Geochemical Characteristics and Depositional Environment of Coal-Measure Hydrocarbon Source Rocks in the Northern Tectonic Belt, Kuqa Depression
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Analytical Methods
3.1. Samples
3.2. Analytical Methods
3.2.1. Carbon-Sulfur Content Analysis
3.2.2. Rock Eval Analysis
3.2.3. GC-MS Analysis
4. Results and Discussion
4.1. Abundance and Types of Organic Matter in Source Rocks
4.2. Geochemistry Features as Indication for Organic Matter Input and Depositional Conditions
4.2.1. Depositional Environment
4.2.2. Source of Organic Matter
4.3. Controlling Factors of Source Rock Development
5. Conclusions
- (1)
- The abundance of coal-measure source rocks is high, which means that the samples are good to excellent source rocks as a whole. Organic matter is predominantly classified as type III and occasionally type II.
- (2)
- Low S/C ratio, low gammacerane index, high C29 sterane content, and very low DBT/P ratio are characteristics of the coal-measure source rocks. Combined with the depositional environment of isoprenoids and regular steranes and the division chart of organic matter sources, it shows that the depositional environment of coal-measure source rocks is mainly a shallow, freshwater continental environment with partial oxidation, and the source of organic matter is mainly terrestrial higher plants.
- (3)
- Under certain conditions, the higher the degree of oxidation, the lower the salinity and the more terrestrial organic matter input are more advantageous to the enrichment of organic matter in coal-measure source rocks.
Author Contributions
Funding
Conflicts of Interest
References
- Liang, D.G.; Jia, C.Z. Natural Gas Exploration Achievements and its Prospects Evaluation in Talimu Basin. Nat. Gas Ind. 1999, 19, 3–12. [Google Scholar]
- Jia, C.; Zou, C.; Yang, Z.; Zhu, R.; Chen, Z.; Zhang, B.; Jiang, L. Significant progress of continental petroleum geology theory in basins of Central and Western China. Petroleum. Explor. Dev. 2018, 45, 546–560. [Google Scholar] [CrossRef]
- Liang, D.G.; Zhang, S.C.; Chen, J.P.; Wang, F.Y.; Wang, P.R. Organic geochemistry of oil and gas in the Kuqa depression, Tarim Basin, NW China. Org. Geochem. 2003, 34, 873–888. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, S.; Wang, F.; Cramer, B.; Chen, J.; Sun, Y.; Zhang, B.; Zhao, M. Gas systems in the Kuche Depression of the Tarim Basin: Source rock distributions, generation kinetics and gas accumulation history. Org. Geochem. 2005, 36, 1583–1601. [Google Scholar] [CrossRef]
- Huang, W.K. Hydrocarbon Generation Kinetics and Geochemical Characteristics of Coaly Source Rocks in the Kuqa Depression. Ph.D. thesis, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China, 2019. [Google Scholar]
- Zhang, J. Study on Oil Source and Characteristics of Petroleum Accumulation in Kuche Foreland Basin, Tarim. Ph.D. thesis, China University of Geosciences (Beijing), Beijing, China, 2002. [Google Scholar]
