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Abstract: Coal mine safety may be able to be ensured via the real-time identification of cracks in
rock and coal surfaces. Traditional crack identification methods have the disadvantages of slow
speed and low precision. This work suggests an improved You Only Look Once version 5 (YOLOv5)
detection model. In this study, we improved YOLOv5 from the perspective of three aspects: a Ghost
module was introduced into the backbone network to lighten the model; a coordinate attention
mechanism was added; and ECIOU_Loss is proposed as a loss function in this paper to achieve the
co-optimization of crack detection speed and accuracy and to meet the deployment requirements
in the embedded terminal. The results demonstrate that the improved YOLOv5 has a 92.8% mean
average precision (mAP) with an 8 MB model size, and the speed of recognition was 103 frames per
second. Compared to the original method, there was a 53.4% reduction in the number of parameters,
a detection speed that was 1.9 times faster, and a 1.7% improvement in the mAP. The improved
YOLOv5 can effectively locate cracks in real time and offers a new technique for the early warning of
coal and rock dynamic hazards.

Keywords: coal rock cracks; YOLOv5; Ghost module; CA; ECIOU

1. Introduction

A typical coal rock dynamic catastrophe experienced during coal mining is rock burst.
When rock burst happens, coal and rocks are flung out abruptly, damaging equipment,
obstructing traffic, and resulting in injuries [1]. The issue of rock burst has become worse
in coal mines, as mining depths have progressively increased, presenting a major danger to
coal mine crew safety and underground production operations [2,3]. The beginning and
progression of cracks to penetration often accompany the instability failure process of coal
and rock mass under impact loads [4,5]. In addition to being the most obvious indicator of
the coal and rock mass’s present condition, the cracks that are produced on their surfaces
are also a sign of their impending breakdown under dynamic impact [6–8].

With the quick advancement of computer vision technology, several traditional crack
detection methods have been developed, with the main ones including segmentation, region
growth, edge detection, support vector machines, and k-nearest neighbor, in digital image
correlation technology [9]. By analyzing cracks in coal CT images, Li et al. [10] established a
crack segmentation technique and crack profile evolution model based on contour evolution
and gradient direction consistency, resulting in improved crack segmentation. By using the
partial differential method and the improved C-V model during image processing, Chen
et al. [11] improved the coal rock picture and estimated parameters such as the length,
area, and spacing of the cracks. Li et al. [12] suggested a technique for detecting cracks
on the surface of coal bodies based on the vibration loading failure test and SVM. Miao
et al. [13] used acoustic emissions and digital image processing technologies to conduct
uniaxial compression experiments on sandstone with various dip angles and to identify
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and categorize the crack shape. These techniques are straightforward and intuitive, and
they can quickly and precisely display parameters such as crack propagation, direction, and
length. However, they are generally difficult to use, expensive, and unable to be applied
in some situations in which high detection accuracy and no contact are required. Future
developments will focus on the quick, extensive, and automated analysis of a large number
of pictures transmitted on-site against the backdrop of current intelligent mine construction.

Different from traditional methods, which need to design and extract features manually,
deep learning obtains features through automatic learning, which can improve the accuracy
of model recognition [14,15]. At present, deep learning algorithms are the mainstream
technology for image recognition, with examples including the two-stage target detection
algorithm based on candidate frames and the one-stage regression-based target detection
algorithm [16–18]. The two-stage algorithm detection method, which uses algorithms such
as RCNN [19], Fast-RCNN [20], and Faster-RCNN [21], involves the target item being
detected and then classified. End-to-end neural networks that can anticipate item categories
and bounding boxes are known as one-stage detection algorithms. Examples include the
SSD [22] and YOLO series [23–26]. Compared to other networks, YOLO is extensively
used in a variety of sectors and has great generalization capabilities while also showing
better performance as well as superior stability. At present, it is one of the most used
frameworks for object detection. Cui et al. [27] improved the YOLOv3 algorithm to identify
concrete damage, and the model’s accuracy increased to 75.68% as a result. Zhao et al. [28]
proposed a bauxite sorting model that enhanced YOLOv3 by integrating the SE attention
mechanism [29] with the K-means algorithm to enhance the detection model’s feature
extraction and propagation capabilities. In order to discover fabric flaws, Yue et al. [30]
clustered the prediction framework using the K-means algorithm, added the prediction layer,
adjusted the loss function, and suggested an enhanced YOLOv4 algorithm. Liu et al. and
Yan et al. [31,32] provided technological help for automated fruit harvesting by determining
the maturity of fruits using the enhanced YOLOv5 model. To find flaws on the surface of
aero engine components, Li et al. [33] suggested the YOLOv5s-KEB model, which combines
the representation capabilities of improved networks such as ECA and BiFPN. Breast cancers
were identified using the YOLOv5 model by Aqsa Mohiyuddin et al. [34].

