for immune modulation targeting dendritic cells: Implication for therapy. Immunotherapy 2014, 6, 1037–1053. [Google Scholar] [CrossRef]
- Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature 1998, 392, 245–252. [Google Scholar] [CrossRef]
- Stockwin, L.H.; McGONAGLE, D.; Martin, I.G.; Blair, G.E. Dendritic cells: Immunological sentinels with a central role in health and disease. Immunol. Cell Biol. 2000, 78, 91–102. [Google Scholar] [CrossRef]
- Martínez-Lostao, L.; Anel, A.; Pardo, J. How do cytotoxic lymphocytes kill cancer cells? Clin. Cancer Res. 2015, 21, 5047–5056. [Google Scholar] [CrossRef]
- Ma, Y.; Shurin, G.V.; Peiyuan, Z.; Shurin, M.R. Dendritic cells in the cancer microenvironment. J. Cancer 2013, 4, 36. [Google Scholar] [CrossRef]
- Balkwill, F. Tumour necrosis factor and cancer. Nat. Rev. Cancer 2009, 9, 361–371. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Karin, M. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage. Ann. Rheum. Dis. 2011, 70 (Suppl. 1), i104–i108. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Bae, Y.-S. Dendritic cell-based therapeutic cancer vaccines: Past, present and future. Clin. Exp. Vaccine Res. 2014, 3, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Sprooten, J.; Ceusters, J.; Coosemans, A.; Agostinis, P.; De Vleeschouwer, S.; Zitvogel, L.; Kroemer, G.; Galluzzi, L.; Garg, A.D. Trial watch: Dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019, 8, 1638212. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, Y.; Shen, Y.; Zhou, H.; Yu, X. Lycium barbarum polysaccharides induce Toll-like receptor 2-and 4-mediated phenotypic and functional maturation of murine dendritic cells via activation of NF-κB. Mol. Med. Rep. 2013, 8, 1216–1220. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.I.A.; Jantan, I.; Nafiah, M.A.; Seyed, M.A.; Chan, K.M. Dendritic cells pulsed with generated tumor cell lysate from Phyllanthus amarus Schum. & Thonn. induces anti-tumor immune response. BMC Complementary Altern. Med. 2018, 18, 232. [Google Scholar]
- Sabado, R.L.; Bhardwaj, N. Directing dendritic cell immunotherapy towards successful cancer treatment. Immunotherapy 2010, 2, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Verdijk, P.; Aarntzen, E.H.; Punt, C.J.; de Vries, I.J.M.; Figdor, C.G. Maximizing dendritic cell migration in cancer immunotherapy. Expert Opin. Biol. Ther. 2008, 8, 865–874. [Google Scholar] [CrossRef]
- Vacchelli, E.; Vitale, I.; Eggermont, A.; Fridman, W.H.; Fučíková, J.; Cremer, I.; Galon, J.; Tartour, E.; Zitvogel, L.; Kroemer, G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013, 2, e25771. [Google Scholar] [CrossRef]
- Chang, W.T.; Lai, T.H.; Chyan, Y.J.; Yin, S.Y.; Chen, Y.H.; Wei, W.C.; Yang, N.-S. Specific medicinal plant polysaccharides effectively enhance the potency of a DC-based vaccine against mouse mammary tumor metastasis. PLoS ONE 2015, 10, e0122374. [Google Scholar] [CrossRef]
- Chen, X.; Yang, L.; Howard, O.; Oppenheim, J.J. Dendritic cells as a pharmacological target of traditional Chinese medicine. Cell Mol. Immunol. 2006, 3, 401–410. [Google Scholar]
- Li, J.; Li, J.; Zhang, F. The immunoregulatory effects of Chinese herbal medicine on the maturation and function of dendritic cells. J. Ethnopharmacol. 2015, 171, 184–195. [Google Scholar] [CrossRef]
