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Abstract: The IoT’s quick development has brought up several security problems and issues that
cannot be solved using traditional intelligent systems. Deep learning (DL) in the field of artificial
intelligence (AI) has proven to be efficient, with many advantages that can be used to address IoT
cybersecurity concerns. This study trained two models of intelligent networks—namely, DenseNet
and Inception Time—to detect cyber-attacks based on a multi-class classification method. We began
our investigation by measuring the performance of these two networks using three datasets: the
ToN-IoT dataset, which consists of heterogeneous data; the Edge-IIoT dataset; and the UNSW2015
dataset. Then, the results were compared by identifying several cyber-attacks. Extensive experiments
were conducted on standard ToN-IoT datasets using the DenseNet multicategory classification model.
The best result we obtained was an accuracy of 99.9% for Windows 10 with DenseNet, but by using
the Inception Time approach we obtained the highest result for Windows 10 with the network, with
100% accuracy. As for using the Edge-IIoT dataset with the Inception Time approach, the best result
was an accuracy of 94.94%. The attacks were also assessed in the UNSW-NB15 database using the
Inception Time approach, which had an accuracy rate of 98.4%. Using window sequences for the
sliding window approach and a six-window size to start training the Inception Time model yielded a
slight improvement, with an accuracy rate of 98.6% in the multicategory classification.

Keywords: DenseNet; inception time; cyber security; malware detection; ToN-IoT dataset; UNSW2015
dataset; Edge-IIoT dataset; AI

1. Introduction

Today, AI has become a critical technology in information security. AI is used to spot
cyber threats and potentially malicious activities, quickly analyze millions of events, and
identify many hazards. By using deep algorithms, AI systems are trained to recognize
patterns, detect malware, and even detect behaviours of malware or ransomware attacks.
Malware or malicious software develops more quickly; it is designed to disable and gain
unauthorized access to stolen sensitive information and computers. The primary motive
for creating malware is to obtain financial gain.

Additionally, AV-Test Threat Report logs more than 350,000 new malware programs
daily, and in 2021 the malware circulation had increased to 114,530 million. Amazingly,
January 2021 alone reported 607 million malware programs [1]. Expert hackers invent
sophisticated malware evasion strategies such as polymorphism [2], code obfuscations,
metamorphism [3], and others, which outperform many existing anti-malware solutions.
The most common malware includes backdoors, passwords, scanning, miners, DDOS,
ransomware, etc. [4]. Malware detection techniques are generally categorized into static [5]
and dynamic systems [6]. A static system analyzes the disassembled code to extract the
opcode sequence, strings, function call graph, API sequences, etc.

A dynamic system, also known as behavioural analysis, is implemented in a controlled
environment (known as the Sandbox) to trace networks or extract system calls. It is effective
in identifying subliminal behaviour. This system is powerful but resource-intensive and
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lazy; moreover, the malware shows restricted behaviour in determining analysis environ-
ments. Furthermore, these systems are ineffective in detecting unknown malware or new
variants. [7].

Deep learning (DL) approaches are increasingly used in applications such as fraud de-
tection, malware detection, fragmentation, image analysis, etc., enabling inputs to develop
more robust cognitive representations by learning at several levels. Convolutional neural
networks (CNNs) have been primarily responsible for advancements in DL. DL methods
can quickly train a model with many convolutional layers and millions of parameters by
learning complex features. In this study, the knowledge of CNNs was thoroughly trained
on a large dataset. CNN techniques have gained importance in time-series classification
(TSC) and malware detection [8,9].

This study contributes the following:

• The model is DenseNet121 modified from working on two-dimensional to one-
dimensional image shapes.

• To the best of our knowledge, there has been no comprehensive study on the ToN-
IoT database. In this study, we conducted a complete investigation of the ToN-IoT
database (Win7, Win10, Network, and IoT) to train the DenseNet and Inception Time
models; the best result was when combining the network with Windows 10, with
100% accuracy.

• We used the Inception Time model in two shapes—first with a 1D input vector shape,
and second with a time-series 2D input shape—using the sliding window technique
with a window size of six in the start time model on the UNSW-NB15 database. There
was a slight improvement in the results with multiple categories, with an accuracy
of 98.6%.

• This paper is the first to use the Inception Time model on the new Edge-IIoT dataset,
and there was an improvement in accuracy to 94.94% with multiple classes.

The rest of this paper is organized as follows: Section 2 provides a summary of the
background and related work. Section 3 presents a description of the dataset. Section 4
describes the background CNN architectures, outlining how the data should be processed
and modelled to extract appropriate data for comparisons and discussion. The design of
experiments is presented in Section 5. Finally, Section 6 analyzes the experimental results,
before concluding the paper in Section 7.

2. Background and Related Work

Artificial intelligence (AI) is a discipline of computer science that simulates the human
brain to identify the best feasible solution to achieve a given goal. ML is a branch of AI
that uses the results of previous experiences as future instructions without being explicitly
programmed. Supervised, unsupervised, and semi-supervised learning are the three main
subcategories of machine learning. DL is a sub-branch of machine learning. In the last
decade, much work has been done to combine these strategies to improve cybersecurity. In
most application contexts, the effects of DL models are superior to those of classic machine
learning (or shallow-model) methods [10,11]. The following aspects are the most noticeable
differences between deep and shallow models: running time, number of parameters, feature
representation, and learning capacity.

DL models consist of a variety of deep networks. Autoencoders, GANs, and RBMs
have supervised learning models. Unsupervised learning models include DBNs, DNNs,
CNNs, and RNNs. DL models directly learn feature representations from the source data,
such as images and text, without requiring explicit feature engineering. DL approaches
provide a major advantage over shallow models for huge datasets. Network architecture,
hyperparameter selection, and optimization approach are the major focuses of deep learning
research. The ToN-IoT, Edge-IIoT, and UNSW2015 datasets are three current datasets in
cybersecurity and the Internet of things that are discussed in this paper. Cybersecurity goals
include data protection, resource protection, data privacy, and data integrity. Online, there
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are several risks and attacks. Fraud detection, virus detection, intrusion detection, spam
classification, phishing, and firewall disabling are all common cybersecurity issues [12,13].

