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Abstract: The traffic environment at the exit of the urban expressway is complex, and vehicle lane-
changing behavior occurs frequently, making it prone to traffic conflict and congestion. To study
the traffic conditions at the exit of the urban expressway and improve the road operation capacity,
this paper analyzes the characteristics of lane-changing behaviors at the exit, adds driving style
into the influencing factors of lane-changing, and recognizes one’s lane-changing intention based
on driving data. A UAV (unmanned aerial vehicle) is used to collect the natural driving track data
of the urban expressway diverge area, the track segments of vehicle lane-changing that meet the
standards are extracted, and 374 lane-changing segments are obtained. K-means++ is used to cluster
the driving style of the lane-changing segments which is grouped into three clusters, corresponding
to “ordinary”, “radical”, and “conservative”. Through the random forest model used to identify and
predict driving style, the accuracy reaches 93%. Considering the characteristics of a single time point
and the characteristics of the historical time window, XGBoost, LightGBM, and the Stacking fusion
model are established to recognize one’s lane-changing intention. The results show that the models
can well recognize the lane-changing intention of drivers. The Stacking fusion model has the highest
accuracy, while the LightGBM model takes less time; the model considering the characteristics of the
historical time window performs better than the other one, which can better improve the prediction
accuracy of lane-changing behavior.

Keywords: traffic safety; urban expressway exit; driving style; data driving; lane-changing intention;
machine learning

1. Introduction

The urban expressway is an important segment of the urban roadway system. The
diverging behavior of vehicles often occurs in the exit area of the urban expressway.
Comparing the traffic behavior of the mainline, acceleration or deceleration, and lane-
changing behaviors are frequent in the exit area, which will result in a higher risk of
traffic crashes.

It is stated by the National Highway Traffic Safety Administration that 27% of accidents
were caused by vehicle lane-changing [1]. Traffic safety data in recent years also shows
that 23.91% of traffic accidents are caused by lane-changing [2]. Therefore, if the intentions
of surrounding vehicles can be recognized in advance, traffic accidents could be avoided
to some extent. The urban expressway exits have more short off-ramps than the freeway
and large volumes of vehicles make the situation even worse. It is very important to
accurately recognize the lane-changing behavior of vehicles to reduce the incidence of road
traffic accidents.

Based on the vehicle trajectory data collected in the urban expressway diversion area,
this paper extracts the characteristics that represent the driver’s style and vehicle driving
intention and establishes a machine learning model to identify the vehicle lane-changing
intention in time, which can improve driving safety and feasibility to a certain extent.
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1.1. Literature Review

Lane-changing is a common operation for drivers. It has been proposed for many
years to study traffic safety by recognizing lane-changing behaviors; many studies focus
on this field to test new theories, enhance the accuracy of lane-changing recognition, and
reduce traffic crashes. Gipps connected the decisions made before lane-changing when
analyzing the decisions made in the process of lane-changing, which makes the overall
logic of the model more complete, and established one of the most classic vehicle lane-
changing decision models [3]. However, the model is too idealistic to be applied in practice.
The relevant scholars have optimized and improved the classical model from various
angles and proposed new models, such as the MITSIM model, SITRAS model, CORISM
model, etc. [4–6].

With the development of science and technology, researchers have applied new meth-
ods to lane-changing behavior analysis, including SVM, the LSTM model, the hidden
Markov model, etc. Zyner and Worrall et al., proposed a long short-term memory (LSTM)
network model to identify the driver’s intention when the vehicle enters the intersection.
The model inputs the vehicle position, heading angle, speed, and other parameters for
learning and training to achieve a good recognition effect [7]. Phillips et al., collected traffic
data at intersections and built an intention recognition model based on the LSTM network
to predict a left turn, right turn, and straight ahead intentions [8]. Kim et al., proposed a
new preprocessing algorithm for the advanced driver assistance system to improve the
accuracy of identifying the driver’s intention to change lanes [9]. The verification results on
the driving simulator show that the recognition accuracy can be improved by combining the
neural network model with the support vector machine model. Guo used the bi-directional
long and short-term memory network based on the attention mechanism (AT-BiLSTM) to
establish a lane-changing intention model, which improved the prediction accuracy [10].
Song Xiaoling et al., constructed the revenue function to reflect the interaction between
vehicles and introduced the attention mechanism and conditional random field to build
an LSTM model to identify the vehicle lane-changing intention [11]. Through comparison,
it is found that the performance of this model is better than that of the SVM and hidden
Markov model.

At the same time, some researchers have developed various methods to improve the
effect of identifying vehicle lane-changing behavior. Zhang Mingfang et al., established
a combined HMM and Bayesian model to identify the discrete behavior of intersections,
including common lane-changing, emergency lane-changing, and turning [12]. The training
model parameters include the steering angle, angular velocity, and point cloud data. Li
Keqiang et al., proposed another new algorithm, which combines HMM and Bayesian
filtering to identify the changed behavior of the left and right lanes [13]. Yi et al., used a
Bayesian classifier and decision tree theory to predict vehicle lane-changing probability
based on NGSIM data [14].

Deep learning technology has an excellent performance in many research applica-
tions [15,16]; some studies on lane-changing behavior also use deep learning technology for
analysis and research [17]. Based on the real vehicle data (NGSIM) from the next-generation
simulation data, Dou Yangliu et al., proposed a vehicle lane-changing prediction model
by using the characteristics of speed difference, vehicle spacing, and position, combined
with SVM and the artificial neural network (ANN) [18]. Peng Jinshuan et al., developed
a back propagation neural network (BPNN) model for predicting vehicle lane-changing
intention [19]. The model accurately predicted vehicle lane-changing behavior at least 1.5 s
in advance by analyzing the drivers’ visual data, operation data, vehicle motion data, and
traffic environment. Xu Ting et al., established a two-layer convolutional neural network
model (CNN) to identify the drivers’ lane-changing behavior [20]. Mammer et al., only
used a small number of manually labeled samples to train the convolutional neural network
(CNN) for identifying lane-changing intention [21].

