Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Systems
Abstract
:1. Introduction
1.1. Preliminaries
1.2. Related Work
1.3. Contributions and Structure of the Paper
2. System Model and Problem Formulation
2.1. System Model
2.2. Problem Formulation
3. Proposed Algorithm
3.1. Subchannel Assignment Algorithm (SAA)
Algorithm 1 Proposed Subchannel Allocation Algorithm. |
|
3.2. Power Allocation Algorithm
3.2.1. Particle Swarm Optimization (PSO)
3.2.2. Modified Particle Swarm Optimization (MPSO)
3.3. Power Allocation Problem Based on MPSO
Algorithm 2 Power Allocation using MPSO |
|
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kishiyama, Y.; Benjebbour, A.; Ishii, H.; Nakamura, T. Evolution concept and candidate technologies for future steps of LTE-A. In Proceedings of the 2012 IEEE International Conference on Communication Systems (ICCS), Singapore, 21–23 November 2012; pp. 473–477. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Wunder, G.; Jung, P.; Kasparick, M.; Wild, T.; Schaich, F.; Chen, Y.; Brink, S.T.; Gaspar, I.; Michailow, N.; Festag, A.; et al. 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag. 2014, 52, 97–105. [Google Scholar] [CrossRef]
- Wang, H.; Hong, W.; Chen, J.; Sun, B.; Peng, X. IEEE 802.11aj (45GHz): A new very high throughput millimeter-wave WLAN system. China Commun. 2014, 11, 51–62. [Google Scholar] [CrossRef]
- Tang, C.; Chen, X.; Chen, Y.; Li, Z. A MDP-Based Network Selection Scheme in 5G Ultra-Dense Network. In Proceedings of the 2018 IEEE 24th International Conference on Parallel and Distributed Systems (ICPADS), Singapore, 11–13 December 2018; pp. 823–830. [Google Scholar] [CrossRef]
- Islam, S.; Zeng, M.; Dobre, O.A. NOMA in 5G Systems: Exciting Possibilities for Enhancing Spectral Efficiency. arXiv 2017, arXiv:1706.08215. [Google Scholar]
- Islam, S.M.R.; Avazov, N.; Dobre, O.A.; Kwak, K.S. Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 721–742. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Yuan, Y.; Han, S.; Chih-lin, I.; Wang, Z. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 2015, 53, 74–81. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, Y.; Choi, J.; Sun, Q.; Elkashlan, M.; Chih-Lin, I.; Poor, H.V. Application of Non-Orthogonal Multiple Access in LTE and 5G Networks. IEEE Commun. Mag. 2017, 55, 185–191. [Google Scholar] [CrossRef]
- Song, L.; Li, Y.; Ding, Z.; Poor, H.V. Resource Management in Non-Orthogonal Multiple Access Networks for 5G and Beyond. IEEE Netw. 2017, 31, 8–14. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Elkashlan, M.; Ding, Z.; Nallanathan, A.; Hanzo, L. Non-Orthogonal Multiple Access for 5G and Beyond. Proc. IEEE 2018, 105, 2347–2381. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.J.; Hsieh, H.Y. Moving towards non-orthogonal multiple access in next-generation wireless access networks. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 5633–5638. [Google Scholar] [CrossRef]
- Nonaka, N.; Kishiyama, Y.; Higuchi, K. Non-Orthogonal Multiple Access Using Intra-Beam Superposition Coding and SIC in Base Station Cooperative MIMO Cellular Downlink. In Proceedings of the 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, BC, Canada, 14–17 September 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Shen, R.; Wang, X.; Xu, Y. Weighted Sum-Rate Maximized Power Allocation in Downlink MIMO-NOMA Systems. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019; pp. 679–684. [Google Scholar] [CrossRef]
- Peng, M.; Zeng, J.; Liu, B.; Mei, J.; Su, X.; Xu, X.; Xiao, L. Resource Allocation in Multi-User NOMA Wireless Systems. In Proceedings of the 2018 12th International Symposium on Medical Information and Communication Technology (ISMICT), Sydney, Australia, 26–28 March 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Sun, Y.; Ng, D.W.K.; Ding, Z.; Schober, R. Optimal Joint Power and Subcarrier Allocation for MC-NOMA Systems. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, X.; Chen, R.; Xu, Y.; Meng, Q. Low-Complexity Power Allocation in NOMA Systems with Imperfect SIC for Maximizing Weighted Sum-Rate. IEEE Access 2019, 7, 94238–94253. [Google Scholar] [CrossRef]
- Fehske, A.; Fettweis, G.; Malmodin, J.; Biczok, G. The global footprint of mobile communications: The ecological and economic perspective. IEEE Commun. Mag. 2011, 49, 55–62. [Google Scholar] [CrossRef]
- Song, X.; Dong, L.; Wang, J.; Qin, L.; Han, X. Energy Efficient Power Allocation for Downlink NOMA Heterogeneous Networks With Imperfect CSI. IEEE Access 2019, 7, 39329–39340. [Google Scholar] [CrossRef]
- Khan, W.U.; Jameel, F.; Ristaniemi, T.; Khan, S.; Sidhu, G.A.S.; Liu, J. Joint Spectral and Energy Efficiency Optimization for Downlink NOMA Networks. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 645–656. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, H.; Cheng, J.; Leung, V.C.M. Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Network. IEEE Trans. Commun. 2016, 64, 3722–3732. [Google Scholar] [CrossRef]