- Kikete, S.; Luo, L.; Jia, B.; Wang, L.; Ondieki, G.; Bian, Y. Plant-derived polysaccharides activate dendritic cell-based anti-cancer immunity. Cytotechnology 2018, 70, 1097–1110. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Li, J.; Lin, H. Effect and molecular mechanisms of traditional Chinese medicine on regulating tumor immunosuppressive microenvironment. BioMed Res. Int. 2015, 2015, 261620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Bonito, P.; Grasso, F.; Mangino, G.; Massa, S.; Illiano, E.; Franconi, R.; Fanales-Belasio, E.; Falchi, M.; Affabris, E.; Giorgi, C. Immunomodulatory activity of a plant extract containing human papillomavirus 16-E7 protein in human monocyte-derived dendritic cells. Int. J. Immunopathol. Pharmacol. 2009, 22, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Andreicuț, A.D.; Fischer-Fodor, E.; Pârvu, A.E.; Ţigu, A.B.; Cenariu, M.; Pârvu, M.; Cătoi, F.A.; Irimie, A. Antitumoral and immunomodulatory effect of Mahonia aquifolium extracts. Oxidative Med. Cell. Longev. 2019, 2019, 6439021. [Google Scholar] [CrossRef]
- Kauroo, S.; Govinden-Soulange, J.; Ranghoo-Sanmukhiya, V.M.; Miranda, K.; Cotham, W.E.; Walla, M.D.; Nagarkatti, M.; Nagarkatti, P. Extracts of select endemic plants from the Republic of Mauritius exhibiting anti-cancer and immunomodulatory properties. Sci. Rep. 2021, 11, 4272. [Google Scholar] [CrossRef]
- Chang, W.-T.; Chen, H.-M.; Yin, S.-Y.; Chen, Y.-H.; Wen, C.-C.; Wei, W.-C.; Lai, P.; Wang, C.-H.; Yang, N.-S. Specific Dioscorea phytoextracts enhance potency of TCL-loaded DC-based cancer vaccines. Evid.-Based Complementary Altern. Med. 2013, 2013, 932040. [Google Scholar] [CrossRef]
- Kim, H.S.; Shin, B.R.; Lee, H.K.; Kim, Y.J.; Park, M.J.; Kim, S.Y.; Lee, M.K.; Hong, J.T.; Kim, Y.; Han, S.-B. A polysaccharide isolated from Pueraria lobata enhances maturation of murine dendritic cells. Int. J. Biol. Macromol. 2013, 52, 184–191. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.M.; Shrivastava, P. Effect of Tinospora cordifolia on the antitumor activity of tumor-associated macrophages–derived dendritic cells. Immunopharmacol. Immunotoxicol. 2005, 27, 1–14. [Google Scholar] [CrossRef]
- Aldahlawi, A.M. Modulation of dendritic cell immune functions by plant components. J. Microsc. Ultrastruct. 2016, 4, 55–62. [Google Scholar] [CrossRef]
- Fu, R.-H.; Wang, Y.-C.; Liu, S.-P.; Chu, C.-L.; Tsai, R.-T.; Ho, Y.-C.; Chang, W.-L.; Chiu, S.-C.; Harn, H.-J.; Shyu, W.-C. Acetylcorynoline impairs the maturation of mouse bone marrow-derived dendritic cells via suppression of IκB kinase and mitogen-activated protein kinase activities. PLoS ONE 2013, 8, e58398. [Google Scholar] [CrossRef]
- Nakahara, T.; Moroi, Y.; Uchi, H.; Furue, M. Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. J. Dermatol. Sci. 2006, 42, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, W.; Chen, J. Polysaccharide purified from Polyporus umbellatus (Per) Fr induces the activation and maturation of murine bone-derived dendritic cells via toll-like receptor 4. Cell. Immunol. 2010, 265, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.; Bose, A.; Sarkar, K.; Roy, S.; Chakraborty, T.; Sanyal, U.; Baral, R. Neem leaf glycoprotein matures myeloid derived dendritic cells and optimizes anti-tumor T cell functions. Vaccine 2010, 28, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Gu, H.; Ma, C.; Zhang, F.; Chen, Z.; Zhang, Y. Effects of large dose of Astragalus membranaceus on the dendritic cell induction of peripheral mononuclear cell and antigen presenting ability of dendritic cells in children with acute leukemia. Zhongguo Zhong Xi Yi Jie He Za Zhi Zhongguo Zhongxiyi Jiehe Zazhi = Chin. J. Integr. Tradit. West. Med. 2005, 25, 872–875. [Google Scholar]