Although various machine learning models are widely used in lane-changing recogni-
tion, there are still some shortcomings. For example, due to the correlation between input
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variables, the Bayesian network model has a great impact on lane-changing recognition
results [22]; the artificial neural network has many parameters and a slow operation speed;
the decision tree is prone to overfitting; and the support vector machine algorithm is better
than the above machine learning algorithm, but it is not easy to determine the optimal
penalty factor and kernel function parameters that affect the model [14]. Therefore, how
to find the optimal support vector machine parameters to improve the accuracy of model
recognition is a research hotspot. The traditional support vector machine uses the grid
search algorithm to determine the appropriate support vector machine parameters, but
the algorithm has the problems of complex calculation and being time consuming [23].
Salvucci et al., proposed a driver model for detecting vehicle lane-changing behavior by
comparing simulated driving behavior with actual driving behavior [24]. Although many
studies have classified specific lane-changing behaviors and extracted the characterization
parameters, these works are mainly focused on the research of traffic flow and are mostly
used for microscopic traffic simulation rather than vehicle lane-changing recognition [25].

1.2. Problem Description and Formulation

During the actual lane-changing, the driver may wait to change lanes when approach-
ing the lane line, or give up the lane-changing operation according to the surrounding
traffic conditions. Driving style has a direct impact on the intention of changing lanes;
drivers with different styles often have different driving habits. Most of the previously men-
tioned studies did not comprehensively consider the relationship between driver style and
lane-changing intention recognition but instead studied the impact of one of them on traffic
safety alone. In light of this, it is interesting and necessary to use the data-driven method
and introduce the consideration of the driver’s style in lane-changing recognition research.

At present, the rise of automatic driving technology has driven the research of vehicle
lane-changing behavior. The recognition of autonomous vehicle lane-changing behavior is
mainly realized by machine vision technology and radar. Road image algorithms can help
autonomous vehicles to recognize and judge. The most reliable way to train an automatic
driving algorithm is to carry out a road test, but the road environment is single, so it is
difficult to train the CNN network of the system comprehensively [26,27].

However, the image techniques make it available for data-driven methods. In this
paper, the UAV is used to collect the vehicle trajectory data at the exit of the urban ex-
pressway and vehicle lane-changing segments are extracted by the lane-changing rules.
On this basis, the driving styles are clustered, and a model is established to predict and
recognize driver styles. In the end, a machine learning model is established to recognize
the intention of vehicle lane-changing. This can be applied to automatic driving vehicles
to identify dangerous lane-changing and promote the development and maturity of the
advanced driving assistance system (ADAS). In this way, a lane-changing collision risk can
be identified by vehicles and the driving track of autonomous vehicles can be optimized to
improve driving safety.

Driving style directly affects the driver’s lane-changing behavior, but traditional
lane-changing recognition research does not consider this factor. This paper makes some
assumptions as driving style is introduced in the research, which can effectively improve
the accuracy and integrity of lane-changing recognition strategies, but we also make several
new contributions. The recognition of lane-changing behavior at the exit of the urban
expressway perfects the research in this field and improves driving safety. Three machine
learning models are established to recognize the intention of vehicle lane-changing in time
by mining the effective information of vehicle trajectory data and comparing the results of a
single time point and different time windows, which improves the accuracy and feasibility
of the research.

The remainder of the paper is organized as follows: the details of the data and methods
are presented in Section 2, including the data collection and the trajectory data extraction.
Driving style clustering and its classification are explained in Section 3, including the
clustering characteristics, method, and classification model features. The lane-changing
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recognition model application and a discussion of the modeling results are presented in
Section 4. The last is the conclusion section which summarizes the study and recommends
future research directions.

2. Materials and Methods

This study mainly focuses on the exit diversion area of the urban expressway. To
collect more natural driving track data within the effective time, the exit of the urban
expressway at the South Third Ring Road of Xi’an was selected in this study. It is a two-way
six-lane expressway; the lane width is 3.75 m and the design speed is 100 km/h.

2.1. Data Collection

For the exit, the traffic conditions during the morning peak hours (8:30–9:30 am)
and afternoon peak hours (5:30–6:30 pm) on a weekday were collected by the UAV and
were stabilized at about 200 m to ensure an adequate viewing height to cover the whole
functional area (as shown in Figure 1). To meet the requirements of needed for the UAV,
the weather is sunny with a high visibility and no wind, which ensures that the UAV can
capture the video in a stable state.
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2.2. Trajectory Data Extraction

As a video analysis software, Tracker was first widely used in the physical field. In
recent years, with its advantages of its simple operation, high accuracy, and powerful
functions, Tracker has been widely known by the public and has also been widely used in
the transportation field. The tracker software is used to extract the vehicle trajectory data.
By marking the coordinate system and tracking the target automatically or manually, the
coordinates, speed, and other information of each vehicle at any time can be obtained. The
steps to extract the natural driving trajectory data based on the tracker are as follows.

First, the coordinate system and reference distance calibration were determined. In this
study, the location of the overpass in the video is used as the coordinate origin to establish
a two-dimensional coordinate system, in which the X-axis coincides with the lane line in
the diversion area, and the Y-axis is perpendicular to the lane line direction. In addition, to
obtain accurate data, it is necessary to take the fixed length and static target in the video as
the reference. The lane width of the survey site was 3.75 m. Therefore, the distance value in
the coordinate system is calibrated with the lane width as the reference. The calibration
diagram is shown in Figure 2. For the convenience of the following description, the lanes
are numbered uniformly. From the deceleration lane inward, the lanes are numbered as
1, 2, 3, and 4.
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Figure 2. Coordinate calibration.

