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Abstract: Crack inspections of automotive engine components are usually conducted manually; this
is often tedious, with a high degree of subjectivity and cost. Therefore, establishing a robust and
efficient method will improve the accuracy and minimize the subjectivity of the inspection. This
paper presents a robust approach towards crack classification, using transfer learning and fine-tuning
to train a pre-trained ConvNet model. Two deep convolutional neural network (DCNN) approaches
to training a crack classifier—namely, via (1) a Light ConvNet architecture from scratch, and (2) fined-
tuned and transfer learning top layers of the ConvNet architectures of AlexNet, InceptionV3, and
MobileNet—are investigated. Data augmentation was utilized to minimize over-fitting caused by
an imbalanced and inadequate training sample. Data augmentation improved the accuracy index
by 4%, 5%, 7%, and 4%, respectively, for the proposed four approaches. The transfer learning and
fine-tuning approach achieved better recall and precision scores. The transfer learning approach using
the fine-tuned features of MobileNet attained better classification accuracy and is thus proposed for
the training of crack classifiers. Moreover, we employed an up-to-date YOLOv5s object detector with
transfer learning to detect the crack region. We obtained a mean average precision (mAP) of 91.20%
on the validation set, indicating that the model effectively distinguished diverse engine part cracks.

Keywords: deep learning; crack classification and detection; transfer learning; fine-tuning; data
augmentation; YOLOv5s object detector

1. Introduction

Automotive component cracking is a common phenomenon in the mechanical compo-
nents of an engine and has a significant impact on the structural firmness of engine parts,
engine fuel consumption, and environmental pollution. Cracking is one of the signs of
deficits in engine components, which can have many cases, such as mechanical stresses,
wear mechanisms, overheating, and lubrication mechanisms. Manual crack checking and
the inspection of automotive engine components is performed on a regular basis by trained
and experienced machinists and mechanics who use a spray, a magnifying glass, and a
magnetic particle inspection method [1–3], and this process is labor-intensive and time-
consuming. Moreover, inspection outcomes rely immensely on human bias and subjective
judgment, leading to inaccuracy and in some faults being overlooked.

In the past couple of years, several image-based, automatic, or semiautomatic crack de-
tection and classification approaches using traditional digital image processing approaches
have been proposed, namely, thresholding, segmentation-based, and edge-detection-based
approaches. Berwo et al. [4] proposed an automotive engine cylinder head crack detec-
tion method based on Canny edge detection with morphological dilation that employs
pre-processing, de-noising using Gaussian filtering, calculation of the intensity gradient,
double thresholding, non-maximal suppression, and morphological dilation. Generally,
traditional crack detection approaches follow image graying, binarization, edge extraction,
and morphological operations. Though traditional crack detection approaches are more
effective than manual checking or inspections, they are incredibly dependent on models
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and processing flows. This dependence leads to poor generalization due to noise formed
by structural dynamics, carbon deposits, and other factors related to the life of parts.

ConvNets have recently been proposed for object detection and image classification
in vision-based systems. Some of the ConvNet architectures, namely, VGGNet [5], Incep-
tionV3 [6], AlexNet [7], ResNets [8], and GoogleNet [9], were typically trained on high-volume
datasets, namely, GoogleNet and ImageNet, and have successfully been used to obtain state-
of-the-art outcomes. Many recent works have established ConvNet-based algorithms for the
purposes of automotive engine precision part defect detection [10], highway crack classifica-
tion and detection [11], weld defect detection and image defect recognition [12], weld image
on-line defect detection [13], andautomotive paint defect detection [14].

The YOLOv5 architecture [15] utilizes the entire image instantaneously for detec-
tion. Moreover, it is considerably faster than the R-CNN series of the framework. It has
high precision, high speed, and fewer model parameters than the other object detector
algorithms.

