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Abstract: Reinforced concrete (RC) durability is a crucial feature to estimate long-term quality
and structural performance. The degradation model is vital for the resource planning of mainte-
nance projects. This model will extract data by updating the status of structures and trending the
components’ state over time in terms of durability. Surface erosion, spalling, cracks, and other
defects exposed on RC components lead to increase factors adversely affecting concrete durability
in structures. This research presents an approach based on automated visualization for extracting
quantitative indexes as well as visual inspection without the subjective interspersion of humans or
probable human errors during the inspection. The durability index (Di) will extract according to
damage probability and defects growth in order to extract the severity of failure and risk. Measure-
ment operation by automated software has been double-checked by manual measurement tools, and
data will verify randomly in this method. The results show that, in this component, the damaged
area increases by 24% after a definite time. According to degradation models, this component may
pass the relative thresholds for the limit for the state of operations to fail. This significant difference
between expected time and designing time determines the Di, equal to 5 out of 10.

Keywords: durability; reinforced concrete; automated visualization; risk

1. Introduction

Since time immemorial railway infrastructure networks were developed in industrial
countries, they have been based the demands of transferring loads and passengers. As
such, passengers and infrastructure owners are the most substantial stakeholders and it is
necessary to undertake corrective actions in line with stakeholders’ demands. For instance,
based on operators’ mandates and passengers’ expectations, enhancing the convenience
of travel and reducing time travel duration is essential. Therefore, automation in railway
infrastructure quality control is an important factor in reaching the mentioned goals with a
minimum risk for inspectors. Additionally, reducing the number of unexpected failures
during operations leads to reducing the train emergency stops and increasing the number
of successful journeys. On the other hand, the ageing process over time leads to quality
loss because of environmental aspects and chemical reactions inside the materials. Thus,
the conditions of structures have to be updated in terms of quality. Meanwhile, routine
inspections play a crucial role in maintenance activities [1].

As a first step, gathering data is necessary for a researcher in the field of quality control.
Based on intermittent train movements with short intervals, inspections between operations
are necessary for safety. However, many crises threaten inspectors during the operation if
they follow traditional inspection methods. Defect growth estimation denoted by automatic
monitoring methods through various sorts of sensors prepares a database for finding the
durability index. In this manner, structural health monitoring (SHM) methods update a
structural component’s state based on the prepared database [2]. The SHM utilizes various
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methods, such as damages and cracks detection using images, vibration indications, and
abnormal measurement diagnosis [3]. In this manner, several sensors (for factors such as
humidity, temperature, pressure, load, potential hydrogen (PH), hardness, chemical com-
position, acoustic emission (AE), and others) have been employed for data gathering and
damage detection [4,5]. AE was used for damage monitoring in reinforced concrete struc-
tures [6,7]. In this way, AE is applied to highlight internal damage progress [8]. However,
the complex fracture and defects cannot be efficiently categorized and rated by measuring
deterioration with certain monitoring methods, such as visual sensors, but these sensors
can detect surface defects and mechanical features [8]. One of the famous tests for exam-
ining concrete elements is a visual inspection which uncovers damages, and automated
visual inspections measure the defect growth. Since real-time monitoring is necessary for
reliability assessment, automated visualization is an essential tool for inspectors to evaluate
objects without human error, combined with regular inspections.

Analyzing data in automation systems has been carried out by researchers using
intelligent approaches [9]. There are three levels desirable for SHM during operations. The
first level focuses on defect detection and alarms for the operator. The second level prepares
a baseline for comparing elements and their priority. The third level guides decision makers
to estimate and forecast future demands through trends. In this manner, the semantic web
layer acts as the “brain” to provide the basis for determining defects [10]. However, this
research presents risk as a basic factor for automation in decision-making after image
processing and data gathering.

Electrical conductivity is an aspect in terms of structural health monitoring methods
which can estimate the durability of reinforced concrete [11]. However, the durability of
reinforced concrete after risk analysis is not connected with image processing based on the
surface degradation status within a specific time window. This research will focus on this
gap to improve condition-based maintenance.

