Design of a Compact Indirect Slot-Fed Wideband Patch Array with an Air SIW Cavity for a High Directivity in Missile Seeker Applications
Abstract
:1. Introduction
2. Design of Proposed Array
2.1. A Stand-Alone Antenna
2.2. An Array Extension
3. Fabrication and Measurement of Proposed Array
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bilgic, M.M.; Yegin, K. Wideband Offset Slot-Coupled Patch Antenna Array for X/Ku-Band Multimode Radars. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 157–160. [Google Scholar] [CrossRef]
- Russo, I.; Canestri, C.; Manna, A.; Mazzi, G.; Tafuto, A. Dual-Band Antenna Array With Superdirective Elements for Short-Distance Ballistic Tracking. IEEE Trans. Antennas Propag. 2019, 67, 232–241. [Google Scholar] [CrossRef]
- Hussain, M.; Jarchavi, S.M.R.; Naqvi, S.I.; Gulzar, U.; Khan, S.; Alibakhshikenari, M.; Huynen, I. Design and Fabrication of a Printed Tri-Band Antenna for 5G Applications Operating across Ka-, and V-Band Spectrums. Electronics 2021, 10, 2674. [Google Scholar] [CrossRef]
- Jeong, T.; Yun, J.; Oh, K.; Kim, J.; Woo, D.W.; Hwang, K.C. Shape and Weighting Optimization of a Subarray for an mm-Wave Phased Array Antenna. Appl. Sci. 2021, 11, 6803. [Google Scholar] [CrossRef]
- Tong, X.; Jiang, Z.H.; Yu, C.; Wu, F.; Xu, X.; Hong, W. Low-Profile, Broadband, Dual-Linearly Polarized, and Wide-Angle Millimeter-Wave Antenna Arrays for Ka-Band 5G Applications. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2038–2042. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Xiang, L.; Kong, W.; Hong, W. Broadband Circularly Polarized Magnetoelectric Dipole Antenna and Array for K-Band and Ka-Band Satellite Communications. IEEE Trans. Antennas Propag. 2022, 70, 5907–5912. [Google Scholar] [CrossRef]
- Patriotis, M.; Ayoub, F.N.; Tawk, Y.; Costantine, J.; Christodoulou, C.G. A Compact Active Ka-Band Filtenna for CubeSats. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2095–2099. [Google Scholar] [CrossRef]
- Kiani, S.H.; Altaf, A.; Anjum, M.R.; Afridi, S.; Arain, Z.A.; Anwar, S.; Khan, S.; Alibakhshikenari, M.; Lalbakhsh, A.; Khan, M.A.; et al. MIMO Antenna System for Modern 5G Handheld Devices with Healthcare and High Rate Delivery. Sensors 2021, 21, 7415. [Google Scholar] [CrossRef]
- Bhandari, P.; Jian, L. Compact Wideband Array with Side- Lobe Control. In Proceedings of the 2009 IEEE Antennas and Propagation Society International Symposium, Charleston, SC, USA, 1–5 June 2009; pp. 1–4. [Google Scholar]
- Kähkönen, H.; Ala-Laurinaho, J.; Viikari, V. Dual-Polarized Ka-Band Vivaldi Antenna Array. IEEE Trans. Antennas Propag. 2020, 68, 2675–2683. [Google Scholar] [CrossRef]
- Saeidi-Manesh, H.; Saeedi, S.; Mirmozafari, M.; Zhang, G.; Sigmarsson, H.H. Design and Fabrication of Orthogonal-Mode Transducer Using 3-D Printing Technology. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2013–2016. [Google Scholar] [CrossRef]
- He, Y.; Zhao, X.; Zhao, L.; Fan, Z.; Wang, J.K.; Zhang, L.; Ni, C.; Wu, W.J. Design of Broadband Double-Ridge Horn Antenna for Millimeter-Wave Applications. IEEE Access 2021, 9, 118919–118926. [Google Scholar] [CrossRef]
- Abumunshar, A.J.; Sertel, K. 5:1 Bandwidth Dielectric Rod Antenna Using a Novel Feed Structure. IEEE Trans. Antennas Propag. 2017, 65, 2208–2214. [Google Scholar] [CrossRef]
- Smith, L.P.; Howell, J.C.; Lim, S. A Size-Reduced, 15-Element, Planar Yagi Antenna. IEEE Trans. Antennas Propag. 2021, 69, 2410–2415. [Google Scholar] [CrossRef]
- Mantash, M.; Denidni, T.A. CP Antenna Array With Switching-Beam Capability Using Electromagnetic Periodic Structures for 5G Applications. IEEE Access 2019, 7, 26192–26199. [Google Scholar] [CrossRef]
- Byun, G.; Choo, H.; Kim, S. Design of a Small Arc-Shaped Antenna Array with High Isolation for Applications of Controlled Reception Pattern Antennas. IEEE Trans. Antennas Propag. 2016, 64, 1542–1546. [Google Scholar] [CrossRef]
- Qamar, Z.; Naeem, U.; Khan, S.A.; Chongcheawchamnan, M.; Shafique, M.F. Mutual Coupling Reduction for High-Performance Densely Packed Patch Antenna Arrays on Finite Substrate. IEEE Trans. Antennas Propag. 2016, 64, 1653–1660. [Google Scholar] [CrossRef]
- Byun, G.; Hur, J.; Kang, S.; Son, S.B.; Choo, H. Design of a Coupled Feed Structure With Cavity Walls for Extremely Small Anti-Jamming Arrays. IEEE Access 2019, 7, 17279–17288. [Google Scholar] [CrossRef]
- Yun, S.; Kim, D.-Y.; Nam, S. Folded Cavity-Backed Crossed-Slot Antenna. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 36–39. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, L. Gain-Enhanced Patch Antenna Without Enlarged Size Via Loading of Slot and Shorting Pins. IEEE Trans. Antennas Propag. 2017, 65, 5702–5709. [Google Scholar] [CrossRef]
- Gupta, S.; Mumcu, G. Dual-Band Miniature Coupled Double Loop GPS Antenna Loaded With Lumped Capacitors and Inductive Pins. IEEE Trans. Antennas Propag. 2013, 61, 2904–2910. [Google Scholar] [CrossRef]
- Lim, T.H.; Choo, H.; Byun, G. Design of a Superstrate Module for Simple Resonant Frequency Tuning. IEEE Access 2019, 7, 43742–43748. [Google Scholar] [CrossRef]
- ANSYS HFSS Software. Available online: http://www.ansoft.com/products/hf/hfss/ (accessed on 1 August 2022).
