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Abstract: Endoscopic high-speed video (HSV) systems for visualization and assessment of vocal fold
dynamics in the larynx are diverse and technically advancing. To consider resulting “concepts shifts”
for neural network (NN)-based image processing, re-training of already trained and used NNs is nec-
essary to allow for sufficiently accurate image processing for new recording modalities. We propose
and discuss several re-training approaches for convolutional neural networks (CNN) being used for
HSV image segmentation. Our baseline CNN was trained on the BAGLS data set (58,750 images).
The new BAGLS-RT data set consists of additional 21,050 images from previously unused HSV
systems, light sources, and different spatial resolutions. Results showed that increasing data diversity
by means of preprocessing already improves the segmentation accuracy (mIoU + 6.35%). Subsequent
re-training further increases segmentation performance (mIoU + 2.81%). For re-training, finetuning
with dynamic knowledge distillation showed the most promising results. Data variety for training
and additional re-training is a helpful tool to boost HSV image segmentation quality. However,
when performing re-training, the phenomenon of catastrophic forgetting should be kept in mind,
i.e., adaption to new data while forgetting already learned knowledge.

Keywords: convolutional neural networks; re-training; finetuning; high-speed imaging; glottis; voice;
concept shifts; catastrophic forgetting; medical image segmentation

1. Introduction

Speech and voice disorders become more and more common in the 21st century. The
voice is formed by the oscillation of the two vocal folds within the larynx. The vocal folds
oscillate on average between 100 Hz (males) and 300 Hz (females) for normal phonation,
but can reach up to 1581 Hz during singing [1]. A normal voice or phonation is assumed to
be produced by symmetric and periodic vocal fold oscillations [2,3]. Additionally, glottis
closure during vocal fold oscillations is assumed to be important for normal voice (see
Figure 1) [4]. To capture and assess vocal fold oscillations, digital high-speed video systems
have now been used for more than 30 years [5]. Many studies applied HSV imaging to
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subjectively assess and judge vocal fold vibrations [6,7]. To quantitatively assess and judge
vocal fold oscillations in HSV data, image-processing techniques have been suggested
to segment the glottal area or detect the vocal fold edges over time (see Figure 1), being
requisite for subsequent computation of quantitative parameters [8–12]. The first image-
processing approaches go back to the 1990s, where classical image-processing techniques
such as region growing were suggested [13]. Since then, many other classical image-
processing techniques as thresholding [14], edge detection [15,16], or active contours [17,18]
have been successfully applied. These classical image-processing techniques have been
further developed [19] and combined with machine learning methods, e.g., active contours
with k-means-clustering [20]. Machine learning methods and especially computationally
expensive deep neural networks (DNN) have become more and more popular due to the
computational performance increase of computers and, in particular, the effective use of
graphics processing units (GPUs) [21]. Specifically, convolutional neural networks (CNNs)
based on the U-Net architecture [22] are a popular and commonly used method for glottis
segmentation in HSV videos [23–25].
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Figure 1. Normal phonatory cycle of the vocal folds recorded by HSV, male subject. The segmented 
glottis is indicated in red. 

The main advantage of DNNs is that, although they have high computational costs 
during the training process, they are much faster during application when performing 
segmentation tasks. Kist et al. [26] reported a <1 min segmentation time for 1000 HSV 
frames (< 0.06 sec/image) for their DNN on a GPU (GeForce GTX 1080 Ti) in contrast to 
ref. [27], who reported a mean segmentation time of 3.8 sec/image for their fully 
automated wavelets and active contour-based method on a CPU (Intel® Core TM i5-2400, 2 
GB RAM). Although user friendly semi-automatic glottis segmentation is highly reliable 
[28], the expenditure of time is also significantly higher (approx. 0.9 sec/image) than for 
current DNNs [26]. Another big advantage is that DNNs are highly reliable even for image 
quality degradation caused by factors such as blurring or poor light conditions [26]. The 
current DNN-based methods report segmentation accuracies of over 80%, e.g., refs. 
[18,24,25]. The current approaches also successfully apply DNNs for automatic glottis 
midline detection in HSV videos [29]. A comprehensive overview of recent machine 
learning and DNN approaches for HSV image segmentation is provided in ref. [21]. 