Previous works have recommended original ConvNets constructed from scratch and
trained to localize or sort defects or cracks in images. Training a new network is typically a
costly practice that frequently checks and examines various ConvNet algorithms and tunes
several parameters to optimize performance. Thus, transfer learning (TL) of a pre-trained
deep learning (DL) architecture on standard datasets for new baseline classification tasks
has been implemented. Ref. [16] proposed an image-based approach using TL to detect
concrete cracks, Ref. [17] proposed a DL-based transfer learning approach to detect cracks
in ceramic plates, Ref. [18] proposed a DL-based approach to detect defects in tire X-ray
images, and so on.

in this work, we first developed a ConvNet architecture-based approach to identify
and classify cracks using images of automotive engine components that are among the
most susceptible to cracks in their engine parts. The datasets were collected and prepro-
cessed. A ConvNet-based model was assembled from scratch to build the primary crack
classifier. Following that, a pre-trained network on a high-volume dataset was employed
to transfer the learned features that were useful for most vision-based tasks, including face
detection, vehicle detection, and crack detection. To improve the classifier’s robustness
and classification accuracy, DA approaches were used to create extra datasets for model
training. For better understandability, the abbreviations used are presented in Table 1.

Table 1. Abbreviation guide .

Abbreviation Detail of Abbreviations
Adam Adaptive Momentum
AP_i Average Precision of Class i
BN Batch Normalization
BS Batch Size
CB Convolutional Block
CC Computational Complexity
CL Classification Layer

ConvNets Convolutional Neural Networks
DA Data Augmentation

DCNNs Deep Convolutional Neural Networks
DL Deep Learning

DNN Deep Neural Network
DNNs Deep Neural Networks

FC Fully Connected
FF Fuzzy Filter
FN False Negative
FP False Positive

FPR False Positive Rate
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Table 1. Cont.

Abbreviation Detail of Abbreviations
FT Fine-tuning

GAP Global Average Pooling
GS Grid Search

HOG Histogram of Oriented Gradient
LF Loss Function
LR Learning Rate

mAP mean Average Precision
N Number of Classes

NW Number of Weights
PL Pooling Layer

RCNNs Regional Convolutional Neural Networks
TL Transfer Learning
TN True Negative
TP True Positive

TPR True Positive Rate

1.1. Motivations

In this paper, we present a robust crack classifier, and detector architectures are
established to detect and classify cracks in engine component images using a DCNN
architecture. Standard vision-based approaches to training a crack classifier architecture
include (1) constructing a light convNet architecture (LAECNet) from scratch; (2) the
FT, TL, and DA techniques, using three pre-trained ConvNet architectures (i.e., AlexNet,
InceptionV3, and MobileNet); and (3) a YOLOv5s object detector algorithm with TL. These
were utilized in this study.

1.2. Contributions

In this section, we discuss the contributions of this work as follows.

• Several deep CNN object classification and detection architectures with numerous
hyper-parameter optimization, fine-tuning, transfer learning, and DA techniques
were evaluated to find the optimal solution for crack detection and classification for
automotive engine components.

• Deep learning-based architectures are sensitive to input image noise, which affects the
detection power. Therefore, various preprocessing and fuzzy filter (FF) approaches
were employed to handle the lighting effects and noise in the engine component
images.

• The proposed framework exhibited relatively good automotive engine crack detection
performance on custom data sets.

• Furthermore, to compute the computational cost and offer a better benchmark between
accuracy, speed, and time of training, testing and detection approaches utilizing
various image results were investigated.

1.3. Paper Organization

The rest of this paper is organized as follows. The related work is introduced in Section 2.
In Section 3, we explain the suggested framework for an automotive engine component crack
detection system with diverse detection architectures. In Section 4, we present the experimental
results of our approaches and visualization methods. Section 5 concludes our paper.

2. Related Work

Nowadays, computer-vision-based crack detection approaches can be grouped into
three categories: traditional, machine-learning-based, and deep-learning-based approaches.

Traditional approach: In recent works, a traditional approach to detecting cracks
in various images, such as road images, concrete images, pavement, buildings, welded
parts, and others, has been employed, using traditional techniques to extract crack features.
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However, these techniques encounter problems related to decisions about optimized thresh-
olding. In addition, they are sensitive to noise and imaging conditions, which ultimately
results in poor performance and greater subjectivity. Some of the crack detection approaches
based on traditional methods that have been employed to images include the Canny edge
detector [19], the Gabor filter [20,21], wavelet transform [22,23], and histogram-oriented
gradient (HOG) method [24,25], which show significant improvements in detecting simple
cracks, but they are not suitable for diverse and complex cracks, and are laborious and
time-consuming.

Machine-learning-based approach: With the rapid growth of machine learning and
vision-based technologies, several approaches have been applied to crack detection tasks.
These include support vector machines (SVMs) [26–28], AdaBoost [29], and so on. However,
these detection approaches are restricted to detecting learned cracks, making it hard to
detect new cracks, and making it challenging to design universal features that can be
employed on all types of cracks.