- Shao, P.; Zhao, L.-H.; Pan, J.-P. Regulation on maturation and function of dendritic cells by Astragalus mongholicus polysaccharides. Int. Immunopharmacol. 2006, 6, 1161–1166. [Google Scholar] [CrossRef]
- Ahmadabad, H.N.; Hassan, Z.M.; Safari, E.; Bozorgmehr, M.; Ghazanfari, T.; Moazzeni, S.M. Evaluation of the immunomodulatory effect of the 14 kDa protein isolated from aged garlic extract on dendritic cells. Cell. Immunol. 2011, 269, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.-F.; Xie, M.-Y.; Yin, J.-Y.; Nie, S.-P.; Tang, Y.-F.; Xie, X.-M.; Zhou, C. Immunomodulatory activity of the seeds of Plantago asiatica L. J. Ethnopharmacol. 2009, 124, 493–498. [Google Scholar] [CrossRef]
- Amirghofran, Z.; Ahmadi, H.; Karimi, M.H. Immunomodulatory activity of the water extract of Thymus vulgaris, Thymus daenensis, and Zataria multiflora on dendritic cells and T cells responses. J. Immunoass. Immunochem. 2012, 33, 388–402. [Google Scholar] [CrossRef]
- Bordbar, N.; Karimi, M.H.; Amirghofran, Z. Phenotypic and functional maturation of murine dendritic cells induced by 18 alpha-and beta-glycyrrhetinic acid. Immunopharmacol. Immunotoxicol. 2014, 36, 52–60. [Google Scholar] [CrossRef]
- Zou, Y.; Meng, J.; Chen, W.; Liu, J.; Li, X.; Li, W.; Lu, C.; Shan, F. Modulation of phenotypic and functional maturation of murine dendritic cells (DCs) by purified Achyranthes bidentata polysaccharide (ABP). Int. Immunopharmacol. 2011, 11, 1103–1108. [Google Scholar] [CrossRef]
- Dennerstein, L.; Lehert, P.; Guthrie, J. The effects of the menopausal transition and biopsychosocial factors on well-being. Arch. Womens Ment. Health 2002, 5, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Shainheit, M.G.; Smith, P.M.; Bazzone, L.E.; Wang, A.C.; Rutitzky, L.I.; Stadecker, M.J. Dendritic cell IL-23 and IL-1 production in response to schistosome eggs induces Th17 cells in a mouse strain prone to severe immunopathology. J. Immunol. 2008, 181, 8559–8567. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Yoon, Y.D.; Ahn, J.M.; Kang, J.S.; Park, S.-K.; Lee, K.; Song, K.B.; Kim, H.M.; Han, S.-B. Angelan isolated from Angelica gigas Nakai induces dendritic cell maturation through toll-like receptor 4. Int. Immunopharmacol. 2007, 7, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, Y.J.; Kim, J.S.; Ryu, H.S.; Lee, H.K.; Kang, J.S.; Kim, H.M.; Hong, J.T.; Kim, Y.; Han, S.-B. Adjuvant effect of a natural TLR4 ligand on dendritic cell-based cancer immunotherapy. Cancer Lett. 2011, 313, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Hamuti, A.; Li, J.; Zhou, F.; Aipire, A.; Ma, J.; Yang, J.; Li, J. Capparis spinosa fruit ethanol extracts exert different effects on the maturation of dendritic cells. Molecules 2017, 22, 97. [Google Scholar] [CrossRef]
- Chang, J.-M.; Hung, L.-M.; Chyan, Y.-J.; Cheng, C.-M.; Wu, R.-Y. Carthamus tinctorius enhances the antitumor activity of dendritic cell vaccines via polarization toward Th1 cytokines and increase of cytotoxic T lymphocytes. Evid.-Based Complementary Altern. Med. 2011, 2011, 274858. [Google Scholar] [CrossRef]
- Aipire, A.; Li, J.; Yuan, P.; He, J.; Hu, Y.; Liu, L.; Feng, X.; Li, Y.; Zhang, F.; Yang, J. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine. Sci. Rep. 2017, 7, 43796. [Google Scholar] [CrossRef]
- Umeyama, A.; Yahisa, Y.; Okada, M.; Okayama, E.; Uda, A.; Shoji, N.; Lee, J.-J.; Takei, M.; Hashimoto, T. Triterpene esters from Uncaria rhynchophylla drive potent IL-12-dependent Th1 polarization. J. Nat. Med. 2010, 64, 506–509. [Google Scholar] [CrossRef]
- Sheu, S.-C.; Lai, M.-H. Composition analysis and immuno-modulatory effect of okra (Abelmoschus esculentus L.) extract. Food Chem. 2012, 134, 1906–1911. [Google Scholar] [CrossRef]