Second, target tracking and trajectory extraction were carried out. Each vehicle was
numbered, a tracking point at the front of the vehicle was created, and the vehicle was
tracked in real-time through the automatic tracking function of Tracker software, as shown
in the red circle in Figure 2. The red diamond point in the figure indicates the position of
the vehicle at each moment. Because of the large error caused by inaccurate identification
in automatic tracking, the speed and acceleration change curve trend of each vehicle will
be checked after the automatic tracking is completed, and the vehicle with a large error will
be manually marked for tracking to reduce the error and finally obtain complete natural
driving track data.

Finally, 1482 pieces of complete natural driving track data were obtained, which
contained 322 tracks of heavy vehicles and 1160 tracks of cars. At the same time, the
position and other information of each vehicle at any time can be obtained. The relationship
between each index value is shown in Figure 3. On this basis, the vehicle speed, acceleration,
and other related indicators can be calculated, mainly including the frame number (time
frame), vehicle ID, vehicle type class, vehicle lane number (lane id), vehicle X-axis speed vx,
vehicle Y-axis speed vy, vehicle X-axis acceleration ax, vehicle Y-axis acceleration ay, vehicle
X-axis coordinate value X, and the Y-axis coordinate value Y. Table 1 is the extracted track
data of a certain part of the vehicle.
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Table 1. Vehicle running track data (part).

Frame ID ID X (m) Y (m) vx (m/s) vy (m/s) ax (m/s2) ay (m/s2) Lane Id Class

101 32 −54.12 15.13 −30.71 1.04 0.27 0.18 3 Truck
102 32 −52.87 15.08 −30.69 1.05 0.27 0.16 3 Truck
103 32 −51.62 15.04 −30.68 1.06 0.26 0.15 3 Truck
104 32 −50.39 14.99 −30.67 1.06 0.26 0.13 3 Truck
105 32 −49.18 14.95 −30.66 1.07 0.26 0.12 3 Truck
106 32 −47.95 14.91 −30.65 1.07 0.26 0.1 3 Truck
107 32 −46.72 14.86 −30.64 1.07 0.26 0.09 4 Truck
108 32 −45.52 14.82 −30.63 1.07 0.25 0.08 4 Truck
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2.1. Lane-Changing Segment Extraction Criteria

Lane-changing refers to the behavior of the driver driving to the adjacent lane to meet
the needs during the driving process. The complete lane-changing process is shown in
Figure 4, which can be divided into discretionary lane-changing and compulsive lane-changing.
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Compulsive lane-changing mostly occurs in the ramp junction area, construction area,
and when an accident occurs in front of the current lane. This paper does not distinguish
between discretionary lane-changing and compulsive lane-changing, but mainly studies
the driver’s discretionary lane-changing behavior.

Before extracting the lane-changing segment, the time when the vehicle crosses the
lane marking is taken as the key frame, and the starting and ending points of lane-changing
are found forward and backward, respectively. In this paper, the longitudinal moving
distance of the vehicle within 10 frames is less than 0.1 m, which is the basis for the start
and the end of lane-changing, and lane-changing segments are extracted based on this
logic. Some lane-changing results and the extracted partial lane-changing data are shown
in Figure 5 below.
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2.2.2. Fragment Extraction Results and Analysis

The lane-changing segment extraction was realized based on python. In this process,
374 lane-changing segments were obtained, and the duration of all lane-change segments
is 1959 s. The statistical results of the lane-changing segments are shown in Table 2. It can
be seen that Lane 2 has the most lane-changing segments, and the lane-changing segments
of trucks are mainly concentrated in Lane 2 and 3.

Table 2. List of lane-changing segment extraction results.

Lane ID

Car Truck

Number Duration
(s)

Mean
Velocity (m/s) Number Duration

(s)
Mean

Velocity (m/s)

1 25 121 28.01 4 34 24.33
2 157 905 28.59 25 134 24.99
3 81 357 29.62 19 108 25.32
4 65 341 33.50 8 59 26.30

Total 328 1624 46 335

2.2.3. Characteristic Analysis of Lane-Changing Segment

According to the analysis of the lane-changing characteristics, the density of lane-
changing duration and distance are shown in Figure 6. It can be seen that the duration of the
lane-changing segments reaches a peak near 4.5 s, and the duration of most lane-changing
segments is between 4 s and 6 s; the lane-changing distance is mainly distributed between
70 m and 100 m, which reaches a peak near 90 m.

Appl. Sci. 2022, 12, 9762 7 of 22 
 

 
Figure 5. The extracted partial lane-changing data. 

2.2.2. Fragment Extraction Results and Analysis 
The lane-changing segment extraction was realized based on python. In this process, 

374 lane-changing segments were obtained, and the duration of all lane-change segments 
is 1959 s. The statistical results of the lane-changing segments are shown in Table 2. It can 
be seen that Lane 2 has the most lane-changing segments, and the lane-changing segments 
of trucks are mainly concentrated in Lane 2 and 3. 

Table 2. List of lane-changing segment extraction results. 