Deep-learning-based approach: Recently, researchers have successfully used deep
learning-based methods in various crack detection applications, such as road crack de-
tection [30], weld part defect detection [31,32], concrete crack detection [33], and so on.
These techniques have significant merits over the traditional and machine-learning-based
approaches in that they can easily detect various cracks, including complex and diverse
cracks; minimize subjectivity; and easily design and employ all types of cracks. However,
deep-learning-based crack detection approaches require enormous resources and time to
train the model. Therefore, the techniques of TL and FT have been employed to solve the
problem of resource usage and cost in the training of a ConvNet architecture from scratch,
using pre-trained deep architectures trained on massive ImageNet datasets. Researchers
have employed the DCNNs in various applications, such as Alexnet [34,35], InceptionV3
[36], and MobileNet [37].

3. Proposed Methodology

In this section, we present the proposed work methodology and the frameworks of
the AlexNet, InceptionV3, LAECNet, and MobileNet architectures for classification, as well
as the modified YOLOv5s technique for detecting cracks in engine component images.

3.1. Methodology

In this study we constructed, implemented, compared, and chose the best architecture
for detecting and classifying cracks in automotive engine components. This task was
achieved by training the dataset on the following ConvNet architectures: LAECNet training
from scratch, AlexNet, InceptionV3, MobileNet, and the YOLOv5s model. Figure 1, displays
the workflow of the recommended strategy.

Figure 1. Workflow of the recommended strategy.
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3.1.1. Approach 1

Approach 1 (LAECNet) consisted of constructing and training a crack classifier with a
light ConvNet-based framework from scratch.The term “light convolutional neural net-
work” refers to a ConvNet, which had few weight layers compared to very deep ConvNets.
The light ConvNet contained two (2) convolutional blocks (conv2D1 and Conv2D) and one
FC layer, as shown in Figure 2. Every convolutional block of the network consisted of a
pooling layer (PL), a linear rectifier unit (ReLu), and a convolutional layer (CL).

The input image for LAECNet had dimensions of 227× 227× 3, and was classified as
either a ‘non-crack’ or a ‘crack’ image. A CL performed a convolutional task on the output
of the previous layers, using a group of filters to acquire the features that are significant for
distinguishing a ’non-crack’ image from a ‘crack’ image. Deeper CLs extract more global
features, compared to light layers, which learn the local features that are essential for crack
image classification.

Activation layers were employed to introduce
non-linearity to the primary net. The linear rectifier unit was employed due to its faster

computation speed and its better classification accuracy compared to the convolutional
sigmoidal function [38,39]. The flattened output of the second CL developed the input of
the fully connected layer, which comprised 32 units with linear rectifier unit activation [40].
The output layer comprised a single unit, and L2 regularization [41,42] was performed to
avoid over-fitting,

which is suitable for binary classification tasks, as shown in Equation (1). The squared
hinge loss function (LF) was utilized for the ’maximum margin’

binary classification problem to compile the proposed LAECNet architecture and
make the model robust [43,44]. Mathematically, it is defined as in Equation (2).

L2 =
m

∑
i=1

(yi − ŷi)
2 + λ

n

∑
j=1

wj
2 (1)

Here, λ was called the “tuning parameter”, which enabled us to decide how heavily
we wanted to penalize the flexibility of our model.

l(y) = max(0, 1− t.y) (2)

Here, (y) is the prediction value and (t) is the actual target for prediction.

Figure 2. Framework of the LAECNet architecture.

3.1.2. Approach 2

We implemented the fine-tuning (FT) technique for the top layers of a pre-trained
deep ConvNet with the AlexNet, InceptionV3, and MobileNet architectures.

AlexNet architecture: The AlexNet architecture, developed by Krichevsky et al. [7],
was trained using millions of images to classify various categories in ImageNet. In the
fine-tuning approach, the last convolutional block (CB) of the AlexNet model, as shown in
Figure 3, is modified/fine-tuned with the fully connected top-level layer. This approach
was accomplished by

(1) loading the model’s weights, (2) freezing/halting the model up to the last CB,
and training only the last layer/block, which prevented the fully connected layer from
overfitting the model. This architecture comprised five (5) CLs and three (3) FC layers
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with a sigmodal function. An Adam optimizer with a learning rate (LR) of 0.0001 and
binary cross-entropy loss was chosen. The selected size of the training input image was
227× 227× 3.