1.1. Structural Health Monitoring

Several tools, such as ground penetrating radar (GPR), ultrasonic (UT) tools, X-ray
tubes, accelerometers, moisture meters, linear variable differential transformers (LVDT), flat
jacks, and other measuring tools, are appropriate for finding the features and behavior of a
structure. According to recent research, some of these are suitable for uncovering internal
damage and some can be utilized for external damages based on feature comparison before
and after degradation. To find the overall quality state of the structure, visual inspection
was selected to compare to other non-destructive tests (NDT). Visual inspection is not
expensive, and it is appropriate for finding critical zones in the structure. This paper is
not focused on expensive tools for monitoring structures. Therefore, an automated visual
test was selected to develop the decision-making system at a lower cost in the software
field [12]. Meanwhile, the recent research in the literature review refarding to this subject
shows software for data processing supports not only data extracted from a charge-coupled
device (CCD) or a supplementary metal–oxide semiconductor (CMOS) sensors but also
supports many other sensors, such as ground penetrating radar (GPR) [13,14]. In fact,
signal processing after receiving data from hardware is essential for software analysis and
decision-making based on data. Therefore, the visual sensor output is a type of signal for
operators, such as other structural health monitoring tools output.

Therefore, due to the development of the railroad network, automation in monitoring
is avoidable for inspectors through the precise planning and codification of defect types
and their locations, regarding corrective action [15,16]. Also, several studies try to develop
decision support systems by processing data after the act of collecting [17–22].

1.2. Durability

The durability of concrete may be defined as the ability of the concrete to bear potential
chemical attacks, crushing, weathering, and abrasion based on the structure permeability
for gas and water, absorptivity, initial absorption capacity, water tightness, diffusion, and
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others [23]. Meanwhile, durable concrete maintains its desired engineering properties dur-
ing operation. For instance, the durability index for aggregate is a value which represents
the relative resistance of the material to produce detrimental clay when subjected to the
suggested mechanical degradation techniques [24]. The design service life of a structure
should be prepared based on the requirements of the owners and operators. The service
life of an important and large bridge may be 50 years to 100 years [25]. Cutting-edge
design for durability deals with the inherent uncertainties in material and environmental
features [26,27]. Non-destructive tests (NDT) assess the quality of concrete in terms of
durability. Several common defects, such as the corrosion of steel in concrete, are related
to durability. Additionally, recent research shows some non-destructive electrochemical
tools are useful and commonly used for monitoring these types of defects, especially in
corrosion investigations. Electrical resistivity is an NDT tool used to measure the durability
of concrete along with its quality. The electrical resistance of an object is a measure of its
opposition to the flow of electric current. This feature of concrete shows its durability based
on void connectivity [28,29]. Currently, this research aims at uncovering the Di estimation
and the possibilities of condition monitoring, along with subsequent data-gathering based
on image processing tools. Therefore, this research has prepared a maintenance plan for a
case study based on SHM results and the extracted Di according to the semantic approach.
Finding critical elements in the structure and estimating their lifetime is the outcome of this
maintenance plan. Finding critical elements in the structure will mostly involve the filtering
of the enormous dataset in terms of quality. The rate of growth for progressive defects
and cracks is a piece of evidence to assist in finding critical concrete elements in terms
of their quality comparison. Numerous superfluous and costly data will be eliminated
from the input dataset with this approach. This means that durable elements will not
need to be checked by frequent inspections within short timeframes. Meanwhile, critical
elements with expanding damage are important for inspectors and maintenance managers.
Finally, the main contribution of this research work is presenting a relative index based on
damage detection by monitoring changes and representing optimized maintenance plans
by considering the durability of concrete elements as well as other aspects of quality and
critical zones.

2. Methodology

Although the reliability index is a parameter that is known to designers, this quantita-
tive index has been neglected by maintenance managers. Risk assessment and its related
reliability index are parameters that allow the supporting of infrastructure owners to pre-
pare a decision support system for corrective activities. To measure damage propagation,
it is inevitable that automation tools will be used, leading to quantitative results. This
research focuses on extracting the risk index to estimate part of a degradation model of
concrete elements in terms of their durability. Since this research aims to combine the
automated damage detection of RC components with risk severity and durability content,
it is necessary to consider several image processing methods and the technical limit states
of concrete elements. Therefore, this research applies several tools to the aim of finding Di
as follows.

2.1. Software and Hardware Details for SHM

According to Eurocode 2 and ACI 224R-0, the limit state of crack width is considered
0.3 mm [30,31]. Moreover, RC components with spalling defects, as well as exposed rebar,
are a risk for RC structure durability. Therefore, based on an initial visual test, the selected
object for this research has a potential risk in terms of the probability of defects in this RC
structure [32]. The monitoring set-up for the RC component is illustrated in Figure 1.
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Figure 1. Data gathering process.