- Takaoka, A.; Iacovidou, M.; Hasson, T.H.; Montenegro, D.; Li, X.; Tsuji, M.; Kawamura, A. Biomarker-guided screening of Juzen-taiho-to, an oriental herbal formulation for immunostimulation. Planta Med. 2014, 80, 283–289. [Google Scholar] [CrossRef]
- Santander, S.; Aoki, M.; Hernandez, J.; Pombo, M.; Moins-Teisserenc, H.; Mooney, N.; Fiorentino, S. Galactomannan from Caesalpinia spinosa induces phenotypic and functional maturation of human dendritic cells. Int. Immunopharmacol. 2011, 11, 652–660. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, Y.; Yang, X.; Rui, K.; Tang, X.; Ma, J.; Chen, J.; Xu, H.; Lu, L.; Wang, S. Ficus carica polysaccharides promote the maturation and function of dendritic cells. Int. J. Mol. Sci. 2014, 15, 12469–12479. [Google Scholar] [CrossRef]
- Shin, B.R.; Kim, H.S.; Yun, M.J.; Lee, H.K.; Kim, Y.J.; Kim, S.Y.; Lee, M.K.; Hong, J.T.; Kim, Y.; Han, S.-B. Promoting effect of polysaccharide isolated from Mori fructus on dendritic cell maturation. Food Chem. Toxicol. 2013, 51, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Nie, S.; Jiang, L.; Xie, M. A novel polysaccharide from the seeds of Plantago asiatica L. induces dendritic cells maturation through toll-like receptor 4. Int. Immunopharmacol. 2014, 18, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, X.; Wang, W.; Luo, J.; Aipire, A.; Li, J.; Zhang, F. Pleurotus ferulae water extract enhances the maturation and function of murine bone marrow-derived dendritic cells through TLR4 signaling pathway. Vaccine 2015, 33, 1923–1933. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Ryu, H.S.; Kim, J.S.; Lee, H.K.; Kang, J.S.; Yun, J.; Kim, S.Y.; Lee, M.K.; Hong, J.T.; Kim, Y. Platycodon grandiflorum polysaccharide induces dendritic cell maturation via TLR4 signaling. Food Chem. Toxicol. 2014, 72, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yamane, H.; Paul, W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 2009, 28, 445–489. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Liu, B.; Xu, L.; Lu, C.; Zhao, H.; Niu, X.; Chen, S.; Lu, A. Maturation of murine bone marrow-derived dendritic cells induced by Radix Glycyrrhizae polysaccharide. Molecules 2012, 17, 6557–6568. [Google Scholar] [CrossRef]
- Jing, X.-N.; Qiu, B.; Wang, J.-F.; Wu, Y.-G.; Wu, J.-B.; Chen, D.-D. In vitro anti-tumor effect of human dendritic cells vaccine induced by astragalus polysacharin: An experimental study. Zhongguo Zhong Xi Yi Jie He Za Zhi Zhongguo Zhongxiyi Jiehe Zazhi = Chin. J. Integr. Tradit. West. Med. 2014, 34, 1103–1107. [Google Scholar]
- He, Y.-L.; Ying, Y.; Xu, Y.-L.; Su, J.-F.; Luo, H.; Wang, H.-F. Effects of Lycium barbarum polysaccharide on tumor microenvironment T-lymphocyte subsets and dendritic cells in H22-bearing mice. Zhong Xi Yi Jie He Xue Bao = J. Chin. Integr. Med. 2005, 3, 374–377. [Google Scholar] [CrossRef]
- Koizumi, S.-i.; Masuko, K.; Wakita, D.; Tanaka, S.; Mitamura, R.; Kato, Y.; Tabata, H.; Nakahara, M.; Kitamura, H.; Nishimura, T. Extracts of Larix Leptolepis effectively augments the generation of tumor antigen-specific cytotoxic T lymphocytes via activation of dendritic cells in TLR-2 and TLR-4-dependent manner. Cell. Immunol. 2012, 276, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Vaid, M.; Singh, T.; Prasad, R.; Elmets, C.A.; Xu, H.; Katiyar, S.K. Bioactive grape proanthocyanidins enhance immune reactivity in UV-irradiated skin through functional activation of dendritic cells in mice. Cancer Prev. Res. 2013, 6, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.; Li, N.; Yu, Y.; Cao, X. Activation of antigen-presenting cells by immunostimulatory plant DNA: A natural resource for potential adjuvant. Vaccine 2002, 20, 2764–2771. [Google Scholar] [CrossRef]