Lane 
ID 

Car  Truck  

Number Duration 
(s) 

Mean Velocity 
(m/s) 

Number Duration 
(s) 

Mean Velocity 
(m/s) 

1 25 121 28.01 4 34 24.33 
2 157 905 28.59 25 134 24.99 
3 81 357 29.62 19 108 25.32 
4 65 341 33.50 8 59 26.30 

Total 328 1624  46 335  

2.2.3. Characteristic Analysis of Lane-Changing Segment 
According to the analysis of the lane-changing characteristics, the density of lane-

changing duration and distance are shown in Figure 6. It can be seen that the duration of 
the lane-changing segments reaches a peak near 4.5 s, and the duration of most lane-
changing segments is between 4 s and 6 s; the lane-changing distance is mainly distributed 
between 70 m and 100 m, which reaches a peak near 90 m. 

  
(a) Lane-changing Duration density (b) Lane-changing Distance density 

Figure 6. Duration and distance density map of lane-changing segments. 

  

Figure 6. Duration and distance density map of lane-changing segments.

2.3. Driving Style Clustering

To cluster the driving style, it is first necessary to obtain the features that can represent
the driving style. In this paper, the main extracted features include the distance headway
(DHW), time headway (THW), time to collision (TTC), and the inverse of TTC (ITTC). The
DHW represents the distance between the front and rear vehicles. The THW represents
the time difference between the front and rear vehicles passing through the same place; it
can be calculated by dividing the DHW by the following vehicle speed. The TTC indicates
the time required for the collision if two vehicles continue to collide at the current speed
and on the same path; it can be calculated by dividing the DHW by the speed difference
between two vehicles. The minimum, maximum, average, and standard deviation of these
indicators can be calculated as features and 12 features were obtained, as shown in Table 3.

Through analysis of the above indicators, it was found that some indicators are highly
correlated, as shown in Figure 7, which will increase the training time and affect the
performance of the model to a certain extent. Therefore, it is necessary to reduce the
dimension of the primal data.
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Table 3. List of driving style clustering characteristics.

Symbols Unit Meaning

TTCmin s The minimum value of TTC
TTCmean s The average value of TTC
TTCstd s Variance of TTC

ITTCmin The minimum value of ITTC
ITTCmean The average value of ITTC
ITTCstd Variance of ITTC
THWmin s The minimum value of THW
THWmean s The average value of THW
THWstd s Variance of THW
DHWmin m The minimum value of DHW
DHWmean m The average value of DHW
DHWstd m Variance of DHW
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This paper normalizes the features and reduces the dimension by PCA. Feature nor-
malization and PCA dimensionality reduction based on Python can obtain the cumulative
contribution rate of the principal components, as shown in Figure 8. It can be seen that
the first four principal components have been able to represent more than 85% of the
information of the original features. Therefore, this paper selects the first four principal
components for subsequent analysis.
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The K-means algorithm is the most commonly used unsupervised clustering algorithm,
which divides a group of samples into several clusters without intersections [28]. An
important step in K-means is to place the initial centroid. Theoretically, K-means must
converge after a long time of operation, but the sum of squares in the cluster may converge
to the local minimum. Whether it can converge to the real minimum depends largely on
the initialization of the centroid. If the initial centroid is placed at different positions, the
clustering results are likely to be inconsistent. A good centroid selection can make K-means
avoid more calculations and make the algorithm converge stably and faster. The traditional
K-means algorithm uses a random method to extract the samples from the sample points
as the initial centroid, which has certain limitations. The improved k-means++ algorithm
based on the traditional K-means algorithm can make the initial centroids far away from
each other, to guide more reliable results than random initialization. When the k-means++
algorithm selects K cluster centers, it selects the first cluster center by a random method [29].
When selecting the next cluster center, it will give priority to the samples farther away from
the selected cluster center. This cycle will continue until all cluster centers are selected.
Although the improved principle of the k-means++ algorithm is simple, it is more effective
than the traditional K-means algorithm.

In this paper, the k-means++ algorithm is used for driving styles cluster analysis. The
data involved in clustering is the vehicle driving data after the dimension reduction (DHW,
THW, TTC, ITTC) when the number of clusters is two, three, four, and five, respectively,
which can obtain the silhouette coefficient results, as shown in Figure 9. The red line in each
figure represents the average silhouette coefficient of the current cluster. In the clustering
results, the silhouette coefficients of the samples on the right side of the red line are higher
than the average silhouette coefficient, which plays a positive role in the average silhouette
coefficient of the model. It can be seen that negative values of the silhouette coefficient occur
under different clustering results, but the proportion of negative values of the silhouette
coefficient is smaller when the cluster number is three.

Appl. Sci. 2022, 12, 9762 10 of 22 
 

  
(a) (b) 

  
(c) (d) 

Figure 9. Comparison of silhouette coefficients under different cluster numbers. (a) The number of clus-
ters is 2, (b) the number of clusters is 3, (c) the number of clusters is 4, (d) the number of clusters is 5. 

The silhouette coefficients (SC) and Calinski–Harabasz (CH) scores of the different 
clustering results are shown in Figure 10, it can be seen that the average SC are 0.340, 
0.451, 0.389, and 0.371 and the CH score is 143.5, 573.3, 594.3, and 537.7 when the cluster 
number is two, three, four, and five clusters, respectively. Although the CH score is higher 
when the cluster number is four, the SC score is relatively low at this time, while the SC 
and CH scores are high when the cluster number is three, so it is more reasonable to set 
the number of clusters to three. 

 
Figure 10. Silhouette coefficients and Calinski–Harabasz Score. 

Figure 9. Comparison of silhouette coefficients under different cluster numbers. (a) The number of
clusters is 2, (b) the number of clusters is 3, (c) the number of clusters is 4, (d) the number of clusters is 5.