The case study location was established at the end of the bridge’s abutment. This is a
non-level intersection of the road and railway bridge placed in the west urban area of the Tehran
subway. The drainage barbican is not adequately isolated from the concrete surface, and the
wastewater in the urban area leads to carbonation and damage propagation during operation.

While gathering data, the camera had to be fixed under natural lighting on a sunny day.
Data gathering was performed using a camera with a CMOS sensor and 22.3 × 14.9 mm
dimension. The specification of computer processors and language programing during the
data analysis are as follows:

X Core i7 Processor;
X 16 GB of random access memory (RAM);
X C# Programming language.

This research desired to find the damage propagation based on automated visual
inspection. Therefore, edge detection was applied to detect and measure the damaged area
to estimate the durability index. Edge detection steps are as follows [33]:

X Filtering and Enhancement—Filter image to improve the performance of the
edge detector;

X Detection—Finding edges by defining the threshold with the minimum thickness
(1 pixel);

X Localization—locate the edge accurately in the photo.

2.2. Image Processing Method

In the computer vision, different methodologies were exploited to solve practical
problems, such as object recognition. An object to detect the displacement of an element or
damaged area in a structural component [34]. Surface cracks and surface foreign objects can
simply make a large number of incorrect edge detections when the fringe phenomenon is
generated by the uneven distribution through exploiting a typical differential edge detector.
Therefore, it was necessary to design a detection operator that is capable of reducing
noise [35,36]. Kayyali, Harris and Stephens/Plessey/Shi–Tomasi, SUSAN, Shi and Tomasi,
level curve curvature, FAST, laplacian of Gaussian, difference of Gaussians, determinant
of Hessian, MSER, PCBR, grey-level blobs, automated, independent component analysis,
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isomap, latent semantic analysis, partial least squares, semidefinite embedding, auto-
encoder, nonlinear dimensionality reduction, and principal component analysis (kernel
PCA and multilinear PCA) are the methods which were applied for image processing.
Some of the most important methods for data analysis are as follows:

2.2.1. Canny

Canny’s edge recognition algorithm is a conventional technique for edge detection in
grey-scale images [37]. After noise reduction, it is necessary to enhance the quality of the
extracted image from the previous step with a smooth mathematical tool called Gaussian.
Additionally, detection and localization criteria were found based on the formula that
follows. First, every signal is transferred to the noise ratio and then localizes the criteria.
Let the impulse response of the filter be f(x) and denote the edge itself through G(x). Then
the response of the filter to this edge at its center, HG, is given by a convolution integral [33],
assuming the filter has a finite impulse response bounded by [−W, W].

HG =
∫ +W

−W
G(x) f(x)dx (1)

This method detects by extracting useful structural information from various visual
objects and dramatically reduces the amount of data to be processed. The two significant
features of this technique are the development using the double thresholding of the gradient
image and non-maximum suppression [10].

2.2.2. Fuzzy Operator

Edge pixels are recognized by evaluating a local change in intensity followed by
thresholding. The change in intensity may be measured by defining the first derivative of
the image function. The rate of change of a 2D image intensity function, f(x, y), is given by
the gradient vector as follows [38]:

∇ f =

 ∂ f
∂x
∂ f
∂y

 =

[
Gx
Gy

]
(2)

where Gx and Gy indicate the rate of intensity change along the horizontal (x-axis) and
vertical (y-axis) directions. The rate of the gradient vector ∇f refers to the rate of change in
intensity at the pixel location (x, y) as follows:

G(x, y) =
√

G2
x + G2

y =

√
(

∂ f
∂x

)
2
+ (

∂ f
∂y

)
2

(3)

This method has been used for detecting defects after imaging in the industry [39].
Additionally, this attitude is a developed intelligence-supportive system for decision-
making and classification [40].

In this research, damage detection and data processing were carried out using this
logical tool to obtain the Di for the RC component. This technique presents the best results
with the highest resolution to compare to the other remaining techniques previously
mentioned when checking the damage propagation rate.