To the best of our knowledge, except for the BAGLS data set [30], all previous studies 
considered only one HSV camera system. Naturally, the trained DNNs may be biased 
towards other HSV systems using varying camera manufactures (see Figure 2), CCD 
sensors, spatial resolutions (from 256 × 256 to 1024 × 1024), light sources, and endoscopes. 
This may be a disadvantage for other researchers or clinicians who want to use existing 
DNN-based image processing but have different HSV systems than the system the DNN 
was trained on. In addition, new HSV systems will be developed in the coming years, 

Figure 1. Normal phonatory cycle of the vocal folds recorded by HSV, male subject. The segmented
glottis is indicated in red.

The main advantage of DNNs is that, although they have high computational costs
during the training process, they are much faster during application when performing
segmentation tasks. Kist et al. [26] reported a <1 min segmentation time for 1000 HSV
frames (<0.06 sec/image) for their DNN on a GPU (GeForce GTX 1080 Ti) in contrast to
ref. [27], who reported a mean segmentation time of 3.8 sec/image for their fully automated
wavelets and active contour-based method on a CPU (Intel® Core TM i5-2400, 2 GB RAM).
Although user friendly semi-automatic glottis segmentation is highly reliable [28], the
expenditure of time is also significantly higher (approx. 0.9 sec/image) than for current
DNNs [26]. Another big advantage is that DNNs are highly reliable even for image quality
degradation caused by factors such as blurring or poor light conditions [26]. The current
DNN-based methods report segmentation accuracies of over 80%, e.g., refs. [18,24,25]. The
current approaches also successfully apply DNNs for automatic glottis midline detection
in HSV videos [29]. A comprehensive overview of recent machine learning and DNN
approaches for HSV image segmentation is provided in ref. [21].

To the best of our knowledge, except for the BAGLS data set [30], all previous studies
considered only one HSV camera system. Naturally, the trained DNNs may be biased
towards other HSV systems using varying camera manufactures (see Figure 2), CCD
sensors, spatial resolutions (from 256 × 256 to 1024 × 1024), light sources, and endoscopes.
This may be a disadvantage for other researchers or clinicians who want to use existing
DNN-based image processing but have different HSV systems than the system the DNN
was trained on. In addition, new HSV systems will be developed in the coming years,
which will also have different recording modalities, leading to so called “concept drifts”
in the resulting images [31]. Especially for these new and hence unknown HSV systems,
the segmentation accuracy might significantly decrease, requiring existing DNNs to be
adapted [32]. One possibility, although time-consuming, is the (re-)training of a model
from scratch [31,33]. The other option is provided by so-called re-training or fine-tuning
methods, allowing for easy and fast adaption of existing and pre-trained neural networks.
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Figure 2. Overview of the considered camera systems and the number of corresponding videos in
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In this work, we suggested, discussed, and analyzed re-training approaches for HSV
image segmentation. To the best of our knowledge, the effect and usefulness of re-training
strategies on laryngeal HSV segmentation have not been investigated yet. However, re-
training has to be kept in mind and will have to be considered in HSV image processing to
enable sufficient accurate segmentation for new camera systems in the future.

2. Materials and Methods
2.1. Data Set

The BAGLS data set contains 59,250 annotated images from 640 HSV videos. Seven
international cooperation partners contributed to the data set, yielding a high diversity in
recording modalities. A detailed description of the BAGLS data set can be found in ref. [30].

The new BAGLS-RT data set contains 267 HSV videos from eight different cameras and
institutions, yielding 21,050 annotated images. The BAGLS-RT data set expands the BAGLS
data set with five new cameras (Figure 2), four new light sources, one flexible endoscope,
one new frame rate, and 14 new spatial resolutions, see Tables A1–A5 for details. The subject
distribution is as follows: mean age 42 ± 20 years, age range 18–93 years, 177 females and
90 males, 154 patients with healthy voices, and 123 patients with various pathologies, see
Table A6. All recordings were performed during sustained phonation.

The BAGLS-RT data set is available at Zenodo (https://doi.org/10.5281/zenodo.7113
473) and the BAGLS data set is available at (https://doi.org/10.5281/zenodo.3762320).

