A General Solution for the Errors in Variables (EIV) Model with Equality and Inequality Constraints
Abstract
:Featured Application
Abstract
1. Introduction
2. EIV Model with Equality and Inequality Constraints
3. A General Solution for EIC-EIV Model
4. Experiment Analysis
4.1. Experiment with Equality Constraints
4.2. Experiment with Inequality Constraints
4.3. Experiment with Both Equality and Inequality Constraints
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Golub, G.H.; Loan, C.V. An Analysis of the Total Least Squares Problem. SIAM J. Numer. Anal. 1980, 17, 883–893. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, Y.; Wang, B. The maximum likelihood estimation for multivariate EIV model. Acta Geod. Geophys. 2019, 54, 213–224. [Google Scholar] [CrossRef]
- Fang, X. Weighted Total Least Squares Solutions for Applications in Geodesy. Ph.D. Thesis, Leibniz University of Hanover, Hanover, Germany, 2011. [Google Scholar]
- Malissiovas, G. New Nonlinear Adjustment Approaches for Applications in Geodesy and Related Fields. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2019. [Google Scholar]
- Jazaeri, S.; Amiri-Simkooei, A.R.; Sharifi, M.A. Iterative algorithm for weighted total least squares adjustment. Surv. Rev. 2014, 46, 19–27. [Google Scholar] [CrossRef]
- Schaffrin, B.; Wieser, A. On weighted total least-squares adjustment for linear regression. J. Geod. 2008, 82, 415–421. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, P.; Liu, J.; Shi, C. Alternative formulae for parameter estimation in partial errors-in-variables models. J. Geod. 2015, 89, 13–16. [Google Scholar] [CrossRef]
- Xu, P.; Liu, J.; Shi, C. Total least squares adjustment in partial errors-in-variables models: Algorithm and statistical analysis. J. Geod. 2012, 86, 661–675. [Google Scholar] [CrossRef]
- Fang, X.; Li, B.; Alkhatib, H.; Zeng, W.; Yao, Y. Bayesian inference for the Errors-In-Variables model. Stud. Geophys. Geod. 2017, 61, 35–52. [Google Scholar] [CrossRef]
- Wang, L.; Yu, F. Jackknife resampling parameter estimation method for weighted total least squares. Commun. Stat. Theory Methods 2020, 49, 5810–5828. [Google Scholar] [CrossRef]
- Fang, X. A structured and constrained Total Least-Squares solution with cross-covariances. Stud. Geophys. Geod. 2014, 58, 1–16. [Google Scholar] [CrossRef]
- Wang, B.; Yu, J.; Liu, C.; Li, M.; Zhu, B. Data Snooping Algorithm for Universal 3D Similarity Transformation Based on Generalized EIV Model. Measurement 2018, 119, 56–62. [Google Scholar] [CrossRef]
- Wang, L.; Yu, F.; Li, Z.; Zou, C. Jackknife Method for Variance Components Estimation of Partial EIV Model. J. Surv. Eng. 2020, 146, 04020016. [Google Scholar] [CrossRef]
- Amiri-Simkooei, A.R. Weighted Total Least Squares with Singular Covariance Matrices Subject to Weighted and Hard Constraints. J. Surv. Eng. 2017, 143, 04017018. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.; Liu, C.; Yu, J. Generalized total least squares prediction algorithm for universal 3D similarity transformation. Adv. Space Res. Oxf. 2017, 59, 815–823. [Google Scholar] [CrossRef]
- Fang, X. Weighted total least squares: Necessary and sufficient conditions, fixed and random parameters. J. Geod. 2013, 87, 733–749. [Google Scholar] [CrossRef]
