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Featured Application: It is a classical method for people to address the likewise engineering prob-
lems and to observe the deformation of buildings many times and calculate the most probable
value of observation by using the least square method. If the least square model is constrained by
equality or inequality based on some prior information in engineering, a new calculation model
is constructed, which will be feasible to improve the accuracy of the model parameter values. In
this paper, a general calculation method based on the penalty function and weighted observation
value is proposed to understand and calculate the value of observation for this new model, which
is easier to understand and calculate than the previous model.

Abstract: Targeting the adjustment of the errors-in-variables (EIV) model with equality and inequality
constraints, a general solution that is similar to the classical least square adjustment is proposed based
on the penalty function and the weight in measurement. Firstly, we take the equality constraints
as inequality constraints that do not satisfy the constraint conditions and construct the penalty
functions of equality and inequality constraints, respectively. Thus, the inequality constrained
optimization problem is transformed into an unconstrained optimization problem. Then the detailed
calculation formula and approximate accuracy evaluation formula of the general solution are deduced.
The iteration formula of the general solution is easy regarding comprehension and applicable in
implementation. It can not only solve the EIV model with equality and inequality constraints
respectively, but also address the EIV model with equality and inequality constraints simultaneously.
In addition, it can promote the Gauss–Markov (G-M) model with equality and inequality constraints.
Finally, three examples (i.e., equality constraints, inequality constraints and those with equality and
inequality constraints) are validated, indicating that the general solution is effective and feasible. The
results show that the general solution is effective and feasible.

Keywords: total least square (TLS); errors in variables (EIV) model; equality and inequality constraints;
penalty function

1. Introduction

The total least square (TLS) is a method of parameter estimation that was first proposed
by Golub and Loan [1]. The error of the coefficient matrix needs to be considered in the TLS
method that differs from the least squares (LS) method. In general, we need to construct
the Gauss–Markov (G-M) model and use the LS method for adjustment when the error of
the coefficient matrix is excluded. However, the errors-in-variables (EIV) model needs to
be built if we adopt the TLS method for adjustment [2]. In recent years, the research on
TLS/EIV has received more attention in the field of surveying data processing [3,4].

Unlike the G-M model, the solution of the EIV model usually needs to be calculated
by iteration due to the non-linearity of the EIV model. The common iterative algorithms
were derived by using the Lagrange method [5,6]. To consider that some elements of the
coefficient matrix contain errors, the PEIV model is proposed based on the EIV model [7,8].
In addition, other weighted total least squares methods are extended [9,10]. However,
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there are a number of studies involving the extended form of the EIV model and the
extended algorithm of TLS, such as structured TLS [11], outliers processing in TLS [12],
multivariate EIV model [2], variance component estimation algorithm for EIV model [13,14],
TLS prediction [15], equality and inequality constrained TLS [11,16–21] and so on.

In the field of surveying data processing, the adjustment models with equality or
inequality constraints need to be constructed when some prior information is available. The
algorithm of the EIV model with equality constraints is generally elucidated based on the
principle of Lagrange [17,19]. Zeng, Liu and Yao [20], Zhang, Tong and Zhang [21] and Xie,
Lin and Long [18] investigated the EIV model with inequality constraints. Although their
methods are available to solve this inequality constraints problem, the optimization theory
involved in the derivation of these algorithms is far from the traditional measurement
adjustment theory. In addition, EIV models with equality and inequality constraints are
discussed separately in most studies, while their combination is less investigated [19].

In fact, both equality and inequality constraints may exist in surveying data processing.
Thus, it is necessary to figure out simpler and more easily implemented algorithms. Three
EIV models with constraints, namely the EIV model with equality constraints (EC-EIV),
EIV model with inequality constraints (IC-EIV) and EIV model with equality and inequality
constraints (EIC-EIV), shall be included when equality and inequality constraints are
available. These three EIV models with constraints are degenerated into G-M models with
constraints if the coefficient matrix error is excluded. Thus, a general solution for the EIV
model with equality and inequality constraints is in high demand.