Several solutions have been introduced to tackle cyber-attacks in recent years, but tradi-
tional methods fail to solve such attacks based on network traffic. However, the predictive
power of deep learning models—especially CNNs—is much better than that of traditional ML
models. Recently, researchers have used the DenseNet network and Inception Time. Because
of their outstanding performance, they have attracted much interest.

The authors of [14] presented a new privacy-preservation-based intrusion detection
framework in network traffic Internet of things fog using the SAE technique. The effec-
tiveness of an intrusion detection system based on the ANN technique was then assessed
for identifying attacks and typical vectors of the ToN-IoT dataset. P. Kumar et al., in [15],
suggested a trustworthy privacy-preserving secured framework for intelligent cities. The
privacy module transforms data into a new reduced shape for thwarting inference and
poisoning assaults using a Blockchain-based enhanced proof-of-work (ePoW) technique
and principal component analysis (PCA). The intrusion detection module implements an
enhanced gradient tree boosting method (XGBoost). The authors of [16] used intrusion-
detection systems using deep learning models based on ANN, DNN, and RNN by combin-
ing the entire UNSW-NB1 dataset into a single CSV file so that DL models could be tested
once rather than separately for each file. The dataset was labelled with attack families as
new labels.

The authors of [17] used IGRF-RFE and applied the hybrid feature selection method to
the UNSW-NB15 dataset IDS for MLP-based intrusion-detection systems. IGRF ensemble
feature selection and recursive feature removal using MLP are the two feature-reduction
phases in IGRF-RFE. Then, as a wrapper feature selection approach, recursive feature
elimination (RFE) was used to progressively delete duplicate features on the decreased
feature subsets. The authors of [18] suggested IDS—a new distributed ensemble design
based on fog computing, combining XGBoost, k-nearest neighbours, and Gaussian naive
Bayes as individual learners. Random forests then use the obtained prediction results for
the final classification. The authors of [19] suggested a residual densely connected network
(Densely-ResNet) to identify attacks. It was put together with the help of surviving core
modules, each comprising several Conv-GRU subnets connected by wide links. Where three
virtual layers (fog, edge, and cloud) are connected, the security system can detect external
threats using the (ToN-IoT) database for test evaluation. The authors of [20] proposed
a detailed analysis of feature sets for network assaults with relevance and predictive
power. Three feature-selection procedures were used to find and rank data characteristics:
chi-squared, correlation, and information gain. The characteristics were input into two
machine learning classifiers to measure the accuracy of their assault detection: random
forests, and deep feedforward. N. Moustafa, in [21], proposed a new test architecture for
the ToN-IoT dataset, which can be used to assess AI-based security solutions. The NSX
vCloud NFV platform was utilized to assist software-defined network installation, network
function virtualization, and service orchestration to create dynamic test networks that allow
interaction between fog, edge, and cloud layers. Four intrusion-detection techniques based
on machine learning were used to validate the dataset: gradient boosting machine, deep
neural networks, naive Bayes, and random forests.

The authors of [22] proposed the Edge-IIoT dataset as an experimental resource, which
uses federated deep learning and centralized intrusion detection with standard assessment
criteria. Three studies were conducted using binary, 6-class, and 15-class categorization
to study the traffic predictability and detection effectiveness of various cyber-attacks and
threat models. Four classifiers were used to achieve this: RF, SVM, kNN, and DNN. Table 1
summarizes previous studies.
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Table 1. Summary of previous studies.

Auth Dataset Algorithm Accuracy Description

P.Kumar [14] TON-IoT ANN 99.44%

The SDIoT-Fog data are shielded using the
SAE approach from inference assaults that
can be produced using system-based
ML techniques.

P. Kumar et al. [15] TON-IoT TP2SF 98.84%

The data are transformed into a new
reduced shape for thwarting inference and
poisoning assaults using a
Blockchain-based enhanced proof-of-work
(ePoW) technique and principal
component analysis (PCA).

Aleesa. [16] UNSW-NB1 DL 99.59%

The authors combined the entire
UNSW-NB1 dataset into a single CSV file
so that DL models could be tested once
rather than separately for each file.

Yin, Y. [17] UNSW-NB15 - 84.24%
The authors used the IGRF-RFE hybrid
feature selection method to identify
MLP-based intrusion detection algorithms.

P. Kumar [18] UNSW-NB15 RF 93.21%,

To protect the IoT, XGBoost, k-nearest
neighbours, and Gaussian naive Bayes are
combined as individual learners. Random
forests then use the obtained
prediction results.

Wu, P [19] TON-IoT Densely-Resnet Win7 92.99%
Network 99.93%

Connected three virtual layers (fog, edge,
and cloud layers) as a whole to discover
external attacks more comprehensively.

M.Sarhan [20] TON-IoT DFF, RF 96.10%
97.35%

The authors proposed a detailed analysis of
feature sets that were ideal in terms of
relevance and predictive power using
chi-squared, correlation, and
information gain.

Moustafa, N. [21] TON-IoT Linux AI —

The authors used the validation method of
AI-based cybersecurity tools for malware
detection, intrusion detection, and
privacy protection.

M.A. Ferrag [22] Edge-IIoT DNN 94.67%

A new cybersecurity dataset for IoT and
IoT applications—called Edge-IIoT—was
proposed for use in ML-based
intrusion-detection systems.

Research into architectures that improve the accuracy and performance of CNNs
has been an active area of study for some time. This research has resulted in different
types of CNN models, including LeNet, AlexNET, VGGNet [23], GoogleNet/Inception,
ResNet, ZFNet, MobileNets, and DenseNet [23,24]. In this paper, we compare two CNN
models—the Inception Time and DenseNet models—and evaluate them using three databases
to detect cyber-attacks.