Appl. Sci. 2022, 12, 9762 10 of 20

The silhouette coefficients (SC) and Calinski–Harabasz (CH) scores of the different
clustering results are shown in Figure 10, it can be seen that the average SC are 0.340, 0.451,
0.389, and 0.371 and the CH score is 143.5, 573.3, 594.3, and 537.7 when the cluster number
is two, three, four, and five clusters, respectively. Although the CH score is higher when
the cluster number is four, the SC score is relatively low at this time, while the SC and CH
scores are high when the cluster number is three, so it is more reasonable to set the number
of clusters to three.
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On this basis, the index values of each cluster of driving behavior are analyzed and
the density map of lane-changing time is shown in Figure 11. It can be seen that the
three types of driving behaviors obtained from the k-means++ clustering have significant
differences, cluster 1, cluster 2, and cluster 3 can represent the “conservative”, “ordinary”,
and “aggressive” driver styles. The average time required for lane-changing under the
various driving styles is 4.88 s, 6.65 s, and 8.41 s, respectively. Conservative drivers are the
most cautious. They will change lanes when the traffic environment risks are extremely low.
The operation of lane-changing is relatively stable and smooth, so the lane-changing time
is the longest; on the contrary, the operation of aggressive drivers is slightly aggressive,
so the lane change time is the shortest. There are obvious differences in the safety of
various driving behaviors. The three types of driving styles will be used as features for the
following research on vehicle lane change intention recognition.
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2.4. Driving Style Classification

The premise of establishing the model to predict the driver style is to extract the driving
characteristics of the target vehicle and the surrounding vehicles, including the speed,
acceleration, distance, and other indicators. The specific indicators are shown in Table 4.
The surrounding vehicles mainly refer to the front vehicle (FV) and the rear vehicle (RV).
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Table 4. Driving style classification model features.

Symbols Unit Characteristic Meaning

xVelt
ego m/s Target vehicle speed in the x-direction at time t

yVelt
ego m/s Target vehicle speed in the x-direction at time t

xAcct
ego m/s2 Acceleration of target vehicle in the x-direction at time t

yAcct
ego m/s2 Acceleration of target vehicle in the x-direction at time t

laneIDt
ego Lane of target vehicle at time t

Classego Type of target vehicle, car or truck
le f tLaneDist

ego m Distance from target vehicle to left lane line at time t
rightLaneDist

ego m Distance from target vehicle to right lane line at time t
∆xt

vehicle m Distance difference between surrounding vehicle and target vehicle in the x-direction at time t
∆yt

vehicle m Distance difference between surrounding vehicle and target vehicle in the y-direction at time t
∆xVelt

vehicle m/s The speed difference between the surrounding vehicle and the target vehicle in the x-direction at time t
∆yVelt

vehicle m/s The speed difference between the surrounding vehicle and the target vehicle in the y-direction at time t
∆xAcct

vehicle m/s2 Acceleration difference between surrounding vehicle and target vehicle in the x-direction at time t
∆yAcct

vehicle m/s2 Acceleration difference between surrounding vehicle and target vehicle in the y-direction at time t
Classt

vehicle The type of vehicles around at time t, car or truck

It will cause “overfitting” or “underfitting” when the model has too many or too few
features. Appropriate features can reduce the complexity of the model and improve training
accuracy. The optimization method (RFECV) based on recursive feature elimination (REF)
is adopted to screen important features in this paper. First, all features are modeled and
sorted according to their importance. After deleting one or several features with the
lowest importance, the modeling and analysis are conducted again. The cycle is repeated
until the importance of all the features is sorted. The final feature importance ranking is
shown in Table 5.

Table 5. RFECV Feature filtering.

Symbols Characteristic Meaning Importance
Value

Importance
Ranking

∆xt
FV-median The median of the distance difference between the target vehicle

and the front vehicle in the x-direction 0.2875 1

∆xAcct
FV-mean

Mean value of acceleration difference in the x-direction between
target vehicle and front vehicle 0.2546 2

xVelt
ego-

absolute_sum_of_changes
Sum of absolute values of continuous changes in the speed

sequence of the target vehicle in the x-direction 0.1978 3

xVelt
ego-median Speed median of the target vehicle in the x-direction 0.1385 4

∆yt
FV-mean Mean value of speed difference in the y-direction between target

vehicle and front vehicle 0.1187 5

yAcct
ego-mean_change

Absolute value’s mean value of continuous change value of
speed in the y-direction of the target vehicle 0.0946 6

Classt
FV Front vehicle type 0.0694 7

The random forest algorithm can complete the task of classification and regression,
and the default parameters have a well performance on most data sets. The random forest
algorithm is adopted to classify and predict the results after the k-means++ clustering in
this paper; 70% of the data is divided into the training set and 30% into the test set. The final
prediction results of the trained model are shown in Table 6. Cluster 1, cluster 2, and cluster
3 can represent the “conservative”, “ordinary”, and “aggressive” driver styles, of which the
corresponding labels in the classification model are class 0, class 1, and class 2. The model
has the highest prediction accuracy and recall for the aggressive driving style. That is, the
model can identify the aggressive driving style well. The main reason is that the aggressive
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sample data is more recognizable than the other two types of feature distribution. It is also
more practical to accurately identify the aggressive style in practical applications.

Table 6. Driving style model prediction results.