Deep learning can automatically extract high-level semantic data from photos, opening
up a new method for intelligent crack detection. With the development of deep learning,
tunnel and bridge cracks have received extensive attention in terms of research and devel-
opment, but at present, the use of YOLOv5 to identify coal and rock cracks has not been
studied by scholars. Through the research presented in this paper, we can improve the
information extraction of crack features and enrich crack identification research.

This study introduces an improved YOLOv5 coal rock surface crack detection method
that takes into account that the model should have high flexibility, quick detection speed,
compact size, cheap deployment cost, and great applicability in practical applications. In the
first phase, we replaced the primary network layer with the Ghost [35] lightweight feature
extraction network to minimize the number of network parameters and computations
and to speed up the identification of crack targets. In order to strengthen attention to the
foreground area, enrich the semantic information of the shallow feature map, and increase
the target detection accuracy, we introduced a coordinate attention (CA) [36] module in
the second step. This addressed the issue of the shallow feature map containing more
background noise and insufficient semantic information. The final phase involved the
use of the enhanced loss function ECIOU_Loss to hasten model convergence and achieve
precise crack categorization and location.

2. Materials
2.1. Coal Sample Selection

The coal samples used in this experiment were selected from the #11 coal seam of the
Xinliangyou Coal Industry in Pu County, Linfen, and the #9 coal seam of the Shuozhou
Xiayao Coal Industry.
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The Linfen #11 coal seam’s macroscopic coal rock features mostly include brilliant
coal and black coal, with a tiny proportion of mirror coal and silk coal also present. This
coal sample is from the semi-bright–semi-dark briquette category. The coal sample has a
metamorphic degree of II–III with the following being present in thirds: coking coal, gas coal,
and fat coal. The coal has the following features: black in color, pitch-vitreous sheen, hard
and brittle, staggered cracks, well-developed cracks, strip-like structure, layered, massive
structure, and pyrite nodules in certain places. Existing research demonstrates that when
the coal seam is hard and when black coal predominates, rock burst is more likely to occur.

With the exception of bright and dark coal, the Shuozhou #9 coal seam’s macro-coal
characteristics are mostly semi-bright coal and dark coal, with the black coal having a
high degree of hardness. The coal samples’ degree of metamorphism falls within the
I–II metamorphic stage, which is characterized by thick, hard cracks with angular or irreg-
ular cracks that are filled with calcite veins.

2.2. Sample Preparation

Coal samples were obtained from the working faces of two coal mines along the
trough. The working face’s flat coal wall was where the coal samples were collected. Coal
samples were wrapped in plastic wrap and were then placed in a foam box during transit
to avoid weathering and collision. Experiments were carried out in the in situ modified
mining mechanics laboratory of the Taiyuan University of Technology.

Requirements for sample preparation were as follows: A CNC sand wire cutting
machine was used for coal sample processing and production. This machine was used to
take two types of test pieces of various sizes: the first were 50 mm × 100 mm coal pillar
test pieces, and the second were 50 mm × 25 mm coal pillar specimens.

