How to Isolate Non-Public Networks in B5G: A Review
Abstract
:Featured Application
Abstract
1. Introduction
2. Deployments of NPNs
3. Spectrum Isolation
4. RAN Isolation
5. CN Isolation
6. Open Research Challenges
6.1. Wireless Throughput Capacity with Spectrum Isolation
6.2. Operation of NPNs with Isolation Requirements
6.3. Data Isolation of Software-Defined CNs
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ge, X.; Yang, B.; Ye, J.; Mao, G.; Wang, C.-X.; Han, T. Spatial Spectrum and Energy Efficiency of Random Cellular Networks. IEEE Trans. Commun. 2015, 63, 1019–1030. [Google Scholar] [CrossRef]
- Xiang, L.; Ge, X.; Wang, C.-X.; Li, F.Y.; Reichert, F. Energy Efficiency Evaluation of Cellular Networks Based on Spatial Distributions of Traffic Load and Power Consumption. IEEE Trans. Wirel. Commun. 2013, 12, 961–973. [Google Scholar] [CrossRef]
- Ge, X.; Ye, J.; Yang, Y.; Li, Q. User Mobility Evaluation for 5G Small Cell Networks Based on Individual Mobility Model. IEEE J. Sel. Areas Commun. 2016, 34, 528–541. [Google Scholar] [CrossRef]
- Zhong, Y.; Quek, T.; Ge, X. Heterogeneous Cellular Networks with Spatio-Temporal Traffic: Delay Analysis and Scheduling. IEEE J. Sel. Areas Commun. 2017, 35, 1373–1386. [Google Scholar] [CrossRef]
- Ge, X.; Huang, K.; Wang, C.-X.; Hong, X.; Yang, X. Capacity Analysis of a Multi-cell Multi-antenna Cooperative Cellular Network with Co-channel Interference. IEEE Trans. Wirel. Commun. 2011, 10, 3298–3309. [Google Scholar] [CrossRef]
- Sun, Q.; Tian, L.; Zhou, Y.; Shi, J.; Wang, Y.; Zhang, Z. A Two-Layered Incentive Scheme for Cooperation in Sliced 5G D2D Networks. IEEE Trans. Veh. Technol. 2020, 69, 13289–13304. [Google Scholar] [CrossRef]
- Tilly Gilbert. $1.4TN of Benefits in 2030: 5G’s Impact on Industry Verticals [R/OL]. (2019-10). February 2021. Available online: https://carrier.huawei.com/~/media/CNBGV2/download/program/Industries-5G/5G-Impact-on-Industry-Verticals.pdf (accessed on 14 July 2022).
- 5G Non-Public Networks for Industrial Scenarios. 5G-ACIA Whitepaper. March 2019. Available online: https://www.5Gacia.org/index.php?id=6958 (accessed on 14 July 2022).