Figure 3. Framework of the AlexNet architecture.

InceptionV3 architecture: The InceptionV3 architecture is mostly used in image recog-
nition on pre-defined ConvNets. The authors in [6] proposed an InceptionV3 architecture
for flower classification. The FC layer of the architecture net was replaced with one 531
dense ReLu layer and a sigmodal classification layer. The FC layers were pre-trained on
bottleneck features before being attached to the CLs, and training was performed on the
final two (2) Inception blocks with an input image size of 299× 299× 3 (Figure 4).

Figure 4. Framework of the InceptionV3 architecture.

MobileNet architecture: MobileNet was presented in [45], and was demonstrated to
achieve a good balance between classification performance and computational cost. This
architecture was designed and based on the use of depthwise separable convolutions to
construct a shallow/deepnet that makes the architecture smalland minimizes the compu-
tation time. We removed three layers, including the average pooling, FC, and sigmoidal
function. Next, three extra layers, the global average pooling (GAP) and the BN and
sigmodal layers, were attached. This technique helps us to train the model faster and
achieve better classification accuracy. Then, drop out and ReLu activation functions were
proposed to prevent overfitting. The architecture was trained with an input image size of
224× 224× 3. Figure 5 depicts the framework of the suggested MobileNet architecture.

Figure 5. Framework of the MobileNet architecture.
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3.1.3. Approach 3

YOLOv5 is an excellent object detection architecture that is part of the YOLO network
series. It is an outcome of the ongoing combination and improvements that have been built
upon the two previous series. YOLOv5 has obtained remarkable outcomes in COCO and
PASCAL VOC object detection tasks. It has produced four net architectures: YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. The YOLOv5 architecture is split into 4 (four)
categories: input, backbone, neck, and prediction. Like the focus structure, it uses the CSP
network as a backbone, the PP block and PANet as necks, and GIoU_loss as a prediction
(head). The innovative focus structure in the backbone of YOLOv5 is employed for dividing
tasks.

In the YOLOv5 algorithm, an input image size of 3 × 640 × 640 was fed into the
model. Subsequently, in the focus slice task, the feature maps with 12× 320× 320 were
transformed, followed by the regular convolution operation of 32 convolution size kernels.
Finally, it was transformed into a feature map size of 32× 320× 320 with the CSP structure
in the backbone network. Due to the advantages of this network, several studies have been
conducted in various areas, such as in safety helmet detection [46], face mask detection [47],
infrared image detection [48], the detection of mold on food surfaces [49], the detection of
heavy-goods vehicles [50], and densely-populated traffic detection [51]. The architecture of
YOLOv5s is depicted in Figure 6.

Figure 6. Framework of the YOLOv5s architecture.

3.2. Dataset Description

In Section 3.2, we discuss the experimental data and discuss the techniques used for
data augmentation.

3.2.1. Experimental Dataset

In this paper, we collected 56 crack images and 85 non-crack images for automotive
engine components from Google using web-scraping. Figure 7 represents some of the
various images collected. The collected and the augmented images were acquired at high
resolution. However, the input RGB image size for the proposed ConvNet architectures did
not exceed 299× 299, in order to speed up training and minimize the number of weights.
As shown in Table 2, we designated different input sizes for each proposed ConvNet model.
We also uses fuzzy filtering (FF) to eliminate both additive white Gaussian noise and salt
and pepper noise (de-noising the images from noise caused by structure dynamics, oils,
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dirt, and environmental conditions) [52–56]. The mathematical notation of fuzzy sets for
an input image of f (a, b) can be defined using Equation (3).

f (a, b) = ∪µab
Iab

ab (3)

Here, a = 1, 2, 3, ...., M, b = 1, 2, 3, ...., N, Iab is the intensity of the (a, b)th value, and µab
is the membership value.

We experimented on both real and augmented datasets with 80% for training, 10% for
validation, and 10% for testing purposes.

Figure 7. Sample of automotive engine component images from Berwo et al. [4].

Table 2. Detailed parameters of the proposed models.