2.2. U-Net Architecture

U-Net (3.2): The U-Net is a commonly used convolutional neural network for image
segmentation [22]. Using skip-connections within the encoder–decoder architecture allows
for effective and fast learning based on a relatively small data base [34]. The basic structure
of the U-Net is illustrated in Figure 3.

In the following, for better understanding for those readers who are not familiar with
deep learning, some essential terms are shortly described:

Training data: The data used for training a model on the task, herein glottis segmenta-
tion: BAGLS (54,750 images) and BAGLS-RT (18,250 images).

Validation data: During training, the segmentation quality is judged on certain data
not being used for training or testing, herein 5% of each training set.

Test data: After the training is finished, the performance evaluation of the final
model is performed on so-far unknown test data: BAGLS (4000 images) and BAGLS-RT
(2800 images).

Batch: The share of training data that is used for training a model. Batches can
contain the entire available training data or parts of it. In this work, we used batch sizes of
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b = {25%, 50%, 75%, 100%} of the available training data within the corresponding BAGLS
or BAGLS-RT data.

Epoch: One learning cycle, i.e., adaption or optimization of the U-Net parameters
(i.e., parameter update within the U-Net) overall included training data (i.e., the defined
batch size). This network parameter optimization (backpropagation algorithm) does not
use the entire batch at once, but splits it up in smaller subsets, herein 8 images.

Evaluation of segmentation performance: For judging image segmentation perfor-
mance we used the commonly applied Intersection over Union (IoU) [26]. The IoU is a
metric that quantifies the overlap between the ground truth (manually annotated data) and
the prediction of the U-Net. It divides the overlapping pixels of prediction and ground
truth by the sum of all pixels (Figure 4). Thereby, IoU = 1 means perfect prediction.
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2.3. Data Preprocessing

Before training, the images were preprocessed with the following two methods.
The U-Net within the TensorFlow framework requires standardized image sizes:

To meet the internal pooling operations of the U-Net, Gomez et al. [30] resized the training
and validation images to 512 × 256 pixels (Resize Method). This 2:1 proportion was chosen
because it approximates the glottis dimensions. However, this often yielded an undesired
deformation of the images resulting in unnatural glottis geometry (Figure 5). Hence, we
now suggest a different method called the Region of Interest (ROI) method.
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Region of Interest Method (ROI): For resizing the images to the desired 2:1 scale
(based on the glottis geometry), the following new approach was performed. Within
each video, bounding boxes were generated and combined to BRef, enclosing all included
segmentation masks (Figure 6a). Afterwards, the smallest (B2:1 ≥ BRef) and largest possible
bounding boxes in the desired 2:1 scale were determined, defining the boundaries of
available ROIs (Figure 6b,c). The region of interest (ROI) for each image may now be an
automatically and randomly chosen box BVar within the defined area, yielding more variety
in training data regarding the position of the glottis in the image as well as surrounding
information (Figure 6d,e).
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2.4. U-Net Training

U-Net training: If not otherwise specified, hyperparameters were chosen as provided
in ref. [30]. First, model parameters were initialized randomly, forming the initial model M0.
Validation data comprised 5% of training data. A 3-fold cross validation was performed.
For model training, an ADAM optimizer with a cyclic learning rate between 10−3 and
10−6 was used. The mini-batch size was set to 8 images. Training was restricted to max.
100 epochs with early stopping, i.e., if the Dice Loss (i.e., overlap of prediction and ground
truth) [35] did not improve after 10 epochs on the validation data, training was terminated.
Final segmentation quality was then computed over the mean IoU (mIoU) on the test data.

Augmentation: To enhance the variability of the data, images were augmented using
Python Package Albumnetations. Variations were stochastically performed with brightness
and contrast (p = 0.75), gamma value (p = 0.75), Gaussian noise value (p = 0.5), blur-
ring (p = 0.5), random rotation between 0◦ and 30◦ (p = 0.75), and horizontal mirroring
(p = 0.5) [36]. Augmentation was performed for each epoch during training, yielding dif-
ferent training data for each epoch. In addition, for the previously described ROI method,
different ROIs were generated for each epoch. Such augmentation approaches help to
avoid overfitting of the model on the training data [37] and may also improve model
performance [38].