- Cao, J.; Ma, M.; Li, H.; Ma, R.; Sun, Y.; Yu, P.; Xiong, L. A Survey on Security Aspects for 3GPP 5G Networks. IEEE Commun. Surv. Tutor. 2020, 22, 170–195. [Google Scholar] [CrossRef]
- Sollfrank, M.; Loch, F.; Denteneer, S.; Vogel-Heuser, B. Evaluating Docker for Lightweight Virtualization of Distributed and Time-Sensitive Applications in Industrial Automation. IEEE Trans. Ind. Inform. 2021, 17, 3566–3576. [Google Scholar] [CrossRef]
- Raveendran, N.; Song, L.; Jiang, C.; Gu, Y.; Han, Z.; Pan, M.; Tran, N.H. Cyclic Three-Sided Matching Game Inspired Wireless Network Virtualization. IEEE Trans. Mob. Comput. 2021, 20, 416–428. [Google Scholar] [CrossRef]
- Xiong, K.; Adolphe, S.S.R.; Boateng, G.O.; Liu, G.; Sun, G. Dynamic Resource Provisioning and Resource Customization for Mixed Traffics in Virtualized Radio Access Network. IEEE Access 2019, 7, 115440–115453. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, Y.; Wang, Y.; Yang, J.; Sun, Q.; Yuan, J.; Yang, B. Evaluation Methodology for Virtual Base Station Platforms in Radio Access Networks. IEEE Access 2018, 6, 49366–49374. [Google Scholar] [CrossRef]
- Choudhury, S.; Maheshwari, S.; Seskar, I.; Raychaudhuri, D. ShareOn: Shared Resource Dynamic Container Migration Framework for Real-Time Support in Mobile Edge Clouds. IEEE Access 2022, 10, 66045–66060. [Google Scholar] [CrossRef]
- Bhaumik, S.; Bansal, R.; Karmakar, R.; Mopur, S.K.; Mukherjee, S.; Chitale, M.J.; Chakraborty, S. NetStor: Network and Storage Traffic Management for Ensuring Application QoS in a Hyperconverged Data-Center. IEEE Trans. Cloud Comput. 2022, 10, 1287–1300. [Google Scholar] [CrossRef]
- Zeng, S.; Dai, G.; Sun, H.; Zhong, K.; Ge, G.; Guo, K.; Wang, Y.; Yang, H. Enabling Efficient and Flexible FPGA Virtualization for Deep Learning in the Cloud. In Proceedings of the IEEE Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), Fayetteville, AR, USA, 3–6 May 2020; pp. 102–110. [Google Scholar]
- Zhang, S.; Luo, H.; Li, J.; Shi, W.; Shen, X. Hierarchical Soft Slicing to Meet Multi-Dimensional QoS Demand in Cache-Enabled Vehicular Networks. IEEE Trans. Wirel. Commun. 2020, 19, 2150–2162. [Google Scholar] [CrossRef]
- Dai, L.; Tian, L.; Sun, Q.; Zhou, Y.; Wang, Y.; Feng, C. Wireless Resource Management in Sliced Networks Based on Isolation Indexes. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. [Google Scholar]
- Hossain, A.; Ansari, N. 5G Multi-Band Numerology-Based TDD RAN Slicing for Throughput and Latency Sensitive Services. IEEE Trans. Mob. Comput. 2020, 1–12. [Google Scholar] [CrossRef]
- D’Oro, S.; Bonati, L.; Restuccia, F.; Melodia, T. Coordinated 5G Network Slicing: How Constructive Interference Can Boost Network Throughput. IEEE/ACM Trans. Netw. 2021, 29, 1881–1894. [Google Scholar] [CrossRef]
- Reyhanian, N.; Maham, B. Statistical Slice Selection in Multi-Tenant Networks with Maximum Isolation of Reserved Resources. In Proceedings of the Asilomar Conference on Signals, Systems, and Computers (ACSSC), Pacific Grove, CA, USA, 1–4 November 2020; pp. 1002–1006. [Google Scholar]
- Su, R.; Zhang, D.; Venkatesan, R.; Gong, Z.; Li, C.; Ding, F.; Jiang, F.; Zhu, Z. Resource Allocation for Network Slicing in 5G Telecommunication Networks: A Survey of Principles and Models. IEEE Netw. 2019, 33, 172–179. [Google Scholar] [CrossRef]
- Hui, N.; Sun, Q.; Wang, Y.; Zhang, Z.; Tian, L.; Feng, C.; Guan, Z. Wireless Resource Allocation based on Multiplexing and Isolation in Sliced 5G Networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 1–6. [Google Scholar]
- Yang, X.; Liu, Y.; Wong, I.C.; Wang, Y.; Cuthbert, L. Effective Isolation in Dynamic Network Slicing. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Poe, W.Y.; Ordonez-Lucena, J.; Mahmood, K. Provisioning Private 5G Networks by Means of Network Slicing: Architectures and Challenges. In Proceedings of the IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar]
- 3GPP TS 23.501. System Architecture for the 5G System (5GS); Stage 2 (Release 16). August 2020. Available online: https://www.3gpp.org/ftp/Specs/archive/23_series/23.501/23501-h60.zip (accessed on 14 July 2022).