- Ghochikyan, A.; Pichugin, A.; Bagaev, A.; Davtyan, A.; Hovakimyan, A.; Tukhvatulin, A.; Davtyan, H.; Shcheblyakov, D.; Logunov, D.; Chulkina, M. Targeting TLR-4 with a novel pharmaceutical grade plant derived agonist, Immunomax®, as a therapeutic strategy for metastatic breast cancer. J. Transl. Med. 2014, 12, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Chen, X.; Zhong, Z.; Chen, L.; Wang, Y. Ganoderma lucidum polysaccharides: Immunomodulation and potential anti-tumor activities. Am. J. Chin. Med. 2011, 39, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, M.; Oh-e, G.; Oshikawa, T.; Furuichi, S.; Tano, T.; Ahmed, S.U.; Akashi, S.; Miyake, K.; Takeuchi, O.; Akira, S. Toll-like receptor 4 mediates the antitumor host response induced by a 55-kilodalton protein isolated from Aeginetia indica L., a parasitic plant. Clin. Vaccine Immunol. 2004, 11, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-S.; Yang, B.; Su, X.-C. Effect of shenqi fuzheng injection on repairing the immune function in patients with breast cancer. Zhongguo Zhong Xi Yi Jie He Za Zhi Zhongguo Zhongxiyi Jiehe Zazhi = Chin. J. Integr. Tradit. West. Med. 2009, 29, 537–539. [Google Scholar]
- Liu, Q.-C.; Wu, W.-H.; Li, G.-R. Effect of lingdankang composite combined dendritic cell-cytokine induced killer cells in treating leukemia. Zhongguo Zhong Xi Yi Jie He Za Zhi Zhongguo Zhongxiyi Jiehe Zazhi = Chin. J. Integr. Tradit. West. Med. 2009, 29, 347–350. [Google Scholar]
- Roy, S.; Barik, S.; Banerjee, S.; Bhuniya, A.; Pal, S.; Basu, P.; Biswas, J.; Goswami, S.; Chakraborty, T.; Bose, A. Neem leaf glycoprotein overcomes indoleamine 2, 3 dioxygenase mediated tolerance in dendritic cells by attenuating hyperactive regulatory T cells in cervical cancer stage IIIB patients. Hum. Immunol. 2013, 74, 1015–1023. [Google Scholar] [CrossRef]
- Fukui, H.; Mitsui, S.; Harima, N.; Nose, M.; Tsujimura, K.; Mizukami, H.; Morita, A. Novel functions of herbal medicines in dendritic cells: Role of Amomi Semen in tumor immunity. Microbiol. Immunol. 2007, 51, 1121–1133. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, C.; Huang, H.; Yao, S.; Xu, C.; Ye, Y.; Gui, S.; Li, G. A lipid-soluble extract of Pinellia pedatisecta Schott orchestrates intratumoral dendritic cell-driven immune activation through SOCS1 signaling in cervical cancer. J. Ethnopharmacol. 2021, 267, 112837. [Google Scholar] [CrossRef] [PubMed]
- Mohibbullah, M.; Haque, M.N.; Sohag, A.A.M.; Hossain, M.T.; Zahan, M.S.; Uddin, M.J.; Hannan, M.A.; Moon, I.S.; Choi, J.-S. A Systematic Review on Marine Algae-Derived Fucoxanthin: An Update of Pharmacological Insights. Mar. Drugs 2022, 20, 279. [Google Scholar] [CrossRef] [PubMed]
- Akter, T.; Rahman, M.A.; Moni, A.; Apu, M.A.I.; Fariha, A.; Hannan, M.A.; Uddin, M.J. Prospects for Protective Potential of Moringa oleifera against Kidney Diseases. Plants 2021, 10, 2818. [Google Scholar] [CrossRef] [PubMed]
- Laidlaw, B.J.; Craft, J.E.; Kaech, S.M. The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nat. Rev. Immunol. 2016, 16, 102–111. [Google Scholar] [CrossRef]
- Basu, A.; Ramamoorthi, G.; Albert, G.; Gallen, C.; Beyer, A.; Snyder, C.; Koski, G.; Disis, M.L.; Czerniecki, B.J.; Kodumudi, K. Differentiation and regulation of TH cells: A balancing act for cancer immunotherapy. Front. Immunol. 2021, 12, 669474. [Google Scholar] [CrossRef]