2.2.3. Sobel Operator

This operator is a tool for image processing and crack recognition. It has been applied
to the elimination of isolated noise spots, the extraction of crack edge evidence, and the
improvement of the positioning accuracy of crack boundaries. Furthermore, according to
the image feature of the bridge crack edge, the target crack is identified and classified by
this method [41].
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This method has been utilized for estimating the edge strength of every pixel point
in the input image. Therefore, the intensity gradients Gx and Gy in the horizontal and
vertical directions are determined at every pixel (x, y) in the image. The kernels can
be exploited discretely in the input image to produce the separate measurements of the
gradient component in each orientation (call these Gx and Gy).

|G| =
√

G2
x + G2

y (4)

θ = arctan
(

Gy

Gx

)
(5)

Orientation 0 is taken to mean that the direction of maximum contrast from black to
white runs from left to right on the image, and other angles are measured anti-clockwise
from this [42].

2.2.4. Prewitt Operator

The Prewitt kernels are simpler to implement than the Sobel kernels, but the slight
computational difference between them typically is not an issue [42]. The Prewitt technique
is a suitable tool for data processing based on the results of intensity functions. The
outcomes of this technique were applied for edge detection where the gradient of the
intensity function had an extreme value [43].

2.2.5. Research Operators

In this research, after the preparation of the grey scale from a pure image, the fuzzy,
the Sobel, and then the Prewitt operators were employed for damage detection extraction.
Since these methods and operators have been applied in recent research, they were utilized
to find the dimension of the damage in the present research. Based on this step, output
damage propagation can estimate the severity of failure and Di in the bridge.

2.3. Probabilistic-Based Structural Assessment

Based on the RC elements limitation, it is possible to assess the durability of RC. For
this reason, the probability of failure for the component is calculated in this segment.

2.3.1. Probability of Failure

In this research, the probability of failure illustrates a defect in the overall view of the
bridge and is a failure of the component. This means that the failure of structural elements
does not necessarily lead to overall structure failure because it might be possible to transfer
load-bearing onto other parallel structural elements.

2.3.2. Severity of Failure

Defect propagation is a sign of the severity of failure (Sf) during operations for risk
assessment. In this research, it is desirable to present the possibility of the application of
image processing tools to compare the severity of defect growth during operations.

2.4. Risk Assessment

The risk index was calculated by multiplying severity grades with the probability of
defects. To this end, the relative durability index was calculated based on the risk index as
follows in Figure 2:

Risk = Pf × S f (6)
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3. Research Case Study

Automated visualization evaluates the RC structural elements in terms of its quality
in a similar manner to an experienced inspectors’ judgment. Furthermore, this method
has more measurable tools than the traditional visual inspection in order to extract risk
as a relative index to compare bridges and their RC elements. This comparable index
based on quantitative outputs extracts the durability index by using image processing tools.
Hence, this approach can be used as a practical replacement for experienced observers and
inspectors, especially in the subway, which has frequent loads and only short times for
maintenance activities. Additionally, it is possible to randomly double-check qualitative
traditional inspections. In this manner, seven RC bridges were selected from the Tehran
subway and a critical component was defined by pre-posterior analysis. In the end, the
analysis focused on the high-risk case for extracting the durability index based on the
proposed method.

3.1. Experimental Tests

The first step of this study is gathering data from the object. Other steps of the research
process are shown in Figure 3. Additionally, this process will be repeated to find other
aspects of structure status based on linking status points over time and estimating the
degradation model with the local slope.

Appl. Sci. 2022, 12, 9609 8 of 15 
 

 
Figure 3. Research process. 

3.1.1. Data Gathering 
Data gathering with the fixed camera in terms of height and location on the ground 

was carried out twice. The setup and subject of the case study are illustrated in Figure 4. 

 
Figure 4. Case study subject–RC element. 

When fixing the camera to the ground, the location of its stand was marked for the 
second data gathering session. Additionally, the drainage hole was a potential place for 
defect expansion and the extraction of data for the durability index due to these changes 
was carried out. After a comparison of the images, significant changes were found to exist 
between the first data gathering session and the second, which was encouraging for the 
research aim. 

Figure 3. Research process.



Appl. Sci. 2022, 12, 9609 8 of 15

3.1.1. Data Gathering

Data gathering with the fixed camera in terms of height and location on the ground
was carried out twice. The setup and subject of the case study are illustrated in Figure 4.
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Figure 4. Case study subject–RC element.

When fixing the camera to the ground, the location of its stand was marked for the
second data gathering session. Additionally, the drainage hole was a potential place for
defect expansion and the extraction of data for the durability index due to these changes
was carried out. After a comparison of the images, significant changes were found to exist
between the first data gathering session and the second, which was encouraging for the
research aim.