- Kao, L.; Liao, W. 5G Intelligent A+: A Pioneer Multi-Access Edge Computing Solution for 5G Private Networks. IEEE Commun. Stand. Mag. 2021, 5, 78–84. [Google Scholar] [CrossRef]
- Tehrani, R.H.; Vahid, S.; Triantafyllopoulou, D.; Lee, H.; Moessner, K. Licensed Spectrum Sharing Schemes for Mobile Operators: A Survey and Outlook. IEEE Commun. Surv. Tutor. 2016, 18, 2591–2623. [Google Scholar] [CrossRef]
- Ojanen, P.; Yrjölä, S.; Matinmikko-Blue, M. Assessing the Feasibility of the Spectrum Sharing Concepts for Private Industrial Networks Operating above 5 GHz. In Proceedings of the European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar]
- Sun, Q.; Feng, C.; Hui, N.; Tian, L.; Wang, Y. Computing and Storage Resources Allocation of UPF for private 5G networks based on isolation. In Proceedings of the IEEE Vehicular Technology Conference (VTC2022), Helsinki, Finland, 19–22 June 2022; pp. 1–6. [Google Scholar]
- Cao, Z.; Zhang, Y.; Guan, J.; Zhou, S.; Chen, G. Link Weight Prediction Using Weight Perturbation and Latent Factor. IEEE Trans. Cybern. 2022, 52, 1785–1797. [Google Scholar] [CrossRef]
- Jenco, J.; Latif, O.A.; Kwasinski, A.; Amer, M. Network Slicing for Wireless Networks Operating in a Shared Spectrum Environment. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 2435–2440. [Google Scholar]
- Korrai, P.; Lagunas, E.; Sharma, S.K.; Chatzinotas, S.; Bandi, A.; Ottersten, B. A RAN Resource Slicing Mechanism for Multiplexing of eMBB and URLLC Services in OFDMA Based 5G Wireless Networks. IEEE Access 2020, 8, 45674–45688. [Google Scholar] [CrossRef]
- Guan, W.; Zhang, H.; Leung, V.C.M. Customized Slicing for 6G: Enforcing Artificial Intelligence on Resource Management. IEEE Netw. 2021, 35, 264–271. [Google Scholar] [CrossRef]
- Rostami, A. Private 5G Networks for Vertical Industries: Deployment and Operation Models. In Proceedings of the IEEE 5G World Forum (5GWF), Dresden, Germany, 30 September–2 October 2019; pp. 433–439. [Google Scholar]
- Guo, W.; Xu, J.; Pei, Y.; Yin, L.; Jiang, C.; Ge, N. A Distributed Collaborative Entrance Defense Framework Against DDoS Attacks on Satellite Internet. IEEE Internet Things J. 2022, 9, 15497–15510. [Google Scholar] [CrossRef]
- Ghimire, B.; Rawat, D.B. Recent Advances on Federated Learning for Cybersecurity and Cybersecurity for Federated Learning for Internet of Things. IEEE Internet Things J. 2022, 9, 8229–8249. [Google Scholar] [CrossRef]
- Rawat, D.B.; Doku, R.; Garuba, M. Cybersecurity in Big Data Era: From Securing Big Data to Data-Driven Security. IEEE Trans. Serv. Comput. 2021, 14, 2055–2072. [Google Scholar] [CrossRef]
- Gündoğan, C.; Amsüss, C.; Schmidt, T.C.; Wählisch, M. Content Object Security in the Internet of Things: Challenges, Prospects, and Emerging Solutions. IEEE Trans. Netw. Serv. Manag. 2022, 19, 538–553. [Google Scholar] [CrossRef]
- Colombo, P.; Ferrari, E.; Tümer, E.D. Access Control Enforcement in IoT: State of the art and open challenges in the Zero Trust era. In Proceedings of the IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 13–15 December 2021; pp. 159–166. [Google Scholar]
- Syed, N.F.; Shah, S.W.; Shaghaghi, A.; Anwar, A.; Baig, Z.; Doss, R. Zero Trust Architecture (ZTA): A Comprehensive Survey. IEEE Access 2022, 10, 57143–57179. [Google Scholar] [CrossRef]