3. Dataset Descriptions
3.1. ToN-IoT Dataset

The ToN-IoT dataset [25] is intended to collect and analyze mixed data sources from
the IoT and IIoT, and it contains heterogeneous data collected from different sources,
including telemetry data from connected devices, Windows and Linux system logs, and
system network traffic. The Internet of things is compiled from a realistic network. To
evaluate the accuracy and efficiency of various cybersecurity applications based on artificial
intelligence, the ToN-IoT dataset is designed to connect many virtual machines, cloud
layers, blur, edges, and physical systems. It dynamically bulletins these interactions using
NVF, SDN technology, and service coordination. It also contains simultaneous sets of
legitimate and offensive events in network systems, operating systems, and IoT services.
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Furthermore, the ToN-IoT dataset is represented in CSV format with a categorized column
representing the attack or normal behaviour and the type of attack subclass, which refers to
nine different kinds of attacks (XSS, DDoS, DoS, password cracking attacks, reconnaissance
or verification, MITM, ransomware, backdoors, and injection attacks) [12,23]. Because the
data are imbalanced, we use class weights, as they give all classes approximately equal
priority in gradient changes no matter how many samples we have from each class in the
training data. The numbers and types of records in the ToN-IoT dataset are illustrated in
Table 2.

Table 2. The types and numbers of records in the entire ToN-IoT dataset and its testing and
training sets.

Type of Event Total Data Record Train–Test Record

Backdoor 508,116 20,000

DoS 3,375,328 20,000

DDoS 6,165,008 20,000

Injection 452,659 20,000

MITM 1052 1043

Scanning 7,140,161 20,000

Ransomware 72,805 20,000

Password 1,718,568 20,000

XSS 2,108,944 20,000

Normal 796,380 300,000

Total 22,339,021 461,043

ToN-IoT Dataset Statistics

Windows 7, Windows 10, Network, Win10–Network, and IoT datasets contain many
normal and attack types. The Windows 7 dataset has 28,366 records and 132 features,
whereas the Windows 10 dataset contains 35,975 records and 124 features, Network has
21,978,632 records and 42 features, and Win10–Network has 1,073,754 records of normal
and attack observations. These datasets cover training and testing machine learning models,
as shown in Table 3.

Table 3. The numbers of normal records and the types of attachments collected in the Win7, Win10,
Network, and Win10–Network datasets.

Type of Event Win7 Win10 Network Win10–Network

Backdoor 1779 - 508,116 -

DoS - 525 3,375,328 109,957

DDoS 2134 4608 508,116 498,920

Injection 998 612 452,659 24,311

Mitm - 15 1052 87

Scanning 226 447 7,140,161 208,572

Ransomware 82 - 72,805 -

Password 757 3628 1,718,568 101,398

XSS 4 1269 21,089,844 106,746

Normal 22,387 24,871 796,380 23,763
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3.2. Edge-IIoT

The cybersecurity dataset for Internet of things (IoT) and industrial Internet of things
(IIoT) applications is used in intrusion-detection systems based on machine learning.
IoT data are collected from more than 10 different types of devices, such as low-cost
digital sensors for sensing temperature and humidity, pH sensor meters, ultrasonic sensors,
heartrate sensors, water-level detection sensors, soil moisture sensors, flame sensors, etc.
In this database, 14 different types of attacks involving IoT and IIoT protocols are analyzed
and classified into five threats, including DoS and DDoS attacks, information gathering,
injection attacks, an-in-the-middle attacks, and malware attacks. Out of 1176 characteristics,
61 are highly correlated. The 20,952,648 usual attack statistics in Edge-IIoT [26] include
11,223,940 normal and 9,728,708 attacks. [27]. We split this dataset into 20% for tests and
80% for training, with a stratification option to keep the percentages static for all classes. A
total of 1,909,671 samples were taken from the dataset: 1,527,736 for the training set and
381,935 for the test set; they were distributed into 15 categories, as shown in Table 4.

Table 4. The total numbers and the different types of records in the Edge-IIoT dataset.

IoT Traffic Type of Event Data Record

Normal Normal 1,091,198

Attack

DDoS-UDP 97,253

DDoS-ICMP 54,351

SQL-injection 40,661

DDoS-TCP 40,050

Vulnerability scanner 40,021

Password 39,946

DDoS-HTTP 38,835

Uploading 29,446

Backdoor 19,221

Port-scanning 15,982

XSS 12,058

Ransomware 7751

Fingerprinting 682

MITM 286

3.3. UNSW-NB15

The Cyber Range Lab of the Australian Center for Cyber Security released this dataset
in 2015, and it is frequently utilized in the research community (ACCS). For the UNSW-
NB15 dataset [25], the authors used raw network packets generated by the IXIA perfect
storm program. At the bottom of the test, nine attack scenarios are implemented: DoS,
fuzzes, analysis, backdoor, generic, reconnaissance, shellcode, exploits, and worms. Forty-
nine network traffic features were extracted, and the Argus and Bro-IDS programs were
employed. There are 2,540,044 streams in the dataset, including 2,218,761 benign and
321,283 aggressive streams [17,28]. We split it into 20% for tests and 80% for training, with
a stratification option to keep these percentages static for all classes. A total of 2,540,047
were taken from this dataset: 2,032,037 for the training set and 508,010 for the test set. They
were distributed into 10 classes, as shown in Table 5.
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Table 5. The total numbers of records in the UNSW-NB15 dataset.