RF

Cluster 1 Cluster 2 Cluster 3

Macro Avg Weighted Avg AccuracyConservative Ordinary Aggressive

Class 0 Class 1 Class 2

Precision 0.8378 0.9761 0.8803 0.8983 0.9327 0.9306
Recall 0.9394 0.9874 0.9435 0.9268 0.9306

F1 0.8857 0.9617 0.9570 0.9115 0.9312

The ROC and PR curves of the random forest model are shown in Figure 12. It can be
seen that the area under the ROC and PR curves is greater than 0.9, almost approaching 1,
which indicates that the model can distinguish three types of samples well.
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3. Lane-Changing Recognition Model

Machine-learning models including XGBoost (extreme gradient boosting), LightGBM
(light gradient boosting machine), and the Stacking fusion model are often used by scholars
for recognition and prediction research. Compared with the traditional gradient lifting
algorithm (GBDT), XGBoost is faster. At present, the algorithm has an excellent perfor-
mance in classification and regression analysis. LightGBM avoids some shortcomings of
XGBoost, such as the high requirements for computing devices and the large consumption
of hardware facilities, and the training speed of the LightGBM model is faster, consumes
less memory, and has a higher accuracy. As the best method to improve the effectiveness of
the machine learning model, the Stacking fusion model can further improve the prediction
accuracy based on the traditional integrated model which uses multi-fold cross-validation,
so the results of the model are more stable, but the process of stacking generally takes a
long time. This paper uses three different methods to identify lane-changing behavior and
selects a suitable model for the exit of the urban expressway.

To improve the accuracy of the lane-changing intention recognition model, lane-
changing recognition is analyzed from two aspects: a single time point in the lane-changing
window and the whole historical segment of the lane-changing window.

The former mainly considers the characteristics of a time in the lane-changing window,
and the latter considers the characteristics of each period in the whole lane-changing
window. For each moment, the extracted features mainly include the horizontal and
vertical speed and acceleration of the target vehicle, the distance from the self-vehicle to
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the left and right lane lines, the relative speed, relative acceleration, and relative distance
of the target vehicle and the surrounding vehicles, as well as the type of self-vehicle and
the surrounding vehicles and the driver’s driving style. For any vehicle at each time, it
must belong to the set {TV, FV, RV, LFV, LPV, LRV, RFV, RPV, RRV}. TV represents the target
vehicle, FV represents the vehicle in front of the target vehicle, RV represents the vehicle
behind the target vehicle, LFV represents the vehicle in front of the target vehicle on the
left, LPV represents the vehicle adjacent to the target vehicle on the left, LRV represents
the vehicle behind the target vehicle on the left, RFV represents the vehicle in front of the
target vehicle on the right, RPV represents the vehicle adjacent to the target vehicle on the
right, and RRV represents the vehicle behind the target vehicle on the right.

The relative positions of the target vehicle and the surrounding vehicles are shown
in Figure 13. If the vehicle at a corresponding position does not exist, its corresponding
characteristics are set to null. Finally, the characteristic meanings and symbols of the
features extracted at each time point are the same as those in Table 4. In addition, the driver
styles of the target vehicle and surrounding vehicles are added. This value is the label
of the driving style cluster. The new features are shown in Table 7. Zero, one, and two
represent “conservative”, “ordinary”, and “aggressive” driving styles, respectively.
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Table 7. Lane-changing intention recognition feature.

Symbol Characteristic Meaning

Styleego Target vehicle driver style, 0, 1, or 2
Stylet

vehicle The driver’s style of surrounding vehicles at time t, 0, 1, or 2

3.1. Lane-Changing Intention Recognition Model Considering Single-Time Point Characteristics

To analyze the effect of the three models on lane-changing recognition, the starting
point time of lane-changing is taken as the modeling time, and the instantaneous charac-
teristic values of left lane-changing and right lane-changing track segments are extracted
at this time. All sample data were divided into the training set and test set, in which the
training set accounts for 70% and the test set accounts for 30%. On this basis, XGBoost,
LightGBM, and the Stacking fusion model were trained and tested respectively.

The final prediction results of the three models are shown in Table 8, respectively. It
can be seen that XGBoost and LightGBM have the same accuracy in lane-changing intention
recognition. However, the XGBoost algorithm has a longer training time and better fitting
effect on various data. The Stacking fusion model also has a good performance in lane-
changing intention recognition, the recognition accuracy of lane-changing to the right is
even close to 100%, but the comprehensive realization of the fusion model is less improved
than that of a single model. On the one hand, it may be that the two integrated algorithm
models of XGBoost and LightGBM have a strong enough prediction ability, so it is difficult
to improve the accuracy to a new level by modeling skills alone. At the same time, the
amount of sample data is too small, so the model cannot learn a lot of effective information,
which limits the upper limit of the model to a certain extent.
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It can be seen that the Stacking fusion model can well recognize the driving intention.
The model has a high recognition accuracy for the driving behavior of left lane-changing and
right lane-changing; the classifications of the latter are correct basically, but the recognition
accuracy of left lane-changing is lower than the right. On the one hand, the difference
between the two kinds of characteristic information is not very obvious. On the other hand,
this kind of sample accounts for the least proportion in the original sample, which results
in insufficient learning of this behavior.

To study the accuracy of the model for lane-changing intention recognition at different
single time points, the lane-changing intention time window is set to a fixed length, which
is set to 3 s in this paper. The prediction accuracy, model training duration, and other
information of each time point model are recorded respectively. The final statistics of some
modeling results are shown in Table 9.

Table 8. Prediction results of lane-changing intention recognition with single-time feature.

Evaluating Indicator XGBoost LightGBM Stacking

Turn right
Precision 0.9583 0.9592 0.9669

Recall 1.0000 0.9692 0.9851
F1 0.9926 0.9692 0.9925

Turn left
Precision 0.9175 0.9227 0.9377

Recall 0.9091 0.8667 0.9091
F1 0.9231 0.9123 0.9375

Macro avg
Precision 0.9685 0.9640 0.9780

Recall 0.9640 0.9398 0.9618
F1 0.9661 0.9510 0.9696

Weighted avg
Precision 0.9766 0.9630 0.9770

Recall 0.9769 0.9630 0.9769
F1 0.9767 0.9626 0.9767

Accuracy 0.9569 0.9530 0.9632

Table 9. Comparison of lane-changing intention recognition accuracy at different times.