2.3. Data Collection

Since there was no existing dataset pertaining to coal rock cracks, data collection activ-
ities needed to be completed before conducting the study. WDW-100KN microcomputer-
controlled electronic universal testing equipment was used in this study to conduct tests
on the physical and mechanical parameters of coal samples [37]. The loading method
adopted displacement control, and the loading rate was set to 0.001 mm/s. As soon as a
crack appeared on the specimen’s surface, the dataset gathering process was started for the
cracks. In total, more than 1600 photographs of coal rock cracks were obtained; 100 of these
photos were chosen as the test set, and the other photos were randomly split into training
and validation shots in a 7:3 ratio. Table 1 shows the divide.

Table 1. Dataset division.

Dataset Quantity

train 1103
val 458
test 100

2.4. Data Annotation

The LabelImg [38] software, which is available for Windows, was used. In this
experiment, the YOLO data format was used, and each picture’s label information was
immediately stored in a text file with the same name as the image. Table 2 displays a
portion of the text file’s content that was saved following data annotation.
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Table 2. Crack callout information sheet.

Class X 2 Y 3 W 4 H 5

0 1 0.500000 0.322266 0.988281 0.251953
0 0.380859 0.685547 0.421875 0.605469
0 0.499023 0.507324 0.992188 0.366211
0 0.495117 0.555176 0.976562 0.184570
0 0.519043 0.061523 0.032227 0.072266

In the table, 1 indicates the labeling category (in this paper, coal and rock cracks), 2,3 represent the center coordinates
of the label box, and 4,5 represent the relative width and height of the label box. X, Y, H, and W all normalize the data.

3. Method
3.1. Principle of Coal Rock Crack Recognition

YOLO takes in the full picture and utilizes complete image information to make
predictions. YOLO has a greater field of vision through which it can identify targets
than the sliding window approach since it may use the whole picture information during
training and prediction.

The principle of coal rock crack image detection is shown in Figure 1.
(1) The input picture was divided into N × N grid cells.
(2) Each grid consisted of five a priori boxes (anchor boxes) to predict the crack

bounding boxes, and a reasonable a priori box shape and number were selected as the
initial a priori boxes. According to the offset value of the predicted coordinates, the position
of the target center point and the width and height of the predicted frame were calculated.

(3) By calculating the classification probability and crack location of the objects in the
current boundary box, the confidence is obtained. The confidence is used to express the
class probability of the target in the prior box and the performance of matching the target.

(4) The confidence threshold was set to screen the bounding box, and the repeatedly
detected cracks were removed using non-maximum suppression (NMS), thereby realizing
the precise location of the cracks.
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3.2. YOLOv5 Network Structure

The input, backbone, neck, and prediction components made up the fundamental
foundation of the YOLOv5-6.0 network model used in this paper. An image preparation
step, such as image scaling, normalization, mosaic data augmentation, or adaptive anchor
box computation, often takes place as part of the input. Common feature representations,
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which are primarily separated into the Conv module, C3 module, and SPPF module, are
often extracted using the backbone component. The Conv module encapsulates three
functions: convolution, batch normalization, and SiLU activation. The C3 module draws
on the idea of CSPNet and includes three standard convolutional layers and multiple
bottleneck modules. The shortcut parameter controls whether or not the residual connection
is performed. The SPPF module uses serial maxpool to perform multi-scale fusion to expand
the feature map of the receptive field. The neck part can further improve the diversity and
robustness of the features. This part adopts FPN and PAN structures to strengthen the
network feature fusion ability. The FPN layer conveys strong semantic features from top to
bottom, while the feature pyramid conveys strong localization features from the bottom
up. The two combine to perform parameter aggregation for different detection layers from
different backbone layers. Prediction is used to complete the output of target detection
results. CIOU_Loss [39,40] is used as the loss function of the bounding box, and NMS
non-maximum suppression is used to screen the multi-object box and output the predicted
image. The YOLOv5-6.0 network structure is shown in Figure 2.
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3.3. Model Improvement and Optimization

This research offered an enhanced lightweight network YOLOv5-G model based on
YOLOv5 to increase the operational efficiency of the model and decrease hardware costs
while maintaining accuracy. First, in order to make the network lighter, reduce the number
of parameters, and accelerate computation, we introduced the Ghost module; second, to
boost feature extraction and increase network accuracy, a coordinate attention mechanism
was included in the backbone network; finally, quick crack localization was accomplished
using border regression with ECIOU_Loss as the loss function. The improved YOLOv5-G
network structure is shown in Table 3.
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Table 3. The network structure of YOLOv5-G.