Type of Event Data Record

Normal 2,218,764

Generic 215,481

Exploits 44,525

Fuzzers 24,246

Reconnaissance 13,987

DoS 16,353

Analysis 2677

Backdoor 2329

Shellcode 1511

Worms 174

4. Structural Models

The main objective of this study was to run two deep learning models for intrusion
detection and attack recognition. These models are briefly described below. DenseNets
are the next stage in deepening convolutional networks’ depth. DenseNet uses direct
connections between any layer and the following layer to enhance the flow of information
between layers. DenseNet requires fewer parameters than traditional CNNs and can
reuse the features. Inception Time is the efficient use of computing resources with a
minimal increase in computational overheads for the high-performance output of the
starting network and the ability to extract features from input data at different scales using
different-sized convolutional filters. The output of these models is evaluated by calculating
accuracy, precision, recall, and loss.

4.1. DenseNet Model

This section explains the architecture of the used DenseNet. We used class weights,
which helped us to optimize scores for a few categories. The dataset was split into test and
training sets to avoid overfitting. As an optimization algorithm, the RMSProp optimizer
was used. RMSProp’s key function is to keep each moving average of the weight of squared
gradients. The model is a state-of-the-art DenseNet121 model modified from working
on 2D image shapes to work on 1D input vector shapes, e.g., CNN 2D to CNN 1D, or
max-pooling 2D to max-pooling 1D, representing the attacks in the datasets, as described in
Section 3. We used Densnet121 with depth-of-model (6, 12, 24, and 16) layers and 32 filters.
The model consists of one-dimensional generic convolution layers and seven kernels with
a stride of two, followed by three max-pooling kernels with a stride of two.

Each layer delivers its feature maps to the layers below and receives new inputs from
the layers above it. The dense block is made up of concatenated layers. Within each block,
the dimensions of the feature maps remain constant, but the number of filters varies. A
dense block is made up of several interconnected layers. A single layer appears in 1D
convolution, batch normalization, and ReLU activation. The transition layer joins two
neighbouring dense blocks, since the feature map sizes are the same within the dense
block, and the transition layer reduces the feature map’s dimensions, followed by 1D global
average pooling; its purpose is to gather all of the blocks or outputs from the previous
block. Finally, there are fully connected softmax and output layers [29,30]. The DenseNet
architecture is illustrated in Figure 1.
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Figure 1. DenseNet121 architecture.

Each conv block consists of two convolution layers:

1. Conv_1 consists of kernel 1, stride 1, padding same, number of filters #F;
2. Conv_2 consists of kernel 3, stride 1, padding same, number of filters #4*F.

DenseNet121 Model Description
#Function Dense_Block

• Input: x = sample
• Output: stacked layers

1. For _ in range (block_size):

a. layer = Conv_Block (x, 4*filters)
b. layer = Conv_Block (layer, filters, 3)
c. x = concatenate ([layer, x])

#Function Conv_Block

1. x = BatchNormalization (x)
2. x = ReLU (x)
3. x = Conv1D (input = x, filters, kernel, strides, padding = ‘same’)

#Function Transition_Layer

1. x = Conv_Block (x, ((x) last dimensional shape)//2)
2. x = AvgPool1D (input = x, 2, strides = 2, padding = ‘same’)

#Function Desnet121

1. x = Conv1D (input, filters = 64, kernel = 7, strides = 2, padding = ‘same’)
2. x = MaxPool1D (input = x, kernel = 3, strides = 2, padding = ‘same’)
3. For block_size in block_shapes [6,12,16,24]:

a. s_block = Dense_Block (x, block_size, filters)
b. x = Transition_Layer (s_block)

4. x = GlobalAveragePooling1D (s_block)
5. Output = Dense (input = x, number_class, activation = ‘softmax’)

4.2. Inception Time Model

This section explains the Inception Time model architecture. After data are collected
and processed, we use class weights. The dataset is split into test and training sets to
avoid overfitting. The Adam optimizer is used as an optimization algorithm instead of
the standard stochastic gradient descent method to iteratively update the network weights
based on training data. Inception Time is used with a depth of 10 layers and 32 filters, with
a short layer over 3. For each inception module, three kernels are created from 40//(2ˆi) as
I increases from 0 to 3.
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In the inception network, the Inception Time model was employed in two shapes: one
with a 1D input vector shape, and the other with a time-series 2D input shape utilizing the
sliding window technique. Each block comprises three inception modules. A bottleneck
layer is used to lower the input dimensions (i.e., the depth), reducing the number of
parameters and the processing costs. A 1D convolution can be applied as a 1D sliding filter
that is able to filter out its discriminate region in the time series, speeding up training and
improving generalization. The output from the bottleneck feeds three one-dimensional
convolution layers with kernel sizes of 10, 20, and 40. In addition, the inception module’s
inputs pass through the max-pooling layer of size 3 through the bottleneck layer. The
outputs of the four convolution layers are sequenced along the depth dimension through
the depth concatenation layer. Except for the sequence layer, all layers have the same
stride and padding. However, all convolution layers come with 32 filters, and residual
connections are used for every third inception module. The network consists of a series
of inception modules followed by a batch normalization layer, GlobalAveragePooling1D
layer, and a dense layer with a softmax activation function [31,32]. The Inception Time
architecture is illustrated in Figure 2.

Figure 2. Inception Time architecture.

As shown in Figure 3, the inception module is the most critical component of Inception Time.
The first layer acts as a bottleneck, reducing the inputs’ dimensionality, the number of

parameters, and the computational cost, allowing for faster training and improved general-
ization. The inception module’s second major component is a set of parallel convolutional
layers of varying sizes that work on the same input feature map. Figure 3 depicts three
unique convolutions with filter sizes of 10, 20, and 40. The third layer is the max-pooling
layer, which gives the model the capacity to be invariant to tiny perturbations. The depth
concatenation layer is the fourth and final layer; it concatenates the outputs of each indepen-
dent parallel convolution and the max pooling to produce the current inception module’s
output multivariate time series.
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Figure 3. The Inception Time model. The first number in each box represents the kernel size, while
the second represents the stride size; (s) indicates the padding type.