2.5. Re-Training the U-Net

The following re-training strategies were tested to investigate segmentation quality on
existing data (BAGLS) and new data (BAGLS-RT).

2.5.1. Re-Training from Scratch

Here, the entire U-Net was newly trained. For training, both data sets BAGLS and
BAGLS-RT were used. The validation data contained 5% of each data set. The BAGLS-
RT training set was split in batches b of different sizes b = {25%,50%,75%,100%} and
individually added to the entire BAGLS training set. This allows investigation of how
the amount of new BAGLS-RT data influences the training and hence the segmentation
performance on BAGLS and BAGLS-RT. The training process is illustrated in Figure 7.
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2.5.2. Incremental Finetuning

Here, a baseline model, trained solely with BAGLS data, was used as the starting
model. Then, only the BAGLS-RT data were used to re-train this model, commonly
known as finetuning. To simulate continuous new data, based on this finetuning concept,
incremental learning was simulated using different batch sizes b = {25%, 50%, 100%} of
BAGLS-RT (Figure 8). This means for, e.g., b = 25% that four incremental finetuning steps
were performed, as shown in the bottom row of Figure 8.
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2.5.3. Incremental Finetuning Using a Mixed Data Set

Again, the baseline model was used as the starting model. Then, the BAGLS and
BAGLS-RT data were used to re-train this model using different batch sizes b = {25%, 50%,
100%}, where half of the data was from BAGLS-RT and the other half was a representative
share of BAGLS data, i.e., for b = 100%, the entire BAGLS-RT training set (18,250 images) and
18,250 images from BAGLS were included. This approach uses the same finetuning process
as shown in Figure 8, except that the temporary models MTi are trained with BAGLS and
BAGLS-RT. This approach was chosen since considering only new data (BAGLS-RT) in the
re-training might yield decreased segmentation accuracy for old data (BAGLS), as will be
seen in the Results section for the incremental finetuning abovementioned.

2.5.4. Finetuning with Knowledge Distillation-FKD

Here, the model performance is judged by considering the Dice Loss of both the
baseline model previous to re-training (teacher-model) and the Dice Loss for the model
currently being re-trained (student-model). The influence of the teacher-model is controlled by
a parameter α ∈ [0, 1]. The higher the α value is chosen, the smaller the influence of the
teacher-model during re-training, i.e., α = 1.0 corresponds to the same incremental finetuning
as described above in Section 2.5.2. For a detailed description of the FKD approach, we
refer to refs. [39–41]. The training data were chosen as described in Section 2.5.2, i.e., only
BAGLS-RT. We chose a balanced value with α = 0.5 and investigated three batch sizes
b = {25%, 50%, 100%}. Additionally, we considered (1) a static model, where the teacher-
model is always the baseline model, and (2) a dynamic model, where the teacher-model is
replaced after each batch with the student-model (Figure 9). Consequently, the static and
dynamic model for the batch size b = 100% are equivalent.
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3. Results
3.1. Resizing of the Images

In order to compare the different resizing methods, the U-Net was trained from scratch,
as described above, using only the BAGLS data set. Using the ROI preprocessing on training
data we achieved a mIoU = 0.7737 ± 0.0029 for the original BAGLS test set as well as a
mIoU = 0.7675 ± 0.0024 for the BAGLS test set preprocessed with the ROI method. In
contrast, preprocessing the training data with the Resize method by ref. [30] yielded a
mIoU = 0.7500 ± 0.0065 and mIoU = 0.7040 ± 0.0078 for the original and ROI preprocessed
BAGLS test set, respectively. In both instances, the new ROI method was able to improve
segmentation performance. The mIoU was increased by 2.37% (original test data) and
6.35% (ROI test data). In the following, both training and test data are preprocessed by the
ROI method. We chose the model with the median mIoU on the BAGLS validation data
as baseline model for all following re-training comparisons: mIoU = 0.7642 (BAGLS test
data, ROI preprocessing) and mIoU = 0.7354 (BAGLS-RT test data, ROI preprocessing).