- Li, J.; Jiang, Z.L.; Luo, X.; Wang, D.L.; Han, Z.X. Geochemical characteristics of coal-measure source rocks and coal-derived gas in Junggar Basin, NW China. Pet. Explor. Dev. 2009, 36, 365–374. [Google Scholar] [CrossRef]
- Fu, H.; Liu, Q.H.; Yang, S.S. Sedimentary environments of the Limnic Source Rocks and There Influence on Hydrocarbon-Generating Potentiality: An Example From the Jurassic Source Rock in the Junggar Basin, Xinjiang. Sediment. Facies Palaeogeogr. 1996, 16, 31–37. [Google Scholar]
- Zhang, H.; Zhang, R.; Yang, H.; Yao, G.; Ma, Y. Quantitative evaluation methods and applications of tectonic fracture developed sand reservoir: A Cretaceous example from Kuqa foreland basin. Acta Petrol. Sin. 2012, 28, 827–835. [Google Scholar]
- Zhang, L.; Yan, Y.; Luo, X.; Wang, Z.; Zhang, H. Diagenetic differences of tight sandstone of the Lower Jurassic Ahe Formation in the Yiqikelike area of the Kuqa depression, Tarim basin. Earth Sci. Front. 2018, 25, 170–178. [Google Scholar]
- Zhang, R.H.; Yang, H.J.; Wei, H.X.; Yu, C.F.; Yang, Z.; Wu, J. The sandstone characteristics and hydrocarbon exploration signification of Lower Jurassic in middle-east section of northern tectonic belt in Kuqa Depression, Tarim Basin. Nat. Gas Geosci. 2019, 30, 1243–1252. [Google Scholar]
- Wang, K.; Yang, H.; Li, Y.; Zhang, R.; Ma, Y.; Wang, B.; Yu, C.; Yang, Z.; Tang, Y. Geological characteristics and exploration potential of the northern tectonic belt of Kuqa depression in Tarim Basin. Acta Pet. Sin. 2021, 42, 885–905. [Google Scholar]
- Guo, J.; Pang, X.; Liu, D.; Jiang, Z.; Jiang, F. Hydrocarbon explusion for middle-lower Jurassic coal measures and evaluation of potential resource in Kuqa depression. Nat. Gas Geosci. 2012, 23, 327–334. [Google Scholar]
- Ju, Y.; Sun, X.; Liu, L.; Xie, Y.; Wei, H. Characteristics of Jurassic tight sandstone gas reservoir in Dibei area of Kuqa depression, Tarim Basin. Xinjiang Pet. Geol. 2014, 35, 264–267, (in Chinese with English abstract). [Google Scholar]
- Tian, J. Petroleum Exploration Achievements and Future Targets of Tarim Basin. Xinjiang Pet. Geol. 2019, 40, 1–11. [Google Scholar]
- Sykes, R.; Snowdon, L.R. Guidelines for assessing the petroleum potential of coaly source rocks using Rock-Eval pyrolysis. Org. Geochem. 2002, 33, 1441–1455. [Google Scholar] [CrossRef]
- Sun, Y.; Liao, L.L.; Shi, S.Y.; Liu, J.Z.; Wang, Y.P. How TOC affects Rock-Eval pyrolysis and hydrocarbon generation kinetics: An example of Yanchang Shale (T3y) from Ordos Basin, China. IOP Conf. Ser. Earth Environ. Sci. 2020, 600, 012026. [Google Scholar] [CrossRef]
- Arfaoui, A.; Montacer, M.; Kamoun, F.; Rigane, A. Comparative study between Rock-Eval pyrolysis and biomarkers parameters: A case study of Ypresian source rocks in central-northern Tunisia. Mar. Pet. Geol. 2007, 24, 566–578. [Google Scholar] [CrossRef]
- Müller, A. Organic carbon burial rates, and carbon and sulfur relationships in coastal sediments of the southern Baltic sea. Appl. Geochem. 2002, 17, 337–352. [Google Scholar] [CrossRef]