It is critical to “learn” the characteristics from all prior windows, regardless of the
attack occurrence, to develop a thorough model of the network patterns in the entire dataset.
Using a sliding window technique, in which a single packet goes through each window to
see if the previous (T − 1) packets have resulted in an attack in the current package, Figure 4
depicts this model. A single window with T packets and n features, with multiple labels
for the entire window illustrating the attack in the last packet, and using the deep learning
model to determine the attack in the T package, requires learning from the information of
the windows’ (T − 1) component packets. Because of the sliding windows, the m packets
produce a sum of (m − T + 1) windows [13], as shown in Figure 4.

Figure 4. How the input data from the UNSW2015 dataset is turned into window sequences for
Inception Time model training using the sliding window technique [13].

Inception Model Description
#Function inception_module

• Input: simple
• Output: staked Layers

1. If use_bottleneck and input_tensor last_dimmentional > 1:

a. input_inception = Conv1D (input_tensor, filters = bottleneck_size, kernel_size = 1,
padding = ‘same’, activation = activation, use_bias = False)

2. Else:

a. input_inception = input_tensor

3. Kernel_size_s = [kernel_size//(2 ** i) for i in range(3)]
4. Conv_list = []
5. For i in range (len(kernel_size_s)):
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a. conv_list.append (Conv1D)

6. Max_pool = MaxPool1D (input_tensor, pool_size = 3, strides = stride, padding = ‘same’)
7. Conv = Conv1D (max_pool, filters, kernel_size = 1, padding = ‘same’, activation
8. x = Concatenate (conv_list, axis = 2)
9. x = BatchNormalization (x)
10. x = Activation (x, activation = ‘relu’)

Function shortcut_layer

1. Shortcut = Conv1D (input_tensor, filters = out_tensor last dimensional, kernel_size = 1,
Padding = ‘same’, use_bias = False)

2. Shortcut = BatchNormalization(shortcut)
3. x = Add ([shortcut, out_tensor])
4. x = Activation (X, activation = ‘relu’)

Function inception_time_model

1. Input_layer = Input (input_shape)
2. x = input_layer
3. Input_res = input_layer
4. For d in range (depth):

a. x = inception_module (x)
b. if use_residual and d % 3 == 2:

i. x = shortcut_layer (input_res, x)
ii. input_res = x

5. Gap_layer = GlobalAveragePooling1D()(x)
6. Output_layer = Dense (gap_layer, number_classes, activation = ‘softmax’)
7. Model = Model (inputs = input_layer, outputs = output_layer)

5. Design of Experiments
5.1. Datasets

The models in this article were evaluated using the ToN-IoT, Edge-IIoT, and UNSW2015
databases. The ToN-IoT dataset is made up of heterogeneous sources, including Win7,
Win10, Network, and IoT. The dataset contains 2,233,921 records of normal and attack
data. The training set had 22,339,021 network packet vectors, while the test set included
461,043 vectors and 43 features in CSV format, which can be utilized on any platform. The
UNSW-NB15 dataset has over 100 GB of network packets split among 2,540,044 vectors
and 42 features in four CSV files. The data include normal vectors and a variety of attack
vectors (backdoor exploits, DoS, shellcode, worms, and reconnaissance are examples of
fuzzers). The Edge-IIoT dataset contains 14 different types of attacks related to IoT and
IIoT protocols, which are divided into five categories (i.e., DoS and DDoS attacks, infor-
mation gathering, injection attacks, man-in-the-middle attacks, and malware attacks). The
Edge-IIoT dataset contains 1,909,671 samples, 15 classes, and 61 different features. Sets of
1,527,736 and 381,935 data for training and testing are available.

These three datasets were divided into 80% training and 20% testing sets, reducing the
risk of overfitting and allowing for comprehensive model performance monitoring over
the entire dataset. Because the data were balanced, we utilized the class weights. After
conducting some experiments to tune the hyperparameters, the batch size was 64, which is
suitable for memory that stabilizes the training process without oscillation and converges
to general performance. The depth was reduced to 5 or 6 for some data and remained
10 for others; some dataset need a more complex model to converge to a satisfactory F1-
score, while some converge with a module depth of 5 or less. However, we tried to keep
the residual layer after every three modules. In terms of the number of epochs, 50 is an
overestimate that may not be reached, because the model was stopped early if it began to
overfit by tracing the validation accuracy. We used the Adam optimizer and a learning
scheduler to converge quickly and to find the best learning rate.
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5.2. Data Processing

This paper uses features from ToN-IoT, UNSW-NB15, and Edge-IIoTset—three well-
known datasets. There are many challenges in these datasets, including behavioural
duplicates, missing values, and unnecessary features that affect the models’ performance.
We employed class weights to balance the data and enhance the classification performance.

The ToN-IoT dataset is displayed in CSV format and includes a sorted column for
each attack subclass type, along with the attack’s typical behaviour or attack state. It refers
to nine different attack types, where the mean is used to fill in all of the NaN values.

In UNSW-NB15, the attack samples are divided into nine classes in a CSV file correctly
named “normal” or “attack”. We identified samples with missing values, such as NaN,
and discarded them. We also populated the NaN class with normal vectors, set the NaN
values to zero, and discarded static characteristics that were of no use (e.g., srcip, sport,
dstip, dsport).

Regardless of the timing of the attack, it is crucial to “know” the properties of all prior
windows when using a sliding window technique. A single packet transmits each window
to determine whether earlier packets (T-1) caused an attack on the present packet.

Edge-IIoT is organized into five categories and is in CSV format. We checked samples
such as NaN that had missing values and discarded them along with any duplicates.
Additionally, we dropped static features with the same value in the whole dataset (e.g.,
icmp. unused, http. tls_port, dns. qry. type, mqtt. msg_decoded_as).