Models Input Size NW Batch Size Learning Rate

AlexNet 227× 227× 3 58.29× 106 16 0.001
InceptionV3 299× 299× 3 6.83× 106 16 0.001

LAECNet 227× 227× 3 5.71× 106 16 0.001
MobileNet 224× 224× 3 4.73× 106 16 0.001

3.2.2. Data Augmentation

In this study, we used data augmentation (DA) approaches, comprising a random rota-
tion of 10 degrees, a zoom-range of 0.2, a shear-range of 0.2, a horizontal flip transformation,
as well as scaling and brightness approaches aiming to augment the crack and non-crack
samples. These were administered to avoid over-fitting and to improve the performance of
the models [57].

3.3. Hyper-Parameter Optimization

During the design and implementation of deep learning architectures, exploring the
hyper-parameter space using optimization approaches can be undertaken in order tosearch
for the optimal hyper-parameters for the convNets [58–60]. A grid search (GS) is the
most widely utilized approach to searching the configuration space in recent studies. It
is used to calculate the predetermined values [58]. However, its computational cost rises
exponential at a rate of O(nk) [61] with k parameters. Consequently, it is the only effective
hyper-parameter configuration space explorer for small distinct values (Table 3).
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Table 3. Different hyper-parameters of the proposed algorithm.

Parameter Without DA With DA

Weight Decay 5× 10−4 5× 10−4

Momentum 0.90 0.90
Iterations per Epoch 7 38
Maximum Iterations 700 3800

Batch Size 16 16
Maximum Epochs 100 100

3.4. Performance Evaluation Metrics

The performance parameters applied for evaluating the effectiveness of the proposed
scheme were accuracy, recall, precision, F-measure, mAP, and the classification rate (Error
Rate).

Accuracy =
TN + TP

(FP + TP + FN + TN)
(4)

Precision =
TP

(FP + TP)
(5)

Recall =
TP

(TP + FN)
(6)

F−measure =
(1 + β2)× precision× recall

β2 × precision + recall
(7)

TPR =
TP

(TP + FN)
(8)

FPR =
FP

(TN + FP)
(9)

ErrorRate =
FN + FP

(TP + TN + FP + FN)
(10)

mAP =
1
N

N

∑
i=1

APi (11)

4. Experimental Results and Discussion

Eight architectural classifiers were proposed and trained using four approaches (LAECNet,
AlexNet, InceptionV3, and MobileNet) and two datasets (with and without DA) were used.
Then, classifiers were utilized to sort and classify the samples of images in the test dataset.
Figures 8 and 9 reveal the loss and training accuracy during validation and training per epoch
of the suggested algorithms. All the architectures were trained with 100 epochs and a BS of
16 images on both datasets. The detection process was carried out using a modified YOLOv5s
[62] object detector with epochs of 128 and 196, a batch size of 2, and a threshold of 0.5.

The performance evaluation indictors used were accuracy, F1, precision, error rate,
mAP, and recall, and these were calculated using Equations (4)–(11).

I(x, y) =

{
Crack, if Value < 0
Non− Crack, otherwise

(12)

Using Equation (12), the models’ ability to predict whether the input image I(x,y) was
cracked or non-cracked can be demonstrated. We noted that the models predicted the best
possible outcomes.
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Figure 8 summarizes the loss (upper) and accuracy (lower) changes during the training
of the proposed algorithms. As shown in Figure 8 (upper portion), these validation and
training losses fluctuated, with the losses fluctuating separately across the epochs.

The LAECNet algorithm showed a noticeable gap between its two-loss curves, in-
dicating an over-fitting problem (unrepresentative training data compared to validation
data). In the same graphs, the Alexnet algorithm also exhibited some over-fitting due to
unrepresentative validation data compared to the training data samples. However, Figure 8
(lower portion) indicates training convergence, with a decline in losses and an increase in
accuracy.

Figure 8. Losses (upper portion) and accuracy (lower portion) during training and validation.

Figure 9 summarizes both the loss and accuracy of the algorithms obtained when
using the DA techniques.

Figure 9. Losses (upper) and accuracy (lower) during training and validation using DA techniques.
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As shown in Figure 9 (upper portion), the algorithms still exhibited the problem of
some over-fitting in the case of LAECNet + DA and AlexNet + DA. In addition, the Incep-
tionV3 + DA and MobileNet + DA algorithms also showed some under-fitting. However,
the algorithms with DA achieved better classification accuracy compared to the algorithms
without DA.