- Goudos, S.K. Joint power allocation and user association in non-orthogonal multiple access networks: An evolutionary approach. Phys. Commun. 2019, 37, 100841. [Google Scholar] [CrossRef]
- Masaracchia, A.; Da Costa, D.B.; Duong, T.Q.; Nguyen, M.N.; Nguyen, M.T. A PSO-Based Approach for User-Pairing Schemes in NOMA Systems: Theory and Applications. IEEE Access 2019, 7, 90550–90564. [Google Scholar] [CrossRef]
- Shahryari, O.K.; Pedram, H.; Khajehvand, V.; Takhtfooladi, M. Energy and task completion time trade-off for task offloading in fog-enabled IoT networks. Pervasive Mob. Comput. 2021, 74, 101395. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95 International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Tang, X.; Pang, Y.; Liao, Y. Adaptive particle swarm optimization with mutation. In Proceedings of the 30th Chinese Control Conference, Yantai, China, 22–24 July 2011; pp. 2044–2049. [Google Scholar]
- Lye, S.C.K.; Yew, H.T.; Chua, B.L.; Chin, R.K.Y.; Teo, K.T.K. Particle Swarm Optimization Based Resource Allocation in Orthogonal Frequency-division Multiplexing. In Proceedings of the 2013 7th Asia Modelling Symposium, Hong Kong, China, 23–25 July 2013; pp. 303–308. [Google Scholar] [CrossRef]
- Chen, R.; Xu, J. Particle swarm optimization based power allocation for D2D underlaying cellular networks. In Proceedings of the 2017 IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, China, 27–30 October 2017; pp. 503–507. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, Y.; Cheng, Q.; Wang, Y. An Improved PSO-Based Power Allocation Algorithm for the Optimal EE and SE Tradeoff in Downlink NOMA Systems. In Proceedings of the 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Pliatsios, D.; Sarigiannidis, P. Power Allocation in Downlink Non-orthogonal Multiple Access IoT-enabled Systems: A Particle Swarm Optimization Approach. In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini Island, Greece, 29–31 May 2019; pp. 416–422. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Li, Y.; Ji, H. Resource allocation for high-speed railway downlink MIMO-OFDM system using quantum-behaved particle swarm optimization. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 2343–2347. [Google Scholar] [CrossRef]
- Pegorara Souto, V.D.; Demo Souza, R.; Uchôa-Filho, B.F. Power Allocation and Initial Access Using PSO for Uplink NOMA mmWave Communications. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Q.; Wang, Y.; Emoto, T.; Akutagawa, M.; Konaka, S. Adaptive Resources Allocation Algorithm Based on Modified PSO for Cognitive Radio System. China Commun. 2019, 16, 10. [Google Scholar] [CrossRef]
- Wei, L.; Ding, Z.; Li, Y.; Song, L. User Pairing for Downlink Non-Orthogonal Multiple Access Networks Using Matching Algorithm. IEEE Trans. Commun. 2017, 65, 5319–5332. [Google Scholar]
- Bansal, J.C.; Singh, P.K.; Saraswat, M.; Verma, A.; Abraham, A. Inertia weight strategies in particle swarm optimization. In Proceedings of the Third World Congress on Nature & Biologically Inspired Computing, NaBIC 2011, Salamanca, Spain, 19–21 October 2011. [Google Scholar]
- Boks, R.; Wang, H.; Bck, T. A Modular Hybridization of Particle Swarm Optimization and Differential Evolution. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, Cancún, Mexico, 8–12 July 2020. [Google Scholar]
- Razavi, R.; Dianati, M.; Imran, M.A. Non-Orthogonal Multiple Access (NOMA) for Future Radio Access; Springer International Publishing: New York, NY, USA, 2017. [Google Scholar]
- Babu, A.V.; Jacob, L. Fairness Analysis of IEEE 802.11 Multirate Wireless LANs. IEEE Trans. Veh. Technol. 2007, 56, 3073–3088. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Maximum number of users | 40 |
Number of subchannels | 20 |
System bandwidth | 5 MHZ |
BS maximum transmission power | 40 dBm |
Cell radius | 500 m |
Min distance between user and BS | 50 m |
Circuit power consumption | 27 dBm |
AWGN power density | −174 dBm/Hz |
Rayleigh fading coefficient | 1 |
PSO population size | 100 |
PSO maximum iterations | 100 |
Inertia weight | , |
Inertia adjustment factor | 0.1 |
Acceleration coefficient | , |
Crossover probability | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Y.; Liu, P.; Zhou, Y.; Duan, W. Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Systems. Appl. Sci. 2022, 12, 9740. https://doi.org/10.3390/app12199740
Cui Y, Liu P, Zhou Y, Duan W. Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Systems. Applied Sciences. 2022; 12(19):9740. https://doi.org/10.3390/app12199740
Chicago/Turabian StyleCui, Yue, Peng Liu, Yalei Zhou, and Wenli Duan. 2022. "Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Systems" Applied Sciences 12, no. 19: 9740. https://doi.org/10.3390/app12199740
APA StyleCui, Y., Liu, P., Zhou, Y., & Duan, W. (2022). Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Systems. Applied Sciences, 12(19), 9740. https://doi.org/10.3390/app12199740