- Wu, J. Development paradigms of cyberspace endogenous safety and security. Sci. China-Inf. Sci. 2022, 65, 1–3. [Google Scholar] [CrossRef]
- Hu, S.; Liang, Y.C.; Xiong, Z.; Niyato, D. Blockchain and Artificial Intelligence for Dynamic Resource Sharing in 6G and beyond. IEEE Wirel. Commun. 2021, 28, 145–151. [Google Scholar] [CrossRef]
Deployment Option | Performance Metrics | Application Scenarios | ||||
---|---|---|---|---|---|---|
Isolation | Data Privacy | Latency | Cost | Standardized or not | ||
Isolated S-NPN | High | High | Low | High | Yes | High-speed train |
Shared spectrum-only S-NPN | High | High | Low | Medium high | Yes | Smart power grid |
Shared RAN PNI-NPN | Medium | Medium | Low | Medium | Yes | Remote telemedicine |
Shared RAN and CP PNI-NPN | Medium low | Medium low | Medium | Medium | Yes | Internet of Vehicles |
Shared RAN and CN PNI-NPN | Low | Low | High | Low | Yes | Automation warehousing |
N3 LBO NPN | Low | Low | Medium | Low | No | AR/VR |
F1 LBO NPN | Low | Low | Medium | Low | No | AR/VR |
Items | Advantages | Challenges | Solutions |
---|---|---|---|
Spectrum isolation | High-efficiency and flexibility for the spectrum resources | Expressing isolation performance of NPNs quantitatively Meeting the corresponding isolation requirements | Formulating the performance and requirements for spectrum isolation quantitatively Introducing quantitative spectrum isolation when assigning spectrum resources among NPNs to meet the isolation requirements |
RAN isolation | Customized performance metrics for air interface in one economical way | Mapping the customized performance metrics of the air interface to the parameters of the RAN Sharing computing resources with latency requirements | Configuring the RAN protocol diversely Adopting task-level virtualization and designing a RAN task scheduling scheme |
CN isolation | Multiple logical standalone links for CNs in one economical way | Distinguishing data from different NPNS and their terminals Assigning the minimum computing resources to meet the QoS requirements of CNs | Identifying the NPN and its subscribers Calculating the minimum resource demand of one CN, considering the coupled QoS requirements jointly, then assigning the minimum computing resources using virtualization technologies, such as KVM, VMware and Docker |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Hui, N.; Zhou, Y.; Tian, L.; Zeng, J.; Ge, X. How to Isolate Non-Public Networks in B5G: A Review. Appl. Sci. 2022, 12, 9771. https://doi.org/10.3390/app12199771
Sun Q, Hui N, Zhou Y, Tian L, Zeng J, Ge X. How to Isolate Non-Public Networks in B5G: A Review. Applied Sciences. 2022; 12(19):9771. https://doi.org/10.3390/app12199771
Chicago/Turabian StyleSun, Qian, Ning Hui, Yiqing Zhou, Lin Tian, Jie Zeng, and Xiaohu Ge. 2022. "How to Isolate Non-Public Networks in B5G: A Review" Applied Sciences 12, no. 19: 9771. https://doi.org/10.3390/app12199771
APA StyleSun, Q., Hui, N., Zhou, Y., Tian, L., Zeng, J., & Ge, X. (2022). How to Isolate Non-Public Networks in B5G: A Review. Applied Sciences, 12(19), 9771. https://doi.org/10.3390/app12199771