Timestamp (s) XGB_Score LGB_Score Stacking_Score LGB_Time XGB_Time

−2.96 0.7951 0.8076 0.7826 0.1640 0.6962
−2.72 0.7693 0.7932 0.8043 0.1320 0.7007
−2.48 0.8171 0.8183 0.7779 0.1460 0.7270
−2.24 0.7811 0.7811 0.7758 0.1625 0.7827
−2 0.8580 0.8598 0.8631 0.2981 1.4621

−1.76 0.8276 0.8331 0.8214 0.2976 1.4220
−1.52 0.8371 0.8508 0.8275 0.2959 1.3836
−1.28 0.8547 0.8550 0.8404 0.2866 1.4134
−1.04 0.8620 0.8768 0.8752 0.3161 1.3544
−0.8 0.8775 0.9112 0.9049 0.2851 1.4724
−0.56 0.9326 0.9404 0.9200 0.2641 1.4393
−0.32 0.9395 0.9332 0.9373 0.2641 1.6104
−0.04 0.9523 0.9582 0.9568 0.2431 1.4414
0.32 0.9539 0.9652 0.9609 0.2389 1.2929
0.56 0.9622 0.9708 0.9638 0.3358 1.4483
0.8 0.9718 0.9708 0.9680 0.2291 1.2190

1.04 0.9677 0.9736 0.9749 0.1910 1.2101
1.28 0.9730 0.9777 0.9791 0.1970 1.1799
1.52 0.9775 0.9791 0.9833 0.1840 1.1535
1.76 0.9747 0.9833 0.9861 0.2030 1.2070

2 0.9774 0.9818 0.9860 0.1995 1.0757
2.24 0.9775 0.9832 0.9887 0.2090 1.0410
2.48 0.9802 0.9818 0.9873 0.1900 1.0212
2.72 0.9789 0.9858 0.9830 0.1826 1.0933
2.96 0.9814 0.9843 0.9857 0.1851 1.0522
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It can be seen that the prediction accuracy of the three models has been able to maintain
an accuracy above 80% in the first two seconds of the lane-changing. However, 2 s before
the start of the lane-changing, the prediction accuracy decreased significantly and the
accuracy is basically below 80%. The prediction results of the three models are similar, but
the training time of LightGBM is less than XGBoost, which is also an important reason why
LightGBM has been widely used in the engineering field in recent years.

The curves of the lane-changing intention recognition accuracy of the three models
at different times within 3 s before and after the start of the lane-changing are shown
in Figure 14; the XGB_score, LGB_score, and Stacking_score, respectively, represent the
accuracy of the three models. The negative timestamp indicates the time before lane-
changing, which means how much time is left before the lane-changing occurs.
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The result shows that the second before the starting time point of lane-changing is
an important dividing point. The prediction accuracy of each model before this point
drops to a low level, and they fluctuate greatly. This is because as the modeling time is
too early, the vehicle may not show obvious behavior characteristics that can represent
the intention of the lane-changing, so the recognition accuracy decreases. After the start
of the lane-changing, the three model bases tend to be stable, and the prediction accuracy
reaches the maximum value. In general, the difference between the recognition results is
small, but the recognition accuracy of the Stacking fusion model is better than a single
machine learning model, and the performance of the overall model is better considering
the single-time point characteristics.

3.2. Lane-Changing Intention Recognition Model Considering Historical Time
Window Characteristics

The above models only consider the characteristics of a certain time point in the lane-
changing window. However, the process of the vehicle during the whole lane-changing
stage, from the generation of the lane-changing intention to the end of the lane-changing,
has a certain memory effect, and the vehicle state at the current moment will affect the
state at the next moment. Thus, it is not comprehensive to consider the characteristics of
a certain time point alone. Inspired by this, considering the characteristics of each time,
the lane-changing window is set to different time thresholds. For each lane-changing
window with a fixed length of time, all the characteristics in the whole lane-changing
window are extracted.

The maximum time length of the lane-changing window was set as 3 s and decreased
in steps of 0.12 s to get a total of 24 lane-changing window lengths. Three models were
built separately and tested at different lane-changing window lengths. The curves of the
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accuracy of the three models are drawn in Figure 15 to intuitively show the impact of
different lane-changing window lengths on the accuracy of lane-changing recognition
models. It can be seen that there is little difference in the prediction accuracy of different
lane-changing window lengths. However, the accuracy of the three models is at a high
level when the lane-changing window length is about 2.2 s, and the LightGBM model and
Stacking fusion model are higher than XGBoost. Whether the length of the lane-changing
window is too long or too short, the prediction accuracy is reduced. Therefore, the length
of the lane-changing window is determined as 2.2 s for subsequent research and analysis.
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Models were established to recognize the lane-changing intention at each time point
within 2.2 s before the starting time point of the lane-changing. The step size was taken
as 0.12 s and the prediction results of 18 different time points were obtained. The specific
results of each model are shown in Table 10. It can be seen that the accuracy of the three
models has less difference, the Stacking fusion model has the best comprehensive effect.
With the regression of the prediction time, the accuracy of the three models decreases to a
certain extent.

Table 10. Comparison of lane-changing intention recognition accuracy at different times.