Num 1 From 2 Params 4 Module 5 Arguments 6

0 −1 3 3520 Conv [3, 32, 6, 2, 2]
1 −1 10,144 GhostConv [32, 64, 3, 2]
2 −1 11,344 CAC3Ghost [64, 64, 1]
3 −1 38,720 GhostConv [64, 128, 3, 2]
4 −1 43,512 CAC3Ghost [128, 128, 2]
5 −1 151,168 GhostConv [128, 256, 3, 2]
6 −1 177,872 CAC3Ghost [256, 256, 3]
7 −1 597,248 GhostConv [256, 512, 3, 2]
8 −1 614,944 CAC3Ghost [512, 512, 1]
9 −1 656,896 SPPF [512, 512, 5]
10 −1 69,248 GhostConv [512, 256, 1, 1]
11 −1 0 Upsample [None, 2, ‘nearest’]
12 [−1, 6] 0 Concat [1]
13 −1 208,608 C3Ghost [512, 256, 1, False]
14 −1 18,240 GhostConv [256, 128, 1, 1]
15 −1 0 Upsample [None, 2, ‘nearest’]
16 [−1, 4] 0 Concat [1]
17 −1 53,104 C3Ghost [256, 128, 1, False]
18 −1 75,584 GhostConv [128, 128, 3, 2]
19 [−1, 14] 0 Concat [1]
20 −1 143,072 C3Ghost [256, 256, 1, False]
21 −1 298,624 GhostConv [256, 256, 3, 2]
22 [−1, 10] 0 Concat [1]
23 −1 564,672 C3Ghost [512, 512, 1, False]

In the table, 1 represents the network layer serial number; 2 represents which layer the input of the current network
comes from, 3 represents the output from the previous layer, 4 represents the size of the parameter, 5 is the network
module, and 6 represents the information of the module parameters (including the number of input channels, the
number of output channels, the size of the convolution kernel, and the step size information).

3.3.1. Ghost Lightweight Model

The traditional feature extraction approaches used for convolutional neural networks
include the use of convolution mapping operations on all input channels using a number of
convolution kernels. However, stacking several convolutional layers results in rich, often
redundant feature maps and requires a significant amount of processing and parameters.
Figure 3 shows a crack picture from the dataset after a typical convolution. The feature
network extraction layer’s initial convolution layer may be seen to have several redundant
pictures that are quite similar to one another. Although these redundant feature maps are
useful for network training as well, creating them requires a lot of computation and is costly.
We also anticipate that the concept will be portable to traditional hardware platforms or
mobile devices in terms of actual use. This study enhanced model lightweight operation
for the original YOLOv5 method based on the two reasons mentioned above.

Huawei Noah’s Ark Lab proposed the GhostNet lightweight model at the 2020 CVPR
conference, and its core module is the Ghost module. The purpose of the Ghost module is
to substitute portions of the standard convolution for feature extraction via linear transfor-
mation. Some redundant feature maps may be modified from the conventional convolution
feature maps that are obtained to collect comparable feature maps. This greatly reduces the
number of convolution calculations and parameters, and it can be easily integrated into
other networks. The difference between the ordinary convolution module and the Ghost
convolution module is shown in Figure 4.
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Suppose X = [x1, x2, . . . xc,] ∈ Rc×h×w is the size of the input feature map, f ∈ Rc×k×k×n

is the size of the convolution kernel of the layer, and Y = [y1, y2, . . . yn,] ∈ Rn×h×w is the
size of the output feature map, where c and n represent the number of channels of the
input and output feature maps, h/h′ and w/w′ represent the height and width of the
feature maps, and k represents the size of the convolution kernel. The number of standard
convolution output channels in the first step of the host module is m, and the second step
includes identity mapping and m(s− 1) = n