3.2. Re-Training from Scratch

Results of re-training are provided in Table 1. Whereas the improvement (∆mIoU) for
BAGLS always was between 0.98% and 1.26%, the segmentation performance for BAGLS-
RT continuously improved up to 1.66%, showing a correlation between batch size and
segmentation quality. These results demonstrate that the accuracy of the U-Net increases
for BAGLS-RT with increasing BAGLS-RT training data, while keeping the accuracy for
BAGLS at a similarly high value above baseline accuracy. The increase in accuracy for
BAGLS may most likely be based on new information from the BAGLS-RT data set that
was not considered or neglected during the training of the baseline model.
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Table 1. Segmentation performance of the U-Net after re-training from scratch on the corresponding
test data of BAGLS and BAGLS-RT.

Training with
Batch Size b

mIoU ∆mIoU (Baseline)

BAGLS BAGLS-RT BAGLS BAGLS-RT
Baseline 0.7642 0.7354 - -
b = 25% 0.7763 ± 0.0056 0.7449 ± 0.0019 1.21% 0.95%
b = 50% 0.7740 ± 0.0032 0.7504 ± 0.0099 0.98% 1.50%
b = 75% 0.7768 ± 0.0031 0.7497 ± 0.0025 1.26% 1.43%
b = 100% 0.7767 ± 0.0043 0.7520 ± 0.0057 1.25% 1.66%

3.3. Incremental Finetuning

Results of re-training are provided in Table 2. The mIoU improved for BAGLS-RT
and was highest with the batch size of b = 50%. However, for both other batch sizes
the improvement was rather similar. The decrease of mIoU for the BAGLS data is not
surprising, since the training data only consisted of BAGLS-RT data and hence the model
adapted more to this new data. Although this decrease is rather small, such phenomena
are called catastrophic forgetting and should be avoided in re-training. This phenomenon
also illustrates existing differences in the images between both data sets, as assumed
above in Section 3.2. Here, due to the small decrease for BAGLS, it can be stated that the
data were not significantly different. However, when considering highly different images
for re-training, the catastrophic forgetting may significantly reduce the segmentation
quality for the original data by “overwriting” original network parameters during the
finetuning process.

Table 2. Segmentation performance of the U-Net after incremental finetuning with BAGLS-RT.

Training with
Batch Size b

mIoU ∆mIoU (Baseline)

BAGLS BAGLS-RT BAGLS BAGLS-RT
b = 25% 0.7495 ± 0.0025 0.7597 ± 0.0011 −1.47% 2.43%
b = 50% 0.7514 ± 0.0042 0.7609 ± 0.0029 −1.28% 2.55%
b = 100% 0.7563 ± 0.0055 0.7571 ± 0.0029 −0.71% 2.17%

3.4. Incremental Finetuning Using a Mixed Data Set

Results of re-training are provided in Table 3. The highest improvement for mIoU
was achieved for both data sets for the batch size b = 100%. By including BAGLS data in
the re-training process, catastrophic forgetting could be avoided. However, there was also
a smaller increase of mIoU for BAGLS-RT as compared with the incremental finetuning,
indicating that including BAGLS training data also hindered better adaption of the models
towards BAGLS-RT data.

Table 3. Segmentation performance of the U-Net after incremental finetuning with mixed data from
BAGLS and BAGLS-RT.

Training with
Batch Size b

mIoU ∆mIoU (Baseline)

BAGLS BAGLS-RT BAGLS BAGLS-RT

b = 25% 0.7694 ± 0.0079 0.7498 ± 0.0020 0.52% 1.44%
b = 50% 0.7644 ± 0.0051 0.7491 ± 0.0016 0.02% 1.37%
b = 100% 0.7715 ± 0.0035 0.7520 ± 0.0011 0.73% 1.66%
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3.5. Finetuning with Knowledge Distillation (FKD)

Results of re-training with the dynamic and static teacher model are provided in
Tables 4 and 5, respectively. For the dynamic model, the best segmentation performance
for BAGLS-RT was achieved with batch size b = 25%. For BAGLS, the improvement was
always similar being around 0.9%. In contrast, for the static model the best values were
achieved with b = 100% (BAGLS-RT) and b = 50% (BAGLS). Training with batch size b = 25%
showed the lowest improvement for BAGLS. Overall, the static model achieved slightly
higher improvements for BAGLS than the dynamic model, since for the static model the
parameters of the teacher model were not updated (i.e., remained as the baseline model)
and should hence still be “optimal” for the BAGLS data set. In contrast, the improvements
for BAGLS-RT were higher for the dynamic model, since the teacher model is continuously
updated with additional information of BAGLS-RT.