5.3. Metrics for Evaluation

The models were trained using datasets with varying degrees of training data to assess
their accuracy, false positive rate, accuracy, and detection rate, as well as their F1-score.
These measurements were constructed using true negative (TN), true positive (TP), false
negative (FN), and false positive (FP) data. The improperly classified legitimate and attack
vectors were FP and FN, respectively. TP and TN denote the numbers of successfully
classified legitimate and attack vectors [33,34].

Accuracy (ACC): The system’s capability to categorize attack packets as normal or
attack. For all samples, any percentage forecasts are acceptable. Accuracy is mathematically
stated as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
× 100 (1)

Precision (Pre): Defines the percentage of genuinely detected attacks versus all packets
designated as attacks; arithmetically expressed as follows:

Precision =
TP + TN
TP + FP

× 100 (2)

F1-score (F1) is theoretically defined as the harmonic average of recall and precision.

F1 − Score = 2 × Precision × Recall
Precision + Recall

(3)

Recall (Rec): The system’s ability to correctly detect attacks when a security breach
occurs; often known as the true positive rate, and expressed mathematically as follows:

Recall =
TP

TP + FN
× 100 (4)

6. Experimental Results

In our tests, DenseNet was solely applied to the ToN-IoT dataset, while Inception Time
was applied to the ToN-IoT, UNSW2015, and Edge-IIoT datasets. Inception Time is the
new face of research. Developed to reduce computational burden as well as overprocessing
while obtaining better performance, it allows features to be extracted at different scales by
using different-sized filters. We found that using Inception Time increased the accuracy.
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Therefore, we tested its efficacy on several other datasets and decided to focus this work on
Inception Time.

6.1. ToN-IoT Dataset

The previously described ToN-IoT dataset contains heterogeneous data from Win7,
Win10, Network, and IoT. We evaluated its efficiency using DenseNet and the Inception
Time algorithm in a multi-class scenario.

We used a DenseNet with a depth of 121 on the ToN-IoT dataset for evaluation, and
divided it into 80% training and 20% testing sets. The experiments were based on the
different features of the Win7, Win10, Network, and Win10–Network training models.
As shown in Table 6, the results showed that the model achieved good results. The best
accuracy was recorded for the Win10–Network model—up to 99.9%—and the lowest
accuracy we obtained for Win10 was 97.7%. The results of Win7 and Network were 98.36%
and 98.5%, respectively. It should be noted that we used a hyperparameter, a starting
learning rate of 0.005, and a batch size of 64. Figure 5 shows the accuracy, loss, recall,
precision, and F1-score of the DenseNet algorithm.

Table 6. The values of training and testing, the numbers of features used, and the values of the epochs
for the Inception Time and DenseNet algorithms.

Model Type

DenseNet Win7 Win10 Network Win10–Network
Training 22,693 28,780 17,582,906 859,003
Testing 5674 7195 4,395,726 214,751
Features 132 124 42 166
Epoch of 50 29 50 1 3
Inception time
Training 22,693 28,780 17,582,906 859,003
Testing 5674 7195 4,395,726 214,751
Features 132 124 42 166
Epoch of 50 32 42 1 5

Figure 5. The results of the DenseNet model of the dataset.

Figure 6 shows the achieved training and validation accuracies after 29 Win7 epochs,
50 Win10 epochs, and 5 Win10–Network epochs in the ToN-IoT dataset—which consists of
Win7, Win10, Network, and Win10–Network—using the DenseNet algorithm.
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Figure 6. (a–c) The training and validation accuracy, F1-score, loss, recall, and precision after training
the DenseNet model on the ToN-IoT dataset.

We also used the Inception Time algorithm to examine the performance of the same
ToN-IoT dataset with the same training and testing values and the prior features of Win7,
Win10, and Network, as shown in Table 6. All of the results indicated the superiority of the
Inception Time model over the DenseNet model, as shown in Figure 7. The best accuracy
we obtained was 100% for the Win10–Network model, followed by Network, with an
accuracy of 99.65%, while the lowest accuracy we obtained in Win10 was 98.3% and for
Win7 it was 99.2%, with a starting learning amount of 0.001 and an end-learning amount of
0.001, while maintaining the same batch size of 64.

Figure 8 shows the achieved training and validation accuracies after 32 Win7 epochs,
42 Win10 epochs, and 5 Win10–Network epochs in the ToN-IoT dataset—which consists of
Win7, Win10, Network, and Win10–Network—using the Inception Time algorithm.
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Figure 7. The results (Win7, Win10, Network, Win10–Network) of the Inception Time model of the
ToN-IoT dataset.

Figure 8. Cont.
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Figure 8. (a–c) The training and validation accuracy, F1-score, loss, recall, and precision on the
ToN-IoT dataset after training with the Inception Time model.

Weather, thermostat, motion lighting, Modbus, garage, GPS, and fridge are the seven
categories of IoT in the ToN-IoT database. To assess the performance, we used the Inception
Time technique in a multi-class scenario with six classes (i.e., DDoS, password, normal,
backdoor, scan, and XXS) with all features enabled; the results demonstrated its correctness.
We achieved the highest accuracy of 100% for weather, thermostat, and GPS, and the lowest
value we received for the fridge was 99%. In contrast, the Modbus, motion lighting, and
garage accuracies were 99.9%, 99.5%, and 99.4%, respectively. Figure 9 displays the actual
findings for all categories of IoT in the ToN-IoT database using Inception Time.

Figure 9. The results of the IoT network in the inception time model of the ToN-IoT dataset.

Experiments on the ToN-IoT database showed that the Inception Time model method
outperformed DenseNet. The best accuracy we obtained using DenseNet was 99.9% for
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Win10–Network, while the lowest was 97.7% for Win10. However, when using the Inception
Time model, the maximum accuracy was 100% in the Win10–network model, while the
lowest accuracy was 98.3% in the Win10 model, as shown in Figure 10.