s ·(s− 1) linear transformation operations. The



Appl. Sci. 2022, 12, 9695 8 of 18

size of each operation kernel is d× d, and the theoretical speedup of the Ghost module
upgrading ordinary convolution is calculated by the following Equation (1):

rs =
n·w′·h′·c·k·k

n
s ·n·w′·h′·c·k·k +

n
s ·(s− 1)·w′·h′·d·d ≈

s·c
s + c− 1

≈ s (1)

where d × d is similar in magnitude to k × k , s � c; then, the theoretical parameter
compression ratio is:

rc =
n·c·k·k

n
s ·c·k·k +

n
s ·(s− 1)·d·d ≈

s·c
s + c− 1

≈ s (2)

The streamlined outcome allows for the conclusion that the amount of computation
required for Ghost convolution is about s times less than that for normal convolution.
Similar to that, s times fewer parameters may also be used. Ghost convolution is a lighter
and faster module. Based on this, this research replaced portions of the generic convolu-
tions in YOLOv5 with Ghost convolution. Figure 5 depicts the Ghost construction that
was replaced.
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3.3.2. Introduction of Coordinate Attention Mechanism

The accuracy of model identification is impacted because the coal and rock photos
in this research include many microscopic cracks that are difficult to see and are quickly
obstructed by the backdrop. As a result, some minor target information is lost during the
detection process. Deep learning has recently included attention mechanisms, the main
goal of which is to have the network to focus on the areas that require greater attention. At
CVPR2021, Hou et al. proposed a coordinate attention (CA) mechanism that can embed
location information into channel attention. By simultaneously encoding features along
the horizontal and vertical axes of space, CA can obtain channel information, position
information, and spatial dependencies. Consequently, this article increased the model’s
capability to precisely locate and identify target features with almost no extra computing
expense by incorporating the CA method. The structure diagram of the CA mechanism is
shown in Figure 6.
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CA encoded the input feature maps with the size C × H ×W using pooling kernels
with the size H × 1 horizontally and 1 ×W vertically for each channel. After encoding, a
pair of feature maps Zh and Zw demonstrating the orientation perception were generated.
When the height is h, the output formula of the cth channel of Zh and Zw is as follows:

Zh
c (h) =

1
W

W

∑
i=0

Xc(h, i) (3)

Zw
c (w) =

1
H

H

∑
i=0

Xc(j, w) (4)

Then, the feature maps Zh and Zw were cascaded, and the F and δ nonlinear activation
functions were transformed through 1× 1 convolution. The operation formula is as follows:

f = δ
(

F
[

Zh, Zw
])

(5)

The intermediate feature map f ∈ RC/r×1×(H+W) was obtained, and r represents the
downsampling ratio.

Next, the intermediate feature map f was decomposed into two separate tensors
f h ∈ RC/r×H and f w ∈ RC/r×W along the spatial dimension. Using two 1 × 1 convolution

operations, Fh and Fw, and the sigmoid activation function, f h and f w were transformed
into the same number of channels as the input feature map. The formula is as follows:

gh = σ
(

Fh

(
f h
))

(6)

gw = σ(Fw( f w)) (7)
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Finally, the attention weight maps gh and gw in the two spatial directions were extended
and output. The final output formula of the CA module is as follows:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (8)

A plug-and-play module that can be installed behind any feature map is the attention
mechanism. Adding it to the backbone portion may enable the model to enhance the initial
feature extraction of the network and may increase the prediction impact since the features
extracted from the backbone component serve as the foundation for further processing.
Therefore, this paper embedded the attention mechanism behind the C3Ghost module in
the backbone.