The RC elements might be damaged on the surface due to environmental reasons,
poor construction quality, bad curing, and other internal or chemical damage reasons. The
surface damage is as follows:

• Cracking;
• Crazing;
• Blistering;
• Delamination;
• Dusting;
• Curling;
• Efflorescence;
• Scaling and spalling.

It is necessary to mention these surface damages are considered a threat to concrete durability.

3.1.2. Exposure Analysis

After data gathering and pre-posterior analysis, it is necessary to analyze surface
damage to assess exposed defects [44]. The critical zone was selected based on initial data
gathering and the abutment of the bridge. The durability feature has a direct link with the
surface defect and drainage location is a potential point for surface damage. The traditional
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method relies on subjective interpretation based on visual inspection. Meanwhile, image
processing software monitors the rate of defect expansion. Figure 5A,B illustrates the result
of this analysis.

The measurement of the damaged area has been carried out using automated software
in this research. Although the surface of the concrete is intact at the first step of data
gathering, this zone is exposed to wastewater due to poor drainage design and damage
over time.

Therefore, the first row in Figure 5A,B (number 1–4) depicts intact concrete before
surface damage at the first step of gathering data. The second row in both pictures
(number 5–8) demonstrates the damaged surface over time. Therefore, based on Figure 5A,
the damages reveal minor damage over a short time. Figure 5B shows significant defects
over a longer time when compared to the first image. The third row (number 9–12) is a
result of a comparison between intact concrete and damaged concrete over time. As the
first data gathering session, based on Figure 5A, revealed a minor defect in a short time, the
damaged area is smaller than in the second data gathering session seen in Figure 5B after a
longer time. Additionally, the first column in Figure 5A,B (number 1, 5 and 9) demonstrates
the greyscale and pure image of the object without noise. The second column (number 2, 6
and 10) shows the result of image processing through fuzzy logic. The third column (4, 8
and 12) illustrates the image processing analysis and comparison using the Sobel algorithm,
and finally, the fourth column (number 4, 8 and 12) is the output of the comparison by
the Prewitt operator. The software output comprises a comparison between damaged and
intact surfaces and is verified by double-checking using manual measurement tools.
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3.1.3. Discussion

In this research, seven RC bridges from the Tehran subway railway network were
selected and checked. The riskiest bridge has been selected for detailed inspection and
monitoring over time.

I. Probability of Failure (Pf )

To extract the probability of failure, it is possible to count the number of defects in
each component divided by their approximate volume, and the probability of failure (Pf)
is updatable in each time window. To find a critical case, seven RC bridges were checked
during pre-posterior analysis. The probability of failure in each bridge was calculated
based on their approximate volume according to Table 1.

Table 1. Approximate volume of elements for risk assessment.

Bridge Pier Type Span
Number

Average Span
Length (m)

Abutment
Height (m)

Bridge
Width (m)

Bridge
Length (m)

Deck
Area (m2)

Material
Volume (m3)

1 - 1 15.6 4 12 15.6 187.2 748.8
2 Wall, Single pier 1 15.6 5 9.14 15.6 142.584 712.92

3 Several in each
section, Cylinder 5 15.6 3 9.06 78 706.68 5653.44

4 - 1 15.6 4 9.1 15.6 141.96 709.8

5 Several in each
section, Cylinder 1 19.8 7 12 79.2 950.4 6652.8

6 Several in
each section 1 15.6 12 9.13 15.6 142.428 854.568

7 - 1 12.6 6 9.06 12.6 114.156 684.936

Based on the approximate volume and the quantity of the damaged area on the
material in question, the probability of failure in each element was estimated during the
visual inspection, as is shown in Tables 2 and 3A,B.
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Table 2. Superstructure probability of failure for risk assessment.

Bridge
Number of Damaged Area on Deck Failure Density

of Deck
Probability of

Failure (Deck) 0–1

Barriers Beams Drainage

1 0 0 0 0 0
2 0 1 0 0.007013 0.118714
3 0 2 2 0.00566 0.095809
4 0 2 1 0.021133 0.357706
5 1 2 1 0.004209 0.07124
6 0 2 1 0.021063 0.356531
7 0 0 0 0 0

Table 3. (A) Probability of failure for substructure, part 1. (B) Probability of failure for substructure,
part 2.