- Schaffrin, B.; Felus, Y.A. An algorithmic approach to the total least-squares problem with linear and quadratic constraints. Stud. Geophys. Geod. 2009, 53, 1–16. [Google Scholar] [CrossRef]
- Xie, J.; Lin, D.; Long, S. Total least squares adjustment in inequality constrained partial errors-in-variables models: Optimality conditions and algorithms. Surv. Rev. 2021, 54, 1–14. [Google Scholar] [CrossRef]
- Fang, X.; Wu, Y. On the errors-in-variables model with equality and inequality constraints for selected numerical examples. Acta Geod. Geophys. 2016, 51, 515–525. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, J.; Yao, Y. On partial errors-in-variables models with inequality constraints of parameters and variables. J. Geod. 2015, 89, 111–119. [Google Scholar] [CrossRef]
- Zhang, S.; Tong, X.; Zhang, K. A solution to EIV model with inequality constraints and its geodetic applications. J. Geod. 2013, 87, 23–28. [Google Scholar] [CrossRef]
Fang | EIC-EIV | |
---|---|---|
2.36823 | 2.36823 | |
5.69850 | 5.69850 | |
6.91215 | 6.91215 | |
0.21284 | 0.21284 | |
2.91866 | 2.91866 | |
5.09582 | 5.09582 | |
1.29718 | 1.29718 |
1 | −39.7312 | −18.6749 | −1 | 0 | −1.9500 |
1 | −29.0831 | −11.4825 | 1 | 0 | 2.0500 |
1 | −21.1294 | −7.6373 | 0 | −1 | −0.4500 |
1 | −9.5689 | −3.0315 | 0 | 1 | 0.5500 |
1 | 0.1594 | 2.3574 | −2 | 1 | −3.4500 |
1 | 9.3462 | 6.8975 | 2 | −1 | 3.5500 |
1 | 19.7832 | 11.9379 | |||
1 | 30.1713 | 17.7448 | |||
1 | 41.7892 | 22.7045 | |||
1 | 51.3847 | 27.7086 |
Zeng | EIC-EIV | |
---|---|---|
2.02504 | 2.02504 | |
0.50007 | 0.50007 | |
TSSR | 2.56497 | 2.56497 |
0.000009 | 0.000009 | |
0.000036 | 0.000036 |
0.9501 | 0.7620 | 0.6153 | 0.4057 | 0.0578 |
0.2311 | 0.4564 | 0.7919 | 0.9354 | 0.3528 |
0.6068 | 0.0185 | 0.9218 | 0.9169 | 0.8131 |
0.4859 | 0.8214 | 0.7382 | 0.4102 | 0.0098 |
0.8912 | 0.4447 | 0.1762 | 0.8936 | 0.1388 |
0.2027 | 0.2721 | 0.7467 | 0.4659 | 0.5251 |
0.1987 | 0.1988 | 0.4450 | 0.4186 | 0.2026 |
0.6037 | 0.0152 | 0.9318 | 0.8462 | 0.6721 |
, |
IC-Fang | IC-EIV | EIC-Fang | EIC-EIV | |
---|---|---|---|---|
−0.10000 | −0.10000 | −0.10000 | −0.10000 | |
−0.10000 | −0.10000 | −0.10000 | −0.10000 | |
0.16870 | 0.16870 | 0.63333 | 0.63333 | |
0.39961 | 0.39961 | −0.09432 | −0.09432 | |
TSSR | 0.13974 | 0.13974 | 0.21074 | 0.21074 |
0.09069 | 0.04 × 10−6 | 0.06845 | 0.04 × 10−6 | |
0.10011 | 0.04 × 10−6 | 0.07127 | 0.04 × 10−6 | |
0.08969 | 0.056 | 0.06866 | 0.03 × 10−6 | |
0.09747 | 0.063 | 0.09309 | 0.3 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Tang, Y.; Wang, Q. A General Solution for the Errors in Variables (EIV) Model with Equality and Inequality Constraints. Appl. Sci. 2022, 12, 9808. https://doi.org/10.3390/app12199808
Huang D, Tang Y, Wang Q. A General Solution for the Errors in Variables (EIV) Model with Equality and Inequality Constraints. Applied Sciences. 2022; 12(19):9808. https://doi.org/10.3390/app12199808
Chicago/Turabian StyleHuang, Dengshan, Yulin Tang, and Qisheng Wang. 2022. "A General Solution for the Errors in Variables (EIV) Model with Equality and Inequality Constraints" Applied Sciences 12, no. 19: 9808. https://doi.org/10.3390/app12199808
APA StyleHuang, D., Tang, Y., & Wang, Q. (2022). A General Solution for the Errors in Variables (EIV) Model with Equality and Inequality Constraints. Applied Sciences, 12(19), 9808. https://doi.org/10.3390/app12199808