3.3.3. Improvement of Loss Function

In YOLOv5, complete intersection over union loss (CIOU_Loss) was used as the frame
loss function. The formula is as follows:

CIOU_Loss = 1− IOU +
ρ2(bgt, b

)
c2 + αv (9)

IOU =
A ∩ B
A ∪ B

(10)

α =
v

(1− IOU) + v
(11)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)
(12)

where IOU represents the intersection ratio of the predicted box and the real box area.
ρ2(bgt ,b)

c2 represents the distance between the predicted frame and the actual frame center
point, α is the weight function used to balance the scale, and ν is used to measure the
consistency of the aspect ratio.

The width and height of the predicted frame cannot be increased or decreased at the
same time during regression because av is not the real difference between the width and
height and its confidence; as a result, once it converges to the line-to-line ratio between
the width and height of the predicted frame and the real frame, it sometimes prevents the
model from effectively optimizing for similarity. The loss function EIOU_Loss [41] splits
the aspect ratio influence factor αv on the basis of CIOU_Loss and calculates the length
and width of the predicted frame and the real frame to solve the problem of CIOU_Loss.
EIOU_Loss is calculated by Equation (13).

EIOU_Loss = 1− IOU +
ρ2(bgt, b

)
c2 +

ρ2(hgt, h
)

c2
h

+
ρ2(wgt, w

)
c2

w
(13)

where
ρ2(hgt ,h)

c2
h

represents the difference between the height of the predicted box and the

real box;
ρ2(wgt ,w)

c2
w

represents the difference between the width of the predicted box and the
real box.

When there is an edge that is far away, only EIOU _Loss computation will become
slower without early convergence. This research suggests a novel enhanced loss function,
ECIOU, which can increase the prediction frame adjustment and accelerate the frame
regression rate.

Combining the two loss functions of CIOU and EIOU is the foundation of ECIOU. The
prediction frame’s aspect ratio is first changed by CIOU until it converges to a suitable
range, and then each edge is carefully tweaked by EIOU until it converges to the right
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value. ECIOU_Loss is calculated by Equation (14). Figure 7 depicts the loss comparison
curve for CIOU_Loss, EIOU_Loss, and ECIOU_Loss throughout the training procedure.

ECIOU_Loss = 1− IOU + αv +
ρ2(bgt, b

)
c2 +

ρ2(hgt, h
)

c2
h

+
ρ2(wgt, w

)
c2

w
(14)
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Figure 7 shows that ECIOU_Loss converges the quickest, and the loss value drops to
less than 0.03 after 50 rounds. After 300 rounds, the loss values for ECIOU_Loss, EIOU_Loss,
and CIOU_Loss are around 0.015, 0.017, and 0.020, respectively. Both CIOU_Loss and
EIOU_Loss are inferior to ECIOU_Loss.

3.3.4. Algorithm Flow

The overall flow chart of the algorithm is shown in Figure 8 and is mainly divided into
two parts: model training and testing. In the training phase, the model is trained according
to the algorithm steps described in the process, and the trained model is obtained and saved.
In the testing stage, the trained model is used to detect the test set to obtain the final result.
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4. Results
4.1. Experimental Environment

The computer central processing unit (CPU model) used in this experiment was an
Intel(R) Core (TM) i7-12700F CPU @ 2.10 GHz, and the running memory was 16 GB. The
graphics processor (GPU model) was an NVIDIA GeForce RTX 3060 discrete graphics
card, and the video memory size was 12 GB. The 64-bit Windows 10 operating system
was used as the software environment, PyCharm was used as the development platform,
PyTorch was used as the deep learning framework, Python was the chosen programming
language, and the CUDA 11.3 version of the parallel computing framework was used with
the CuDNN 8.0 version of the deep neural network acceleration library. The parameter
settings are shown in Table 4.

Table 4. Hyperparameter settings.

Hyperparameter Value

Epochs 300
Imgsz 640

batch_size 16
learning_rate 0.01
Weight_decay 0.0005
Momentum 0.937
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4.2. Evaluation Indicators

In this experiment, the model will be thoroughly assessed from the perspectives of
model correctness and model complexity. As for the model accuracy measurement index,
the precision (P), the recall rate (R), and the mean average precision (mAP) were selected.
The calculations for precision, recall, and mAP are shown as Equations (15)–(18). The
computation amount (GFLIOP), the number of pictures detected per second (FPS), the
model size, and the number of parameters were employed as indications to determine the
model complexity as it relates to time and space.