In this paper, a general solution that is similar to classical least square adjustment
is proposed based on the penalty function and the weight in measurement. In Section 2,
the EIV model with equality and inequality constraints is introduced. In Section 3, the
detailed calculation formula and approximate accuracy evaluation formula of the general
solution are presented. In Section 4, three examples, including the equality constraint,
inequality constraint, and equality and inequality, are presented to illustrate the validity
of the proposed general solution. The results show that the general solution is effective,
stated in Section 5.

2. EIV Model with Equality and Inequality Constraints

The errors in variables model (EIV) can be defined as the following [6]:

L + VL = (A + EA)X (1)

where L and VL are the m × 1 observation vector and its random error vector, respectively.
A and EA are the m × n coefficient matrix and the corresponding error matrix, respectively.
X is the n × 1 unknown parameter matrix.

The corresponding error vector and the stochastic model are expressed as [19]

V =

[
VL
VA

]
=

[
VL

vec(EA)

]
∼
([

0
0

]
, σ2

0Q = σ2
0

[
QL QLA

QAL QA

])
(2)

where VA = vec(EA) is the mn × 1 order error vector and vec denotes the operator of the
vectorization resulting a column vector by stacking the columns of a matrix on top of one
another. σ2

0 is the variance factor, QL and QA are the cofactor matrices for VL and VA, and
QLA is the cofactor matrix, which refers to the correlations of VL and VA(QLA = QT

AL).
The total least squares objective function can be defined as follows [3]:

VTQ−1V = min (3)

The functional and stochastic models of Equations (1) and (2) are equivalent to

V̂ = ÂX − L̂ V̂ ∼ (0, σ2
0Q̂
)

(4)
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where Q̂ = (Im − XT ⊗ Im)Q(Im − X ⊗ Im), V̂ = VL − EAX, Â = A + EA, L̂ = L + EAX and
⊗ stands for the Kronecker–Zehfuss product. The corresponding objective function can be
expressed as follows:

V̂TQ̂−1V̂ = min (5)

When equality and inequality constraints are available simultaneously, the correspond-
ing EIV model (EIC-EIV model) can be defined as the following:

L + VL = (A + EA)X
G1X = W1
G2X ≤ W2

 (6)

where G1 is the s1 × n coefficient matrix of equality constraints, G2 is the s2 × n coefficient
matrix of inequality constraints, W1 is the s1 × 1 constant vector, and W2 is the s2 × 1
constant vector.

Combining Equations (5) and (6), the corresponding objective function of EIC-EIV
model is stated as follows:

V̂TQ̂−1V̂ = min
G1X = W1
G2X ≤ W2

 (7)

3. A General Solution for EIC-EIV Model

There are many research studies about the solution of the EIV model. For example, the
Lagrange method, Newton method or Gauss–Newton method can be adopted to solve the
problem [3]. Although the solution of EIV model requires iterative processing, the solution
should be numerically efficient as well as identical to the classical least square adjustment.
According to previous literature research [3,5], the formula of the parameter estimation for
the EIV model similar to classical least square adjustment can be derived from Equation (4):

X = (ÂTQ̂−1Â)
−1

·ÂTQ̂−1L̂ (8)

It is worth noting that Equation (4) needs to be iterated successively. The coefficient
matrix Â, observation vector L̂ and cofactor matrix Q̂ need to be updated after each iteration,
and the iteration is stopped when the difference between the two results is less than the
given threshold. Similarly, the approximate accuracy evaluation formula of the parameter
estimates can be obtained directly (see Jazaeri, Amiri-Simkooei and Sharifi [5]).