(A)

Bridge
Elements of Abutment

Number of
Damaged Areas Failure Density of Abutment Probability of Failure (Abutment) 0–1

1 0 0 0
2 0 0 0
3 1 0.25 0.5
4 0 0 0
5 1 0.25 0.5
6 0 0 0
7 0 0 0

(B)

Bridge

Foundation Elements of Pier

Number of Damaged Areas Probability of Failure
(Foundation) 0–1

Number of Damaged Areas Probability of
Failure (Pier) 0–1Pedestal Footing Elastomeric Bearing

1–7 0 0 0 0 0

II. Severity of Failure (S f )

Therefore, after finding the critical component of the bridges based on Pf , it is possible
to find S f according to the results of the automated visual inspection, and then it is possible
to calculate the risk and durability index.

The results based on Figure 5 were analyzed according to the estimated damage
growth and critical zone severity for risk. The rate of damage growth in critical elements
based on damage expansion are presented in Table 4.

Table 4. Damage growth in the abutment of the critical bridge element.

No. Year Month (T) Damage Growth (Sf) Pf Risk (Rt)

1 0 0 0

0.5

-
2 0.25 3 0.12 0.6
3 0.5 6 0.24 0.12
4 1 12 0.48 (Estimation) 0.24

These results present the severity of failure in the critical element of the bridge with
the highest Pf .

III. Risk Grades and Durability Index

Since durability as a time-dependent probabilistic reliability may be prolonged by the
repairs of materials and components, it is necessary to consider temporary durability [45].



Appl. Sci. 2022, 12, 9609 12 of 15

Meanwhile, according to Figure 6, RC component degradation intensity status changes over
an element’s lifespan. This means that the durability index has to change in each period, not
only based on repair activities but also according to a component’s period of life.
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Therefore, in this research, it is desirable to estimate the tangent line of the function
for the degradation model of an RC element in a short period of definite time [46]. To this
end, the durability index estimated by the function of risk over time is as follows:

Di =
dRt

dt
(7)

IV. Results of Case Study Analysis

The degradation model of the RC component is dependent on the durability index
and the durability index has a relation to risk over time. Based on recent data extracted
from the case study within a short time period, the function of the tangent line is as follows:

Y− R2 =

(
R2 − R1

T2 − T1

)
X− T2 (8)

In this formula, damage will expand through life. If “Y” is the RC component status in
terms of degradation and “X” is a variable based on time, the degradation model estimates
are based on temporary durability. Therefore, the risk in operations will change over time,
and “T” represents time in terms of the month. “R” denotes the risk based on damage
growth within the RC element during operation and the slope of the duration, which
represents the Di in each segment.

4. Conclusions

This research proposed an approach to estimate the output of the degradation model
based on the durability index according to the potential risk concerning input data (S f and Pf ).
The degradation model is useful for assigning corrective actions for dangerous RC compo-
nents during emergency conditions. It is also necessary the planning frequent inspections
and preventive maintenance in terms of RCM for the quality control of infrastructures.

After pre-posterior analysis and defining risky RC components, the degradation model
was estimated based on the durability index. Based on the image processing results, the
damage growth rate was 24% during the definite time in this load-bearing RC component.
If this definite time spans 6 months, this case had three milestones during the testing. The
first data gathering was carried out on the intact RC component, and the second milestone
occurred simultaneously with the initial damage growth of 12%. Meanwhile, the final and
third milestone with 24% damage was measured by this proposed method. If severity and
probability considering for risk calculation, the component durability index will be extracted
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based on variable reliability over the life of the component as a degradation model during
operation. In other words, if service limit and ultimate limit are considered as thresholds
in the degradation model, it is possible to estimate the next step of a structure’s status
based on the degradation model and compare the next step of the structure status with the
expected structure status [25]. In this case, the Di was estimated at 0.02 for the definite time
of inspection as a temporary durability index to estimate the degradation model.

Image processing was exploited as a tool to reach the research aim. Meanwhile, this
research not only compares the operators of image processing but also combines the data
gathering with mathematical tools and a statistical approach in terms of the risk concept.
Merging the data processing in terms of vulnerable zones with image processing tools to
find the maximum difference between the image processing operators in each element
helps the user to decide on maintenance planning using the hybrid approach. Additionally,
this comparison approach maximizes the value of information after data gathering by the
image processing operator.

Finding the damage growth and estimating the degradation trend is not possible
through traditional visual inspection. More than simply proposing structural health moni-
toring tools for data gathering, this quantitative method estimates the status of reinforced
concrete without in-person observation. Therefore, regardless of human error elimination,
the computer records data and trends those data with a risk logic concept to prioritize
vulnerable zones based on their degradation rate.
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