The ratio of the accurately anticipated positive classes to all of the expected positive
classes is known as precision. The recall rate is the ratio of the positively anticipated
classes that really occur to all of the positively occurring classes. In the formula below, true
positives (TP) refer to the number of correctly predicted cracks; false positives (FP) refer
to the number of incorrectly predicted cracks; false negatives (FN) refer to the number of
non-cracks that are not correctly predicted. mAP is obtained by taking the average of the
average precision (average precision) of all of the categories, where AP refers to the area of
the curve with the recall rate as the horizontal axis and the precision as the vertical axis.

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

AP =
∫ 1

0
P(R)dR (17)

mAP =
1
c

c

∑
i=1

APi (18)

4.3. Experimental Results and Analysis

As can be seen in Figure 9, the YOLOv5-G model’s parameters are calculated using
the log data stored during training. The training loss is minimal, and the result value of the
train/box_loss is around 0.015, suggesting that the training outcomes are more accurate;
the value of train/obj_loss is around 0.022, indicating that the detection accuracy of the
target is high. The values of val/box_loss and val/obj_loss were about 0.014 and 0.0194,
respectively, showing that the model fitting effect is good. The precision is around 94%,
indicating that the accuracy of detecting the target object is relatively high; the recall rate is
about 89%, indicating that the accuracy of finding the correct objects is relatively good. The
proportions of mAP@0.5 and mAP@0.5:0.95 are approximately 92 and 65, respectively.

The same dataset and parameters were used to train both the YOLOv5 model and the
YOLOv5-G model, and a comparison chart of the two models was created based on the
training outcomes, as shown in Figure 10 and in Table 5. In Figure 10, although the recall
rate R has dropped by 2.2%, the accuracy rates P, mAP@0.5, and mAP@0.5:0.95 have all
improved compared to the previous ones. Specifically, mAP@0.5:0.95 has increased by 5.6%.
Due to its higher IOU threshold requirement, mAP@0.5:0.95 is mostly utilized to represent
the positioning impact and border regression capability. This demonstrates that improving
the model enhances the network’s ability to regress to the target boundary. Table 5 shows
that YOLOv5-G’s parameters, GFLIOP, and size have been decreased, and its detection
speed is 1.9 times faster than that of YOLOv5, producing the lightweight effect.
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Table 5. Comparison of model complexity.

Model Params GFLIOP Size FPS

YOLOv5 7015,519 15.8 14.5 55
YOLOv5-G 3746,583 8.2 8.0 103

4.4. Ablation Experiments

We created five sets of ablation experiments based on YOLOv5, each of which em-
ployed identical hyperparameters and training methods in order to further investigate the
usefulness of each upgraded approach and to confirm the detection performance of the
algorithm suggested in this paper. In order to lighten the weight of the model, Model 1
substituted Ghost convolution for the original network’s regular convolution. Model 2
augmented the backbone network with an attention mechanism. Model 3 represented the
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adjustment of the loss function, whereas Model 4 reflected the advancement of Model 1 by
including an attention mechanism. YOLOv5-G used Model 1, Model 2, and Model 3 at the
same time. The ablation experiments are shown in Table 6.

Table 6. Ablation experiments.

Model Ghost CA ECIOU mAP Params GFLIOP FPS Size

YOLOv5 - - - 91.1% 7,015,519 15.8 55 14.5
1

√ 1 - - 87.5% 3,678,423 8.1 123 7.9
2 -

√
- 95.2% 7,028,855 15.9 51 14.6

3 - -
√

91.6% 7,015,519 15.8 61 14.5
4

√ √
- 92.4% 3,746,583 8.2 98 8.0

YOLOv5-G
√ √ √

92.8% 3,746,583 8.2 103 8.0
1 stands for importing module.