Targeting at the situation that most algorithms based on inequality-constrained least
squares adjustment are complex, a simple iterative algorithm is proposed based on penalty
functions and zero or infinite weight. It is similar to the classical least square adjustment and
easy to implement. In this paper, the method is applied to the EIC-EIV model and extended
to equality constraints. First, we take equality constraints as inequality constraints that do
not satisfy the constraint conditions, and the penalty function of equality and inequality
constraints are constructed respectively. Thus, the corresponding objective function of
Equation (7) can be expressed as follows:

V̂TQ̂−1V̂ + P1(X) + P2(X) = min (9)

where P1(X) and P2(X) are the penalty functions of equality constrained and inequality
constrained, respectively. P1(X) is a positive large value, meaning that equality constraints
need to be punished. P2(X) takes 0 or a large value according to the inequality constraint.
To construct a penalty function, Equation (6) can be expressed as follows:

V̂ = ÂX − L̂
V1 = G1X − W1
V2 = G2X − W2

 (10)
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The penalty function of equality constraint and inequality constraint is constructed as

P1(X) = V1
TP1V1

P2(X) = V2
TP2V2

}
(11)

The weight of the penalty function in Equation (6) can be explained as the following:

P1(s1) = µ P2(i) =
{

µ V2(s2) > 0
0 V2(s2) ≤ 0

(12)

where µ is a positive large value, and we set µ = 106 in this paper. Equation (12) indicates
that the weight of the penalty function for the equality constraint takes a large value,
while the weight of the penalty function for the inequality constraint takes 0 or a large
value according to the inequality constraint. Thus, the corresponding objective function of
Equation (9) can be expressed as follows:

V̂L
TQ̂−1V̂L + V1

TP1V1 + V2
TP2V2 = min (13)

When the error of the coefficient matrix is excluded, the EIV model degenerates into
a traditional G-M model. According to Equations (10) and (13), the parameter estimation
formula of the G-M model with equations and inequality constraints can be demonstrated
as follows:

X = (ATQ−1
L A + GT

1 P1G1 + GT
2 P2G2)

−1·(ATQ−1
L L + GT

1 P1W1 + GT
2 P2W2) (14)

From Equation (14), we also include the equality constraint as a special inequality
constraint and obtain a general solution that has not been discussed and implemented.
For the EIV model with equality and inequality constraints, the general solution can
be expressed:

Step 1: Obtain an initial value for X0 from LS solution with Y, A, QY, QA.

X0 = (ATQ̂−1
L A)

−1
ATQ̂−1

L L

Step 2: Start the following iterative process with the initial value of:

Fi+1 =
[
Im − (Xi)

T ⊗ Im

]
, Q̂i+1

= Fi+1Q(Fi+1)
T

,

Vi+1
A =

[
QAL QA

]
(Fi+1)

T
(Q̂i+1

)
−1

(L − AXi), Ei+1
A = vec−1(Vi+1

A ),
Âi+1

= A + Ei+1
A , L̂i+1

= L + Ei+1
A Xi

where vec−1 is the opposite of the vec operator which reshapes the vector into the
original matrix.

Step 3: To determine the weight of the penalty function,

P1
i+1(s1) = µ P2

i+1(s2) =

{
µ V2

i+1(s2) > 0
0 V2

i+1(s2) ≤ 0

Step 4: To obtain the new value for X,

Xi+1 = ((Âi+1
)

T
Q̂−1Âi+1

+ GT
1 P1

i+1G1 + GT
2 P2

i+1G2)
−1

·((Âi+1
)

T
Q̂−1L̂i+1

+ GT
1 P1

i+1W1 + GT
2 P2

i+1W2)

Step 5: Repeat Steps 2 and 4 until
∥∥∥Xi+1 − Xi

∥∥∥ < ε, and we can obtain the final value

XEIC−EIC = Xi+1.
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Then we can obtain a biased variance component estimator of the unit weight [19]

σ2
0 =

V̂TQ̂−1V̂
m − n + s

(15)

where s denotes the number of constraint equations, according to Formula (14). The
approximate accuracy evaluation formula of parameter estimation can be derived:

D(X) = σ2
0·((Â

i+1
)

T
Q̂−1Âi+1

+ GT
1 P1

i+1G1 + GT
2 P2

i+1G2)
−1

(16)

In fact, there are two main approaches for accuracy evaluation of IC-EIV estimates,
including active constraint method and aggregate constraint method [20]. The first ap-
proach is adopted in our proposed Formula (16), while the other method is adopted in Fang
and Wu [19]. The results of the accuracy evaluation obtained by using the two methods
are different.