- Kao, S.J.; Horng, C.S.; Roberts, A.P.; Liu, K.K. Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: Influence of geochemical environment on greigite and pyrrhotite formation. Chem. Geol. 2004, 203, 153–168. [Google Scholar] [CrossRef]
- Berner, R.A.; Raiswell, R. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 1984, 12, 365. [Google Scholar] [CrossRef]
- Hofmann, P.; Ricken, W.; Schwark, L.; Leythaeuser, D. Carbon-sulfur-iron relationships and δ13C of organic matter for late Albian sedimentary rocks from the North Atlantic Ocean: Paleoceanographic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 163, 97–113. [Google Scholar] [CrossRef]
- Ding, X.; Liu, G.; Zha, M.; Gao, C.; Huang, Z.; Qu, J.; Lu, X.; Wanf, P.; Che, Z. Geochemical characterization and depositional environment of source rocks of small fault basin in Erlian Basin, northern China. Mar. Pet. Geol. 2016, 69, 231–240. [Google Scholar] [CrossRef]
- Berner, R.A. Sedimentary pyrite formation: An update. Geochim. Cosmochim Acta 1984, 48, 605–615. [Google Scholar] [CrossRef]
- Leventhal, J.S. Carbon and sulfur relationships in Devonian shales from the Appalachian Basin as an indicator of environment of deposition. Am. J. Sci. 1987, 287, 33–49. [Google Scholar] [CrossRef]
- Sampei, Y.; Matsumoto, E.; Kamei, T.; Tokuoka, T. Sulfur and organic carbon relationship in sediments from coastal brackish lakes in the shimane peninsula district, southwest Japan. Geochem. J. 1997, 31, 245–262. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; He, Z. Implications of TS/TOC for sedimentary environments of the southern Changjiang delta plain. J. Palaeogeogr. 2012, 14, 821–828. [Google Scholar]
- Lyons, T.W.; Berner, R.A. Carbon-sulfur-iron systematics of the uppermost deep-water sediments of the Black Sea. Chem. Geol. 1992, 99, 1–27. [Google Scholar] [CrossRef]
- Powell, T.G.; Mckirdy, D.M. Relationship between Ratio of Pristane to Phytane, Crude Oil Composition and Geological Environment in Australia. Nature 1973, 243, 37–39. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. Biomarkers and Isotopes in Petroleum Exploration and Earth History; Cambridge University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Cheng, P.; Xiao, X.M.; Tian, H.; Huang, B.J.; Wilkins, R.; Zhang, Y.Z. Source controls on geochemical characteristics of crude oils from the Qionghai Uplift in the western Pearl River Mouth Basin, offshore South China Sea. Mar. Pet. Geol. 2013, 40, 85–98. [Google Scholar] [CrossRef]
- Hunt, J.M. Petroleum Geochemistry and Geology; W.H. Freeman and Company: New York, NY, USA, 1996. [Google Scholar] [CrossRef]
- Connan, J.; Cassou, A.M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochim. Cosmochim. Acta 1980, 44, 1–23. [Google Scholar] [CrossRef]
- Peters, K.E.; Fraser, T.H.; Amris, W.; Rustanto, B. Geochemistry of Crude Oils from Eastern Indonesia. AAPG Bull. 1999, 83, 1927–1942. [Google Scholar] [CrossRef]
- Hanson, A.D.; Zhang, S.C.; Moldowan, J.M.; Liang, D.G.; Zhang, B.M. Molecular organic geochemistry of the Tarim Basin, northwest China. AAPG Bull. 2000, 84, 1109–1128. [Google Scholar] [CrossRef]