According to the statistics in Table 6, the number of parameters, GLOPS, and FPS all
dramatically dropped when the Ghost module was added to Model 1, although the mAP
fell by 3.6%. This demonstrated that the Ghost module produced successful lightweight
model results. Model 2’s salient feature extraction of the crack target is clearer, with nearly
no increase in the number of parameters or calculations with the addition of the attention
mechanism, and the mAP is increased by 4.1 percentage points to 95.2%. The mAP was
raised by 0.5% when the loss function of Model 3 was changed, and the speed was 5%
quicker than that of YOLOv5, demonstrating that ECIOU_Loss was successful in enhancing
the target frame’s capacity to fit. Model 4 adds CA on the basis of being lightweight, and the
map was increased by 1.3%. When YOLOv5-G incorporated these three enhancements into
the model, the mAP was 92.8% higher than it was with the prior model. The detection speed
was 103 frames per second; the number of parameters, GFLOPS, and model weights were
all halved; and the method had been enhanced in terms of accuracy, speed, and complexity.

4.5. Comparative Experiments

In order to comprehensively evaluate the performance of the YOLOv5-G model, this
paper selected the two-stage Faster-RCNN algorithm and the one-stage SDD YOLOv4 and
YOLOv4-tiny algorithms and used the same training techniques and parameter settings
to conduct experiments on a self-made dataset. The comparative experiments are shown
in Table 7.

Table 7. Comparative experiments.

Model Backbone mAP Size FPS

Faster-RCNN ResNet 84.3% 108.3 6
SSD VGG16 82.1% 92 27

YOLOv4 DarkNet53 88.7% 244 34
YOLOv4-tiny DarkNet53 78.6% 22.6 118
YOLOv5-G GhostNet 92.8% 8.0 103

Table 7 shows that the mAP of the YOLOv5-G algorithm is 92.8%, which is 8.5%,
10.7%, 4.1%, and 14.2% greater than the mAPs of the Faster-RCNN, SSD, YOLOv4, and
YOLOv4-tiny algorithms, respectively. YOLOv5-G has a higher average accuracy than
other algorithms. YOLOv5-G has a strong generalization ability and can learn target gen-
eralization information. It has certain universality. When it is migrated, the model has
high robustness, so YOLO is much more accurate than other target detection methods. The
detection rate of YOLOv5-G is higher than that of the Faster-RCNN, SSD, and YOLOv4 al-
gorithms in terms of detection speed FPS. YOLOv5-G is 3.8 times and 3.1 times quicker than
the SSD and YOLOv4 algorithms, respectively, and has a detection rate that is 17.2 times
faster than that of Faster-RCNN. Compared to the YOLOv4-tiny algorithm, YOLOv5-G
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is 1.2 ms slower, but in return, the mAP is greatly improved by 14.2%. In terms of model
size, YOLOv5-G is only 8 MB, which is the lightest among the above models and is more
suitable for porting to embedded devices.

5. Conclusions

This study suggested an enhanced target recognition approach for the YOLOv5-
G model, with a focus on the issue of coal and rock dynamic catastrophes, by taking
into account the real demands of engineering in situations in which there is low model
detection accuracy, sluggish speed, and poor portability. Initially, the model employed
the Ghost module to lighten the network as a whole, significantly reducing the number of
model parameters and speeding up the network. Then, the CA attention mechanism was
embedded in the C3Ghost module of the backbone network to improve the model accuracy
and learning ability; Finally, through the ECIOU_Loss function, the regression positioning
ability of the model was improved. According to experiments, the mAP of YOLOv5-G is
up 1.7% from the original model, the detection speed is 1.9 times quicker, and the model
weight is just 8 MB. The strong generalization, high detection accuracy, and quick speed of
the model make it useful for future hardware replacement and also indicate some practical
value in the area of real-time applications.

Given the limits of the detection technique provided in this research, we will continue
to develop the model as well as expand its function to extract physical characteristics such
as the crack length, width, and propagation speed. Furthermore, the detection network
design suggested in this research can also be utilized for other fields, such as for the
detection of industrial equipment defects, building damage, and road and bridge cracks.
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