Among the ConvNets trained with 100 epochsand with a batch size of 16 (Table 2), on the
dataset without DA, the LAECNet classifier achieved accuracy, F1, precision, and recall values
of 89%, 83%, 89%, and 82%, respectively; the AlexNet classifier achieved accuracy, F1, precision,
and recall values of 93%, 93%, 93%, 93%, and 0.93, respectively; and the InceptionV3 classifier
achieved accuracy, F1, precision, and recall values of 93%, 93%, 94%, and 93%, respectively.
However, the MobileNet ConvNet achieved better classification accuracy, F1, precision, and
recall values of 96%, 96%, 97%, and 96%, respectively. Table 4 and the accuracy graph presented
in Figure 10 indicate that were was robustness among the results of the rest of the classifiers.
In addition, there was still a problem of misclassification and over-fitting, and the MobileNet
model without data augmentation was found to be the model with better performance, having
lower recall due to the lower quantity of images labeled as “crack” images compared to the
number of samples labeled “non-crack” images, as shown in Table 5.

Figure 10. The classification accuracy of the proposed model.

Table 4. Accuracy comparison of the proposed models.

Models Accuracy (%)

AlexNet 93
AlexNet + DA 98
InceptionV3 93

InceptionV3 + DA 100
LAECNet 89

LAECNet + DA 93
MobileNet 100

MobileNet + DA 100
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Table 5. Classification results for each class type.

Models Classes Precision (%) Recall (%) F1 (%)

Crack 88 881 88
AlexNet Non-Crack 95 95 95

Crack 94 100 97
AlexNet + DA Non-Crack 100 97 99

Crack 100 75 86
InceptionV3 Non-Crack 91 100 95

Crack 100 100 100
InceptionV3 + DA Non-Crack 100 100 100

Crack 62 100 76
LAECNet Non-Crack 100 75 86

Crack 89 981 93
LAECNet + DA Non-Crack 99 95 97

Crack 100 88 93
MobileNet Non-Crack 95 100 98

Crack 100 100 100
MobileNet + DA Non-Crack 100 100 100

Table 6 depicts the test performance of the proposed algorithms on the test dataset
samples. It can be seen that both the InceptionV3 + DA and MobileNet + DA models were
able to predict the categories successfully with an error rate of zero (0).

Table 6. Test performance of the proposed crack classifiers.

Models TP FP FN TN Error Rate

AlexNet 7 1 1 19 0.0714
AlexNet + DA 51 0 3 111 0.018
InceptionV3 6 2 0 20 0.071

InceptionV3 + DA 51 0 0 20 0.071
LAECNet 8 0 5 15 0.179

LAECNet + DA 50 1 6 108 0.042
MobileNet 7 1 0 20 0.035

MobileNet + DA 51 0 0 114 0

Table 5 shows detection and classification performance measures for the crack and non-
crack type classes in the sample images.The proposed frameworks (Alexnet, InceptionV3,
LAECNet, and MobileNet) analyzed cracks with F1 scores of 97%, 100%, 93%, and 100%,
respectively, with the DA techniques, and for non-crack samples they achieved F1 scores of
99%, 100%, 97%, and 100%, respectively. However, without DA training techniques and
with fewer crack image samples, they obtained scores of 80%, 86%, 76%, and 93%.

To minimize the problems of misclassification and over-fitting, and to improve their
recall, we implemented DA techniques to improve the performance and over-fitting of the
classifiers with 100 epochs and a BS of 16 images. The LAECNet architecture improved
its accuracy, F1, precision, and recall by 4%, 10%, 6%, and 11%, respectively. The AlexNet
architecture also improved its accuracy, F1, precision, and recall by 5%, 5%, 5%, and 5%,
respectively; The InceptionV3 architecture improves its accuracy, F1, Precision, and Recall
by 7%, 7%, 6%, and 7%, respectively. The MobileNet architecture improved its accuracy
by 5%. As shown in Table 5, the MobileNet classifier achieved improved F1, precision,
and recall scores of 100%, 100%, and 100%, respectively, which were superior to those of
the other seven (7) classifier models trained with 100 epochs and a BS of 16 images on the
augmented dataset.

Table 3 shows the values of the diverse hyper-parameters of the proposed MobileNet
architecture with and without DA. These parameters were chosen based on a comparison
between the other proposed models such as LAECNets and the other pre-trained net
architectures in order to fix the ability of each neural network architecture to identify/detect
and classify cracks in automotive engine components using samples of test images.
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4.1. Computational Complexity

The computational complexity (CC) was evaluated by exploring various parameters
for the training and testing of the algorithms. This measure is related to the complexity
of the DL algorithm, with the costs during training and testing are used to compute the
measures of complexity for the DL models.