- Fang, X.; Guo, Z.; Liang, J.; Wen, J.; Liu, Y.; Guan, X.; Li, H. Neoantigens and their potential applications in tumor immunotherapy. Oncol. Lett. 2022, 23, 88. [Google Scholar] [CrossRef]
Plant Name/Extracts | DCs on T-Cell Activation | References |
---|---|---|
Polysaccharide Angelica gigas Nakai (Angelin) | Increase T-cell proliferation and Th1 cytokines | [43,44] |
Capparis spinosa polysaccharides | Increase proliferation of CD4 and CD8 T-cells | [45] |
Safflower Carthamus tinctorius | Enhances DCs mediated T-cell polarization | [46] |
Glycyrrhizia uralensis | Increase tumor-specific CD8 T-cell proliferation | [47] |
Dioscorea tuber phytoextracts | Increase T-cell proliferation | [18] |
plant extract of Nicotiana benthamiana | Enhances cytotoxic activity of tumor-specific T-cell | [23] |
Butanol fraction of stem and leaf extract of Echinacea purpurea | Increase T-cell proliferation | [21] |
Uncarinic acid C, uncarinic acid D and Triterpene esters from Uncaria rhynchophyla | Increase T-cell proliferation and Th1 cytokines | [48] |
Plant Name/Extracts | DCs on Immunostimulatory Cytokines Production | References |
---|---|---|
Japanese soybean Kurosengoku extracts | Increase production of IFN-γ and IL-12 | [50] |
Galactomannan from Caesalpinia spinosa | Increase concentration of IL-1β, IL-6, IL-12, and TNF-α | [47] |
Polysaccharides-derived from Ficus carica | Increase mRNA expression of IL-1, IL-6, IFN-γ, and IL-23 | [53] |
Angelan from Angelica gigas Nakai | Increase TNF-α, IL-12, IFN-α, IFN-β, and IL-1β | [43] |
Polysaccharides from Astragalus mongholicus | Increase expression of IL-12p70 | [35] |
Polysaccharide (PLP) isolated from Pueraria lobata and Mori fructus | Increase production of interleukin IL-1β, IL-12, and TNF-α | [27,53] |
Seeds of Plantago asiatica | Increase production of TNF-α and IL-12p70, and decrease IL-10 | [54] |
Water extract of Pleurotus ferulae | Increase production of IL-6, IL-12, and TNF-α in dose-dependent manner | [55] |
Polysaccharide from Polyporus umbellatus | Increase production of IL-12 cytokine | [32] |
Plant-derived polysaccharides from Angelica gigas and Capparis spinosa | Increase production of IL-1β, IL-12, IFN-α, IFN-β, and TNF-α cytokines | [44,45] |
Ethanol extract of Phyllantus amarus | Increase expression IL-6 and IL-12cytokines | [14] |
Polysaccharides from Ficus carica | Increase mRNA expression of IL-6, IL-12, IFN-γ, and IL-23 | [52] |
Plant Name/Extracts | DCs on Signaling Pathways | References |
---|---|---|
Polysaccharide (PLP) from Pueraria lobata | DCs enhances T-cell stimulation through TLR4 signaling pathway | [27] |
Neem leaf glycoprotein (NLGP) | DCs activates FoxP3+ Treg downregulation, T-bet upregulation, and STAT1 and STAT4 high phosphorylation, and low phosphorylation STAT3 | [4] |
Polysaccharide from Plantago Asiatica | DCs maturation through TLR4 pathway | [54] |
Water extract of Glycyrrhiza uralensis | DCs maturation and cytokines production through TLR4 signaling pathway | [47] |
Polysaccharide-derived from Mori fructus and Platycondon grandiflorum | DCs mediated T-cell proliferation through MAPK and NF-κB signaling pathway | [53,56] |
Lycium barbarum polysaccharides | TLR2 and TLR4 mediated functional activation of DCs via activation of NF-κB | [57] |
Angelan from Angelica gigas Nakai plant polysaccharide | DC mediated tumor immunotherapy through TLR where downstream target molecules are NF-κB/Rel and MAPK | [43,44] |
Radix Glycyrrhizae polysaccharide | Maturation of DCs through NF-κB and MAPK | [58] |
Dioscorea phytoextrct (DsII) | DC-based cancer immunotherapy through PAMPs signaling pathway | [58] |