Table 4. Segmentation performance of the U-Net after incremental finetuning with knowledge
distillation and the dynamic teacher model.

Training with
Batch Size b

mIoU ∆mIoU (Baseline)

BAGLS BAGLS-RT BAGLS BAGLS-RT
b = 25% 0.7729 ± 0.0002 0.7635 ± 0.0024 0.87% 2.81%
b = 50% 0.7726 ± 0.0048 0.7633 ± 0.0033 0.84% 2.79%
b = 100% 0.7732 ± 0.0019 0.7566 ± 0.0006 0.90% 2.12%

Table 5. Segmentation performance of the U-Net after incremental finetuning with knowledge
distillation and the static teacher model.

Training with
Batch Size b

mIoU ∆mIoU (Baseline)

BAGLS BAGLS-RT BAGLS BAGLS-RT
b = 25% 0.7654 ± 0.0055 0.7526 ± 0.0059 0.12% 1.72%
b = 50% 0.7742 ± 0.0034 0.7551 ± 0.003 1.00% 1.97%
b = 100% 0.7732 ± 0.0019 0.7566 ± 0.0006 0.9% 2.12%

In summary, finetuning with dynamic knowledge distillation showed the best results
over all re-training methods when considering segmentation performance for BAGLS and
BAGLS-RT. The main advantage of this approach is that no old data have to be included
in the re-training process in order to still consider old information when adjusting to new
data. Additionally, new data may be continuously fed to the existing model (e.g., in several
batches), allowing for fast adaption towards new recording modalities.

Since the FKD approach showed the best re-training performance, additional results
are provided separately for each camera system. Figure 10 shows the results of finetuning
with knowledge distillation with a batch size of b = 100% (i.e., dynamic and static teacher
model are equivalent) for each camera system in the BAGLS and BAGLS-RT datasets.
Compared with the baseline model, FKD achieved an increase in segmentation performance
for all camera systems with the exception of one camera in the BAGLS dataset. Overall,
improvements in mIoU were larger for camera systems in the re-training dataset BAGLS-RT
(0.92% to 3.88%) than for BAGLS (0.03% to 1.02%). The highest increase in performance
(∆mIoU = 3.88%) could be observed for the Photron FASTCAM XA-S2 480K-M3, which
was the only system used in combination with a flexible endoscope, yielding what are
arguably the most novel data for the segmentation model, as videos recorded with flexible
endoscopes were not included in BAGLS.
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4. Discussion

Several methods for re-training purposes were discussed and applied to HSV data.
In summary, the results showed that diverse training data already enables the model to
deal with new modalities to a large amount. Here, this was achieved by random ROI
selection and image augmentation. Although smaller than achieved by the new ROI
preprocessing method, the subsequent re-training methods showed further improvements.
When re-training is performed, the phenomenon of catastrophic forgetting should be kept
in mind. Results showed that finetuning with dynamic knowledge distillation seems
most promising for re-training with laryngeal HSV data, even outperforming re-training
from scratch. Further, this re-training strategy is rather convenient, since no old data are
necessary for re-training and therefore do not have to be stored. However, it is also evident
that re-training with new data, being not significantly different than the existing training
data, can be avoided when the first model training is already based on data with great
variety. As Figure 10 shows, re-training for HSV data provided the best results when new
data with significant modality changes were considered, e.g., flexible endoscopic HSV data
with honeycomb patterns induced by the light fibers.
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Regarding future model adjustments, finetuning with knowledge distillation can
be adapted depending on the use case. Results showed that using FWD with a static
or dynamic teacher model seems to be beneficial towards old or new data due to the
respective adjustment procedure for the teacher model. Therefore, depending on whether
users prioritize old or new camera systems, a static or dynamic model should be selected.
Secondly, the overall influence of the teacher model is controlled by the parameter α. For
this paper, we chose a balanced value of α = 0.5. However, if the performance of the
model is to be increased primarily for old or new data, this value of α can be decreased or
increased accordingly.