Timestamp (s) XGB_Score LGB_Score Stacking_Score LGB_Time XGB_Time

−2.20 0.8015 0.7996 0.8151 0.1722 1.2171
−2.08 0.8256 0.8202 0.8384 0.1722 1.0249
−1.96 0.8417 0.8495 0.8512 0.2009 1.0903
−1.84 0.8652 0.8616 0.8756 0.1968 1.0947
−1.72 0.8711 0.8811 0.8882 0.1722 1.0527
−1.60 0.8984 0.8945 0.8976 0.1886 1.1133
−1.48 0.9101 0.9052 0.9207 0.2091 1.1519
−1.36 0.9155 0.9158 0.9255 0.1722 1.1194
−1.24 0.9161 0.9201 0.9275 0.1805 1.1395
−1.12 0.9215 0.9252 0.9326 0.2132 1.1007
−1.10 0.9315 0.9300 0.9355 0.1722 1.0914
−0.88 0.9412 0.9312 0.9425 0.1970 1.1558
−0.76 0.9296 0.9458 0.9414 0.2130 1.1148
−0.64 0.9408 0.9443 0.9505 0.2170 1.1344
−0.52 0.9325 0.9478 0.9472 0.2150 1.1094
−0.4 0.9483 0.9586 0.9579 0.2713 1.1771
−0.28 0.9536 0.9642 0.9723 0.1980 1.1288
−0.16 0.9586 0.9744 0.9791 0.1784 1.1243
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The curve of the prediction accuracy of the three models is drawn as shown in Figure 16.
The result shows that the accuracy decreases continuously with the regression of the pre-
diction time, especially from 1.5 s before the start time point of lane-changing, where the
decline speed increases. This is because as the prediction time moves back, the characteris-
tics of the lane-changing behavior are not obvious, so the learning effect of the model on
lane-changing is poor.
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4. Evaluation and Discussion Section

The accuracy of the traditional lane-changing recognition methods (SVM, LSTM) is
maintained at about 93% [7,8,11]. To compare with the model in this paper, the confusion
matrix is drawn as shown in Figure 17. XGB_ history, LGB_ history, and Stacking_ history,
respectively, represent the accuracy of the three models of considering the historical time
window, which means for each lane-changing window with a fixed length of time, all the
characteristics in the whole lane-changing window are extracted. XGB_ moment, LGB_
moment, and Stacking_ moment, respectively, represent the accuracy of the three models
of considering single-time point characteristics, which means the model only considers the
characteristics of a certain time point in the lane-changing window.

It can be seen that the Stacking fusion model can well identify the driving intention,
whether considering a single-time point or the historical time window; the accuracy of the
XGBoost and LightGBM models for the lane-changing intention recognition is similar. The
recognition accuracy of the model for changing lanes to the right is at a high level, which
can identify most samples correctly, but the recognition accuracy of the model for changing
lanes to the left is lower. This may be because the left lane-changing sample accounts for the
least proportion in the original sample, which results in the model’s insufficient learning of
this kind of driving behavior.

By comparing the lane-changing intention recognition models that only consider the
single time point feature and consider the historical time window feature, it can be found
that the three models have good effects. In general, the prediction accuracy of the Stacking
fusion model is the highest and the training speed of the LightGBM model is the fastest. The
accuracy of all models under the two types is drawn in Figure 18. The curve with the suffix
“history” represents the model considering the characteristics of the historical time window,
and the curve with the suffix “moment” is the model considering only the characteristics of
a single time point. It can be found that the difference between the prediction results based
on the two feature information is small when it is close to the start time of lane-changing,
but the difference increases significantly with the regression of the prediction time.

In addition, it can be seen that the prediction accuracy of the lane-changing intention
recognition model considering the characteristics of the historical time window is higher,
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which can guarantee an accuracy of more than 90% after 1.6 s before the start time point of
lane-changing, while the accuracy of more than 90% can be guaranteed after 0.6 s before
the start time point of lane-changing for the model considering only the characteristics of
a single time point. At the same time, the model considering the historical time window
feature can still ensure an accuracy of more than 82% at 2.2 s before the lane-changing
time point, but the accuracy of the model considering only the feature of a single time
point is about 78%, which indicates that the model considering the historical time window
feature has a better comprehensive performance in lane-changing intention recognition. In
addition, the prediction accuracy of the model that only considers the characteristics at a
single time point has a sudden change at 2 s before the time point of lane-changing, which
is likely caused by the instability of the characteristic information at this time.
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5. Conclusions

The main conclusions of this study are as follows:
1. In this paper, the safety evaluation indexes including TTC, ITTC, THW, and DHW

were calculated by lane-changing data. When k-means++ is used to group the driving style
into three clusters, the silhouette coefficient of the evaluation index of the model reaches
its height. The clustering result is selected as the driving style label value of the track
segment, and the features are further extracted to establish the random forest models to
identify the driving style. The results show that the accuracy of the random forest model is
93%, thus it is able to identify driving style well. Because different driving styles directly
affect the driving characteristic information before the lane-changing, compared with the
traditional lane-changing recognition model, this paper adds the driving style variable to
the parameters of the lane-changing recognition model to improve the recognition accuracy
of the model.

2. XBGoost, LightGBM, and the Stacking fusion model are established to recognize
the lane-changing intention. At present, most models only consider the characteristics of
a single time point. This study compares the lane-changing intention recognition models
that only consider the characteristics of a single time point with those that consider the
characteristics of the historical time window. The results show that the model which
considers the characteristics of the historical time window can still achieve a recognition
rate of more than 85% at 2 s before the starting time point, and the accuracy is higher than
that of the model which only considers the characteristics of a single time point. At the
same time, all three models can better identify the lane-changing intention, but the Stacking
fusion model has the highest comprehensive accuracy, and the training speed of LightGBM
is much faster than XGBoost, so it should be gradually applied more and more widely in
the practical engineering field.

This paper only analyzes and studies the vehicle driving track in the urban expressway
diversion area. The data source is relatively simple, but the vehicle driving area will involve
various types of roads and traffic environments. In the future, it is necessary to conduct
a comprehensive study on the driver’s style, vehicle lane-changing intention recognition,
and driving track prediction in different traffic environments.
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