- Duan, Y.; Zheng, C.Y.; Wang, Z.P.; Wu, B.X.; Wang, C.Y.; Zhang, H.; Qian, Y.; Zheng, G. Biomaker geochemistry of crude oils from the Qaidam Basin, NW China. J. Pet. Geol. 2006, 29, 175–188. [Google Scholar] [CrossRef]
- Huang, W.Y.; Meinschein, W.G. Sterols as ecological indicators. Geochim. Cosmochim. Acta 1979, 43, 739–745. [Google Scholar] [CrossRef]
- Körmös, S.; Bechtel, A.; Sachsenhofer, R.F.; Radovics, B.G.; Schubert, F. Petrographic and organic geochemical study of the Eocene Kosd Formation (northern Pannonian Basin): Implications for paleoenvironment and hydrocarbon source potential. Int. J. Coal Geol. 2020, 228, 103555. [Google Scholar] [CrossRef]
- Damste, J.S.S.; Kenig, F.; Koopmans, M.P.; Koster, J.; Schouten, S.; Hayes, J.M.; de Leeuw, J.W. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 1995, 59, 1895. [Google Scholar] [CrossRef]
- Holba, A.G.; Dzou, L.I.; Wood, G.D.; Ellis, L.; Adam, P.; Schaeffer, P.; Albrecht, P.; Greene, T.; Wughes, W.B. Application of tetracyclic polyprenoids as indicators of input from fresh-brackish water environments. Org. Geochem. 2003, 34, 441–469. [Google Scholar] [CrossRef]
- Summons, R.E.; Hope, J.M.; Swart, R.; Walter, M.R. Origin of Nama Basin bitumen seeps: Petroleum derived from a Permian lacustrine source rock traversing southwestern Gondwana. Org. Geochem. 2008, 39, 589–607. [Google Scholar] [CrossRef]
- Hughes, W.B.; Holba, A.G.; Dzou, L.I. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 1995, 59, 3581–3598. [Google Scholar] [CrossRef]
- Zhou, J. Geochemical Characteristics of Eocene Pinghu Formation Coal-Bearing Source Rocks in the Xihu Depression, East China Sea Basin. Master’s Dissertation, Zhejiang University, Zhejiang, China, 2012; pp. 1–51. [Google Scholar]
- Al-Areeq, N.M.; Maky, A.F. Organic geochemical characteristics of crude oils and oil-source rock correlation in the Sunah oilfield, Masila Region, Eastern Yemen. Mar. Pet. Geol. 2015, 63, 17–27. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochim. Cosmochim. Acta 1978, 42, 77–95. [Google Scholar] [CrossRef]
- Volkman, J.K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 1986, 9, 83–99. [Google Scholar] [CrossRef]
Lithology | Stratum | TOC | S1 + S2 | HI | Tmax | TS | S/C | Pr/Ph | Pr/nC17 | Ph/nC18 | C27% | C28% | C29% | Ga/C30H | C24Te/C26TT | DBT/P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | J2kz | 0.56 | - | - | - | 0.15 | 0.27 | 0.86 | 1.10 | 0.47 | 25.49 | 29.22 | 45.30 | - | - | 0.04 |
M | J2kz | 0.54 | - | - | - | 0.15 | 0.28 | 0.72 | 1.36 | 0.51 | 35.89 | 28.59 | 35.53 | - | - | 0.05 |
CM | J2kz | 17.10 | 43.82 | 250 | 443 | 0.43 | 0.02 | 4.01 | 0.71 | 0.13 | 29.14 | 20.16 | 50.70 | - | - | 0.04 |
M | J2kz | 2.96 | 2.87 | 79 | 442 | 0.15 | 0.05 | 1.24 | 1.37 | 0.47 | 12.42 | 19.24 | 68.35 | - | - | 0.04 |
C | J2kz | 43.90 | - | - | - | 0.87 | 0.02 | 2.12 | 0.28 | 0.08 | 22.55 | 21.38 | 56.07 | - | - | 0.05 |
CM | J2kz | 33.10 | 76.38 | 198 | 449 | 0.57 | 0.02 | 1.08 | 0.31 | 0.17 | 11.37 | 25.04 | 63.59 | - | - | 0.05 |