Figure 10. The comparison of results between DenseNet and Inception Time using the ToN-IoT dataset.

Compared to the previous trials in Table 7, the Inception Time model outperformed
each (i.e., DT, NB, and XGBoost) in categorizing multicategory attacks. Table 8 fur-
ther indicates our model’s superiority in classifying multi-class assaults in IoT devices
(fridge, garage, GPS, Modbus, motion lighting, thermostat, weather) and utilizing the
ToN-IoT dataset.

Table 7. Comparison of the results of previous studies using the ToN-IoT dataset.

Research Method Type Acc Pre Rec F1 Class

Sarhan M., et al. [20] DT
NB Network 97.29

96.78 - - 99
98 Multi

Gad A.R., et al. [12] XGBoost Network 98.3 98.3 98.3 98.3 Multi

Our proposed
method

DenseNet

Win7
Win10
Network
Win10–N

98.36
97.87
98.57
99.95

95.97
97.87
98.59
99.95

95.91
97.87
98.57
99.95

95.91
97.87
98.57
99.95

Multi

Inception
Time

Win7
Win10
Network
Win10–N

99.21
98.30
99.65
100

99.21
98.30
99.68
100

99.21
98.30
99.64
100

99.21
98.30
-
-

Multi
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Table 8. Comparison of the results of previous studies using the IoT devices in the ToN-IoT dataset.

Research Model KNN

A. Alsaedi,
et al. [34]

Dataset Fridge Garage GPS Modbus Motion Lighting Thermostat Weather

Accuracy 0.99 1.00 0.88 0.97 0.54 0.60 0.81

Precision 0.99 1.00 0.89 0.97 0.34 0.56 0.81

Recall 0.99 1.00 0.88 0.97 0.59 0.61 0.81

F1-score 0.99 1.00 0.88 0.97 0.43 0.57 0.81

LSTM

Dataset Fridge Garage GPS Modbus Motion Lighting Thermostat Weather

Accuracy 1.00 1.00 0.87 0.68 0.59 0.66 0.82

Precision 1.00 1.00 0.89 0.46 0.35 0.45 0.82

Recall 1.00 1.00 0.88 0.68 0.59 0.67 0.81

F1-score 1.00 1.00 0.88 0.55 0.44 0.54 0.80

RF

D. Rani,
et al. [35]

Dataset Fridge Garage GPS Modbus Motion Lighting Thermostat Weather

Accuracy 0.9136 0.9314 0.92 0.9216 0.9532 0.9669

Precision 0.89 0.90 0.92 0.89 0.92 0.97

Recall 0.91 0.93 0.93 0.92 0.95 0.97

F1-score 0.89 0.91 0.92 0.90 0.94 0.96

LGBM

Dataset Fridge Garage GPS Modbus Motion Lighting Thermostat Weather

Accuracy 0.9135 0.9314 0.94 0.9211 0.9532 0.9680

Precision 0.98 0.90 0.95 0.89 0.92 0.97

Recall 0.91 0.93 0.95 0.92 0.95 0.97

F1-score 0.89 0.91 0.95 0.90 0.94 0.97

Inception Time

Our proposed
method

Dataset Fridge Garage GPS Modbus Motion Lighting Thermostat Weather

Accuracy 0.990 0.994 1.00 0.999 0.995 1.00 1.00

Precision 0.990 0.994 1.00 0.999 0.995 1.00 1.00

Recall 0.990 0.994 1.00 0.999 0.995 1.00 1.00

F1-score 0.990 0.994 1.00 0.999 0.995 1.00 1.00

6.2. Edge-IIoT Dataset

This experiment sought to evaluate the performance of the Inception Time model
for malware detection using the Edge-IIoT databset, which consists of 1,527,736 training
data, 381,935 test data, and 91 features to ensure the reliability of the evaluation. We used
four measures based on multiple classes: accuracy, precision, recall, and F1-score. Our
best accuracy was 94.94%, as shown in Figure 11, which shows the percentage of attacks
predicted properly for 15 classes of the confusion matrix illustrated in Figure 12, each of
these was calculated independently, with a starting learning rate of 0.001, batch size of 64,
and 50 epochs. The end-learning rate was 0.001.
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Figure 11. The results of Inception Time and multi-class classification of the Edge-IIoT dataset.

Figure 12. The confusion matrix for 15 classes in the Edge-IIoT–Inception Time validation: DDoS-
HTTP, backdoor, DDoS-ICMP, DDoS-TCP, DDoS-UDP, fingerprinting, normal, password, port scan-
ning, SQL-injection, uploading, XSS, vulnerability scanner, ransomware, and MITM; all values
between 0.59 and 100.

Figure 13 shows the achieved training and validation accuracies; it could be observed
that, after 34 epochs, the Edge-IIoT dataset used the Inception Time algorithm.
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Figure 13. The training and validation accuracy, F1-score, loss, recall, and precision after training the
Inception Time model on the Edge-IIoT dataset.

Table 9 compares our model to the previous study, demonstrating that the Inception
Time model outperforms RF, SVM, KNN, and DNN in classifying multiple attacks, with
the best result being 94.94% on the Edge-IIoT dataset.

Table 9. Comparison of the results with previous studies using the Edge-IIoT dataset.

Research Class Model Accuracy

M. A. Ferrag, et al. [22] 15

RF
SVM
KNN
DNN

80.83
77.61
79.18
94.67

Our proposed method 15 Inception Time 94.94

6.3. UNSW-NB15 Dataset

We evaluated the performance of the Inception Time model on the UNSW-NB15
database to detect cyber-attacks. The training and test sets consisted of 2,032,037 and
508,010 data, respectively, in the case of 10 classes, and the feature number was 43. The
Inception Time model was the subject of the first experiment, which yielded an accuracy
of 98.4%. The percentage of multicategory attacks is shown in Figure 14. The correlation
matrix in Figure 15 was used to calculate each category separately.
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Figure 14. The Inception Time and multi-class results for the UNSW-NB15 dataset.