Plant Name/Extracts | DCs on In Vivo Study against Cancer | References |
---|---|---|
Polysaccharide LBP (Lycium barbarum) | Increase the number of DCs with anti-tumor immune function in mice | [60] |
Larix leptolepsis | Activates DCs to initiate type 1 immunity and inhibit tumor growth in mice | [61] |
Grape seed proanthocyanidins | Lowering the UV-induced immunosuppression by repairing DNA through activation of DCs in mice | [62] |
Alcoholic extract of Tinospora cordifolia | Enhancing the differentiation of tumor-associated macrophages to DCs and increases cytotoxicity in tumor bearing mice | [28] |
Plant DNA CpG | Activates DCs and decreases tumor growth in mice | [63] |
Plant-derived agonist CM-Glucan (carboxymethylated Beta- (1,3) (1,6) glucan); trade name Immunomax® | Inhibit tumor growth in mice through activation of DCs | [64] |
Polysaccharide from root of Ficus carica | Enhancing the activity of DC-based cancer immunotherapy in mice | [52] |
Polysaccharide from Carthamus tinctorius | Increase the efficiency of DC-based cancer vaccine through the cytotoxic activity of CD8 T-cells | [46] |
Polysaccharide from Dioscorea alata var. Purpurea | Stimulates DCs and enhances anti-tumor activity in mice | [26] |
Plant Name/Extracts | DCs-Based Clinical Study against Cancer | References |
---|---|---|
Nicotiana benthamiana NbPVX-E7 pulsed-MDDCs/PBMC | Increase cytotoxic activity against HPV16 E7 | [23] |
Chinese herbal medicine Shenqi Fuzheng | DCs activation in breast cancer patients | [67] |
Lingdankang composite combined DCs and cytokines | Effective against leukemia patients | [68] |
Neef leaf glycoprotein (NLGP) | Dendritic cells attenuating hyperactive regulatory T-cells in cervical cancer (stage IIIB) patients | [69] |
DCs exposed to Amomi Semen extract | Activation of phenotypes of DCs and inhibits the growth of tumor cells | [70] |
Glycolipid mixture containing B-glucosylceramides from herb | DCs expressed ICAM 1 in cancer patients | [50] |
Lipid-soluble extract of Pinellia pedatisecta Schott | Stimulates intratumoral dendritc cell activation in cervical cancer patients | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.S.; Uddin, M.J.; Hossen, M.J.; Rahman, M.A.; Mohibbullah, M.; Hannan, M.A.; Choi, J.-S. Dendritic Cells (DCs)-Based Cancer Immunotherapy: A Review on the Prospects of Medicinal Plants and Their Phytochemicals as Potential Pharmacological Modulators. Appl. Sci. 2022, 12, 9452. https://doi.org/10.3390/app12199452
Ahmed MS, Uddin MJ, Hossen MJ, Rahman MA, Mohibbullah M, Hannan MA, Choi J-S. Dendritic Cells (DCs)-Based Cancer Immunotherapy: A Review on the Prospects of Medicinal Plants and Their Phytochemicals as Potential Pharmacological Modulators. Applied Sciences. 2022; 12(19):9452. https://doi.org/10.3390/app12199452
Chicago/Turabian StyleAhmed, Md. Selim, Md Jamal Uddin, Muhammad Jahangir Hossen, Md. Ataur Rahman, Md. Mohibbullah, Md. Abdul Hannan, and Jae-Suk Choi. 2022. "Dendritic Cells (DCs)-Based Cancer Immunotherapy: A Review on the Prospects of Medicinal Plants and Their Phytochemicals as Potential Pharmacological Modulators" Applied Sciences 12, no. 19: 9452. https://doi.org/10.3390/app12199452
APA StyleAhmed, M. S., Uddin, M. J., Hossen, M. J., Rahman, M. A., Mohibbullah, M., Hannan, M. A., & Choi, J. -S. (2022). Dendritic Cells (DCs)-Based Cancer Immunotherapy: A Review on the Prospects of Medicinal Plants and Their Phytochemicals as Potential Pharmacological Modulators. Applied Sciences, 12(19), 9452. https://doi.org/10.3390/app12199452