The CC of the presented algorithms was investigated according to their training and
testing times and was compared with those of six (6) pre-trained algorithms (AlexNet,
AlexNet + DA, InceptionV3, InceptionV3 + DA, MobileNet, and MobileNet + DA) and
two Light ConvNets (LAECNet, and LAECNet + DA). Here, we compare the CC scores
of the DL algorithms. As depicted in Table 7, the InceptionV3 model exhibited the most
lengthy testing and training time among the four models without DA. MobileNet + DA
had the shortest training time and considerable testing time compared to other networks
because MobileNet + DA adopted fewer parameters than the AlexNet, InceptionV3, and
LAECNet network architectures. From the perspective of classification accuracy (Table 4),
and reducing computing resources, the MobileNet model (with DA) achieved remarkable
performance with less computational complexity, which also demonstrates the feasibility
and superiority of this approach for automotive engine component crack classification.

Table 7. Complexity comparison of various proposed networks using real and augmented data.

Models TrT TT

AlexNet 312.51 1045
AlexNet + DA 759.75 372.60
InceptionV3 488.77 4598

InceptionV3 + DA 1455.23 2870
LAECNet 348.12 568.10

LAECNet + DA 872.54 192.80
MobileNet 341.52 1392

MobileNet + DA 702.02 1300

4.2. Crack Detector Using Modified YOLOv5s

In this study, the YOLOv5 detection algorithm was adopted [62]. It has high pre-
cision, high speed, and fewer model parameters Table 8 than the other object detector
algorithms used.

We evaluated the detection ability of the algorithm by labeling and annotating the
crack area of the engine part. Table 9 depicts the evaluation metrics of the proposed
algorithm with 128, and 196 best epochs and a threshold of 0.5. Average mean precision,
precision, and recall scores of 54%/91.2%, 99.9%/100%, and 50%/75% were achieved,
respectively. As we observed, the recall of the crack area was comparatively lower due
to the lower volume of the training image dataset. Figure 11 depicts the results for the
detected parts.

Table 8. Different hyper-parameters of the modified YOLOv5s architecture.

Parameters Values

Weight Decay 5× 10−4

Momentum 0.937
Warm up Epochs 3

Learning Rate 0.01
Batch Size 2
Image Size 640× 640× 3

Training Weights 7.01× 106

GFLOPs 15.80
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Table 9. Detection results obtained using the modified YOLOv5s architecture.

Epochs Precision Recall mAP

128 99.90% 50% 54%
196 100% 75% 91.20%

Figure 11. Sample images of cracks detected using YOLOv5.

5. Conclusions

In this study, we established a robust crack classifier architecture for classifying cracks
in automotive engine components using a DCNN architecture. Two standard approaches to
training a crack classifier in vision-based research include (1) constructing a light ConvNet

architecture (LAECNet) from scratch, and (2) using the FT and TL techniques of three
pre-trained ConvNet architectures (i.e., AlexNet, InceptionV3, and MobileNet).

The performance of all the suggested ConvNet architectures was evaluated based
on their accuracy, F1, precision, error rate, and recall scores obtained on a test sample of
images. LAECNet, AlexNet, InceptionV3, and MobileNet achieved accuracy scores of
89%, 93%, 93%, and 96%, respectively. DA approaches robustly increased the classification
accuracy of each model by 4%, 5%, 7%, and 4%, respectively. Generally, using TL and FT of
the MobileNet architecture achieved better performance indexes of the error rate, recall,
and precision and robustness. Thus, these findings imply that a robust crack classifier and
detector can be trained powerfully on inadequate crack image samples using the FT and TL
techniques from a benchmark ConvNet pre-trained model on the whole image sample in
association with the use of DA techniques. We were also successful in detecting the cracked
parts of the engine components using the YOLOv5s architecture with TL. Nevertheless,
the training dataset was relatively small compared to other deep-learning architecture
datasets, but numerous measurable calculations revealed the remarkable performance of
the proposed method.
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In this work, we aimed to establish a robust crack detection and classification system
for cracks in automotive engine components. The establishment of a real-time classification
and detection scheme will be the focus of future works.
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