M | J2kz | 1.44 | 0.97 | 44 | 432 | 0.16 | 0.11 | 0.79 | 1.97 | 1.14 | 26.35 | 23.98 | 49.67 | 0.15 | 0.58 | 0.02 |
M | J2kz | 0.73 | 0.60 | 62 | 432 | 0.10 | 0.14 | 0.87 | 1.03 | 0.48 | 21.07 | 25.92 | 53.01 | 0.26 | 0.98 | 0.03 |
M | J1y | 1.55 | 5.51 | 117 | 468 | 0.13 | 0.08 | 0.91 | 0.55 | 0.52 | 37.24 | 28.09 | 34.67 | 0.24 | 0.42 | 0.05 |
M | J1y | 3.29 | 21.51 | 187 | 466 | 0.18 | 0.05 | 1.02 | 0.51 | 0.41 | 32.16 | 29.30 | 38.53 | 0.23 | 0.52 | 0.05 |
M | J1y | 3.51 | 14.44 | 228 | 437 | 0.23 | 0.07 | 1.54 | 0.39 | 0.17 | 22.68 | 25.98 | 51.33 | 0.09 | 1.18 | 0.03 |
M | J1y | 2.18 | 2.74 | 74 | 430 | 0.18 | 0.08 | 1.44 | 0.39 | 0.17 | 33.03 | 23.81 | 43.16 | 0.10 | 4.77 | 0.04 |
M | J1y | 1.96 | 4.93 | 150 | 442 | 0.15 | 0.08 | 0.81 | 1.35 | 1.14 | 16.44 | 20.55 | 63.01 | 0.07 | 5.77 | 0.06 |
M | J1y | 1.72 | 2.52 | 119 | 439 | 0.13 | 0.08 | 0.60 | 0.98 | 0.97 | 27.17 | 23.99 | 48.84 | 0.13 | 1.23 | 0.05 |
M | J1a | 1.39 | 2.23 | 124 | 448 | 0.12 | 0.08 | 1.85 | 0.95 | 0.39 | 36.95 | 22.60 | 40.44 | - | - | 0.05 |
M | J1a | 1.14 | 1.71 | 82 | 455 | 0.10 | 0.09 | 0.78 | 1.01 | 0.80 | 26.60 | 39.85 | 33.55 | - | - | 0.04 |
CM | J1a | 13.90 | 7.77 | 55 | 502 | 0.36 | 0.03 | 0.70 | 1.06 | 0.69 | 34.84 | 28.18 | 36.98 | 0.17 | 0.37 | 0.09 |
M | J1a | 4.20 | 3.13 | 36 | 508 | 0.18 | 0.04 | 0.84 | 0.85 | 0.73 | 33.70 | 30.06 | 36.24 | 0.21 | 0.42 | 0.09 |
M | J1a | 0.75 | 0.53 | 27 | 319 | 0.13 | 0.17 | 0.53 | 1.04 | 0.88 | 32.69 | 31.94 | 35.36 | 0.24 | 0.34 | 0.08 |
M | J1a | 0.63 | - | - | - | 0.13 | 0.21 | 0.72 | 1.32 | 0.86 | 36.81 | 26.28 | 36.92 | 0.28 | 0.42 | - |
M | J1a | 0.53 | - | - | - | 0.09 | 0.18 | 0.62 | 0.99 | 0.79 | 32.48 | 29.15 | 38.37 | 0.24 | 0.44 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, T.; Ding, X.; Yang, X.; Chen, C.; Xu, Z.; Liu, K.; Zhang, X.; Cao, W. Geochemical Characteristics and Depositional Environment of Coal-Measure Hydrocarbon Source Rocks in the Northern Tectonic Belt, Kuqa Depression. Appl. Sci. 2022, 12, 9464. https://doi.org/10.3390/app12199464
Gao T, Ding X, Yang X, Chen C, Xu Z, Liu K, Zhang X, Cao W. Geochemical Characteristics and Depositional Environment of Coal-Measure Hydrocarbon Source Rocks in the Northern Tectonic Belt, Kuqa Depression. Applied Sciences. 2022; 12(19):9464. https://doi.org/10.3390/app12199464
Chicago/Turabian StyleGao, Tianze, Xiujian Ding, Xianzhang Yang, Changchao Chen, Zhenping Xu, Keyu Liu, Xueqi Zhang, and Weizheng Cao. 2022. "Geochemical Characteristics and Depositional Environment of Coal-Measure Hydrocarbon Source Rocks in the Northern Tectonic Belt, Kuqa Depression" Applied Sciences 12, no. 19: 9464. https://doi.org/10.3390/app12199464
APA StyleGao, T., Ding, X., Yang, X., Chen, C., Xu, Z., Liu, K., Zhang, X., & Cao, W. (2022). Geochemical Characteristics and Depositional Environment of Coal-Measure Hydrocarbon Source Rocks in the Northern Tectonic Belt, Kuqa Depression. Applied Sciences, 12(19), 9464. https://doi.org/10.3390/app12199464