Figure 15. The confusion matrix for 10 classes in the Inception Time validation using the UNSW-NB15
dataset: normal, exploits, generic, fuzzers, reconnaissance, DoS, backdoor, analysis, shellcode, and
worms; all values between 0.53 and 99.

Figure 16 shows the achieved training and validation accuracies after 36 epochs in the
UNSW-NB15 dataset using the Inception Time algorithm.
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Figure 16. The training and validation accuracy, F1-score, loss, recall, and precision after training the
Inception Time model using the UNSW-NB15 dataset.

The second experiment used Inception Time with a window size of six. The UNSW-NB15
dataset’s network packets were used in the preprocessing stage to extract relevant features and turn
individual packets into window sequences, where X_T = (t-window_size. t− 3 + t− 2 + t− 1 + T). In
addition, y_t = y of the current window at time t. We evaluated its efficiency in multi-class scenarios
with 43 features. The results showed a slight increase in accuracy to 98.6%. Figure 17 shows the
percentage of multicategory attacks, and each category was calculated separately from the correlation
matrix shown in Figure 18, with a starting learning rate of 0.005, batch size of 2048, and 50 epochs.
The end-learning rate was 0.0015.

Figure 17. The Inception Time and multi-class results of the UNSW-NB15 dataset with a window
size of six.
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Figure 18. The confusion matrix for 10 classes in the Inception Time validation with a window size of
six using the UNSW-NB15 dataset: normal, fuzzers, generic, exploits, reconnaissance, DoS, analysis,
backdoor, worms, and shellcode; all values between 0.50 and 99.

Figure 19 shows the achieved training and validation accuracies after 36 epochs in the
UNSW-NB15 dataset using the Inception Time algorithm with window size.

Figure 19. The training and validation accuracy, F1-score, loss, recall, and precision after training the
Inception Time model with a window size of six using the UNSW-NB15 dataset.
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Table 10 compares the Inception Time models in detecting the initial cyber-attacks: the
first using 1D inputs, and the second with a two-dimensional time-series input utilizing
the UNSW-NB15 database and size-six sliding window. We observed the superiority of
sliding window technology in some types of attacks.

Table 10. Classification report comparison between Inception Time and inception time with six
windows using the UNSW-NB15 dataset.

Type Class
Inception Time Inception Time–Window

Size Six Support
Precision Recall F1-Score Precision Recall F1-Score

Analysis 0.42 0.05 0.09 0.52 0.22 0.31 535
Backdoor 0.69 0.07 0.13 0.75 0.03 0.05 466
DoS 0.51 0.06 0.11 0.39 0.23 0.29 3271
Exploits 0.58 0.93 0.72 0.65 0.86 0.74 8905
Fuzzers 0.67 0.54 0.60 0.74 0.69 0.72 4849
Generic 0.99 0.98 0.99 0.99 0.98 00.99 43096
Normal 1.00 1.00 1.00 1.00 1.00 1.00 443,753
Reconnaissance 0.91 0.73 0.81 0.82 0.75 0.78 2798
Shellcode 0.55 0.58 0.57 0.67 0.30 0.42 302
Worms 0.80 0.11 0.20 0.00 0.00 0.00 35
Accuracy 0.984 0.986
Weighted average 0.98 0.98

Table 11 compares the Inception Time models to the previous study in detecting and
classifying multiple attacks using the UNSW-NB15 database. The best result was 98.6 %
using sliding window technology.

Table 11. Comparison of the results with previous studies using the UNSW-NB15 dataset.

Research Method Acc Pre Rec F1 Class Feature

P. Wu, et al. [19] Densely-ResNet 73.93 80.94 96.68 88.11 Multi

A. R. Gad, et al. [12] RF
DT

95.43
94.20

0.96
0.93

0.97
0.98

0.97
0.96 Multi 42

R. A. Khamis, et al. [36] ANN
CNN

0.97
0.96

0.96
0.95

1.00
1.00 - Multi 5

Y. Yin, et al. [13] MLP 84.24 83.60 84.24 82.85 Multi 23
V. Kanimozhi, et al. [37] RF-DT 89 0.99 0.85 0.91 Multi 4

S. M. Kasongo, et al. [38] ANN
KNN

75.62
70.09

79.92
75.79

75.61
70.21

76.58
72.03 Multi 42

Our proposed method Inception
Inception6w

98.4
98.6

99.0
98.9

97.9
98.4

98.5
98.7 Multi 43

7. Conclusions

In this paper, work was carried out to evaluate the performance of each of the selected
DenseNet and Inception Time models for detecting cyber-attacks, as they were tested on
three recent datasets (ToN-IoT, Edge-IIoT, and UNSW-NB15). The results were compared
based on accuracy, recall, precision, and F1-score. The results showed the superiority
of the Inception Time approach in the ToN-IoT database. The highest accuracy that we
obtained with all of the features of the DenseNet approach was 99.9% in the Win10–Network
model. There was an increase in accuracy when using the Inception Time approach, with
a resolution of 100% for the Win10–Network model based on multiple classes. Inception
Time is playing an increasingly important role and is becoming a prominent direction
for research. Therefore, we focused our work on this model and implemented it on
three datasets.

Moreover, using the Edge-IIoT database with Inception Time with a rating of 15 classes
and 61 features, we obtained the highest result, with an accuracy of 94.94%. As for using
the UNSW-NB15 database with Inception Time and 43 features for 10 classes, we achieved
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an accuracy of 98.4%. The results improved when using the sliding window approach,
reaching an accuracy of 98.6%. This is one of the contributions of this paper. One of the
challenges we faced in our experiments was memory, so we used class weights instead of
smote, where our experiments were within the limited CPU resources of memory, usage,
and test time.
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