The segmentation models resulting from this work will be integrated in the Glottis-
Analysis-Tools (GAT) [26] and OpenHSV [11] and made available for other research groups.
A limitation of the study is that the used U-Net may have too few parameters (i.e., the
model is too simple) to achieve further performance improvements by incorporating
new training data. Hence, future work may concentrate on more complex deep learning
models containing more parameters [42] that may then lead to further improvement of
segmentation performance utilizing additional information in the HSV images that has not
been considered by the U-Net. Additionally, deep learning approaches should be applied
to the three-dimensional dynamics of the vocal folds [43], potentially enabling an improved
insight on the correlation of vocal fold dynamics and acoustic voice quality.
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Appendix A

Table A1. Framerates and corresponding number of HSV movies in BAGLS and BAGLS-RT.

Frame Rate (Hz) BAGLS BAGLS-RT # Movies
1.000 21 17 38
2.000 17 12 29
3.000 30 - 30
4.000 542 214 756
5.000 1 - 1
6.000 2 - 2
8.000 26 2 28

10.000 1 - 1
20.000 - 22 22

Table A2. Distribution of HSV data by institutions.

Institution
BAGLS BAGLS-RT

Training Test Training Test
Boston University 10 10 17 -

Louisiana State University 15 10 5 7
New York University 14 10 4 -

Sint-Augustinus Hospital, Wilrijk 30 10 21 -
University of California Los Angeles 20 10 - -

University Hospital Erlangen 448 20 69 15
University Hospital Munich (LMU) 23 10 12 10

Indiana University - - 56 10
University of Arizona - - 27 14

# HSV videos 560 80 211 56
# HSV images 54.750 4.000 18.250 2.800

Table A3. Considered light sources.

Light Source BAGLS BAGLS-RT # Movies
300 watts Xenon 79 66 145

CUDA Surgical E300 Xenon 40 21 61
KayPENTAX Model 7152A - 41 41
KayPENTAX Model 7152B 491 21 512

Olympus CLV-U20 - 12 12
Storz LED 300 - 65 65
lingWAVES4 - 19 19

unknown 30 - 30

Table A4. Included spatial resolutions of HSV cameras.

Spatial Resolution
(px) (HxB) BAGLS BAGLS-RT # Movies

1024 × 1024 - 65 65
1164 × 512 - 1 1
882 × 512 - 1 1
880 × 512 - 1 1
873 × 1048 - 1 1
878 × 512 - 3 3
868 × 512 - 1 1
862 × 512 - 1 1
608 × 608 - 19 19
512 × 512 2 8 10
512 × 256 431 72 503
512 × 128 22 2 24
512 × 96 1 - 1

420 × 512 - 2 2
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Table A4. Cont.

Spatial Resolution
(px) (HxB) BAGLS BAGLS-RT # Movies

416 × 512 - 1 1
352 × 256 11 - 11
352 × 208 30 - 30
334 × 512 - 1 1
320 × 384 - 21 21
320 × 256 33 21 54
288 × 128 7 - 7
256 × 256 88 17 105
256 × 120 15 12 27
240 × 240 - 17 17

Table A5. Included endoscope types.

Endoscope Type BAGLS BAGLS-RT # Movies
Oral 70◦ 543 228 771
Oral 30◦ 46 - 46

Nasal 2.4 mm 9 6 15
Nasal 3.5 mm 12 11 33
Nasal, flexible - 22 22

unknown 30 - 30

Table A6. Overview of subjects by pathology.

Subject Status BAGLS BAGLS-RT # Movies
Healthy 380 154 534

Muscle tension
dysphonia (MTD) 139 18 157

Muscle atrophy 43 18 71
Unknown 50 - 50

Polyp 9 17 26
Edema 14 11 25

Nodules 13 3 16
Paresis 4 12 16

Cyst 6 10 16
Glottis insufficiency 14 1 15

Others 8 4 12
Contact granuloma 5 2 7

Laryngitis 4 1 5
Scar, sulcus - 5 5
Leukoplakia 1 1 2
Carcinoma 1 - 1
Papilloma 1 - 1
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