- Pozar, D.M. Microstrip Antennas. Proc. IEEE 1992, 80, 79–91. [Google Scholar] [CrossRef]
- Chen, C.; McKinzie, W.E.; Alexopoulos, N.G. Stripline-Fed Arbitrarily Shaped Printed-Aperture Antennas. IEEE Trans. Antennas Propag. 1997, 45, 1186–1198. [Google Scholar] [CrossRef]
- Karmakar, N.C. Investigations into a Cavity-Backed Circular-Patch Antenna. IEEE Trans. Antennas Propag. 2022, 50, 1706–1715. [Google Scholar] [CrossRef]
- End Launch Connectors, With-Wave Inc. Available online: https://www.with-wave.com (accessed on 1 August 2022).
- Hong, T.; Zhao, Z.; Jiang, W.; Xia, S.; Liu, Y.; Gong, S. Dual-Band SIW Cavity-Backed Slot Array Using TM020 and TM120 Modes for 5G Applications. IEEE Trans. Antennas Propag. 2019, 67, 3490–3495. [Google Scholar] [CrossRef]
- Yang, T.Y.; Hong, W.; Zhang, Y. Wideband Millimeter-Wave Substrate Integrated Waveguide Cavity-Backed Rectangular Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 205–208. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values |
---|---|---|---|
2.32 mm | 6 mm | ||
3.5 mm | 2.87 mm | ||
0.1 mm | 5 mm | ||
8.9 mm | 2 mm | ||
3.55 mm | 6 mm | ||
6 mm | 4.48 mm | ||
3.8 mm | 0.366 mm | ||
27.9 mm | 0.366 mm | ||
0.127 mm | 0.51 mm | ||
d | 0.2 mm | s | 1 mm |
a | 6 mm |
Ref. | Antenna Size | Fractional Bandwidth (%) | Operation Frequency (GHz) | HPBW () | Peak Gain (dBi) | Array Extension |
---|---|---|---|---|---|---|
[4] | 0.72 × 0.72 × 0.212 | 28.5 | 30 | NA | 7.34 | 24 × 24 |
[5] | 0.41 × 0.41 × 0.15 | 21.8 | 27 | 77 | 4.9 | 4 × 1 |
[28] | 1 × 1 × 0.104 | 14.7/3.4 | 28/38 | NA | 7.5/9.1 | 2 × 2 |
[29] | 0.47 × 0.28 × 0.04 | 15.6 | 38 | 97.2 | 6.5 | 4 × 4 |
This work | 0.7 × 0.7 × 0.09 | 9.2 | 35 | 76 | 7.5 | 4 × 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, W.; Lim, T.-H.; Kim, Y.; An, S.; Joo, J.-H.; Byun, G. Design of a Compact Indirect Slot-Fed Wideband Patch Array with an Air SIW Cavity for a High Directivity in Missile Seeker Applications. Appl. Sci. 2022, 12, 9569. https://doi.org/10.3390/app12199569
Kang W, Lim T-H, Kim Y, An S, Joo J-H, Byun G. Design of a Compact Indirect Slot-Fed Wideband Patch Array with an Air SIW Cavity for a High Directivity in Missile Seeker Applications. Applied Sciences. 2022; 12(19):9569. https://doi.org/10.3390/app12199569
Chicago/Turabian StyleKang, Wootaek, Tae-Heung Lim, Youngwan Kim, Sehwan An, Ji-Han Joo, and Gangil Byun. 2022. "Design of a Compact Indirect Slot-Fed Wideband Patch Array with an Air SIW Cavity for a High Directivity in Missile Seeker Applications" Applied Sciences 12, no. 19: 9569. https://doi.org/10.3390/app12199569
APA StyleKang, W., Lim, T. -H., Kim, Y., An, S., Joo, J. -H., & Byun, G. (2022). Design of a Compact Indirect Slot-Fed Wideband Patch Array with an Air SIW Cavity for a High Directivity in Missile Seeker Applications. Applied Sciences, 12(19), 9569. https://doi.org/10.3390/app12199569