Note that the general solution can not only solve the EIV model with equality and in-
equality constraints respectively, but also solve the EIV model with equality and inequality
constraints. Moreover, it can also solve the Gauss–Markov (G-M) model with equality and
inequality constraints. It was not discussed by Fang and Wu [19].

4. Experiment Analysis

To verify the effectiveness of this method, three examples are gathered to validate
the proposed general solution. First, an example with equality constraints is conducted
to verify. Then, an example with inequality constraints is adopted for solving. Finally, an
example with both equality and inequality constraints is applied for further analysis.

4.1. Experiment with Equality Constraints

In this example, we use the data with equality constraints presented by Fang and
Wu [19]. The coefficient matrix A, observation vector L and cofactor matrix Q are repre-
sented as follows:

A =


−0.5 1 0

0 1 0
0 0 1
1 0 1

, L =


6
3
4

10

, Q = I16

Equality constraints:
[
−2 0 3

]
X = 16.

The general solution for EIC-EIV model presented in this paper and the algorithm
presented by Fang and Wu [19] are adopted to solve the EIV model with equality constraints.
The corresponding adjustment results are listed in Table 1.

Table 1. Adjustment results of equality constraints.

Fang EIC-EIV

X1 2.36823 2.36823
X2 5.69850 5.69850
X3 6.91215 6.91215

TSSR 0.21284 0.21284
D(X1) 2.91866 2.91866
D(X2) 5.09582 5.09582
D(X3) 1.29718 1.29718

The results of Table 1 indicate that the estimated parameters obtained by the two
approaches are all identical. This shows that the processing method adopted in this paper
is feasible. The equality constraint is an inequality constraint that does not satisfy the
constraint conditions. Our general solution for EIV model with equality is simpler than
other methods in the literature.
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4.2. Experiment with Inequality Constraints

In the second example, a linear regression data with inequality constraints is im-
plemented, which was adopted by Zeng, Liu and Yao [20]. The coefficient matrix A,
observation vector L, constraints matrix G2 and constraints constant vector W2 are located
in Table 2. Since the coefficient matrix of the linear regression model contains constant
columns, the cofactor matrix Q = blkdiag(I10 O10 I10).

Table 2. Data set and inequality constraints of the regression model.

A L G2 W2

1 −39.7312 −18.6749 −1 0 −1.9500
1 −29.0831 −11.4825 1 0 2.0500
1 −21.1294 −7.6373 0 −1 −0.4500
1 −9.5689 −3.0315 0 1 0.5500
1 0.1594 2.3574 −2 1 −3.4500
1 9.3462 6.8975 2 −1 3.5500
1 19.7832 11.9379
1 30.1713 17.7448
1 41.7892 22.7045
1 51.3847 27.7086

The general solution for EIC-EIV model presented in this paper and the Fang algorithm
presented by Zeng, Liu and Yao [20] are adopted to solve the EIV model with inequality
constraints, and the corresponding adjustment results are listed in Table 3.

Table 3. Adjustment results of inequality constrained.

Zeng EIC-EIV

X1 2.02504 2.02504
X2 0.50007 0.50007

TSSR 2.56497 2.56497
D(X1) 0.000009 0.000009
D(X2) 0.000036 0.000036

The results of Table 3 indicate that the adjustment result of our general solution is
exactly the same as those of Zeng, Liu and Yao [20]. In other words, our general solution
can effectively deal with the EIV model with inequality constraints. The active constraint
method is used in Table 3.

4.3. Experiment with Both Equality and Inequality Constraints

Data of the third example using equality and inequality constraints come from Fang
and Wu [19]. The coefficient matrix A, observation vector L, constraints matrix G2 and
constraints constant vector W2 are located in Table 4.

Table 4. Data from Zhang et al. (2013) [21].

A L

0.9501 0.7620 0.6153 0.4057 0.0578
0.2311 0.4564 0.7919 0.9354 0.3528
0.6068 0.0185 0.9218 0.9169 0.8131
0.4859 0.8214 0.7382 0.4102 0.0098
0.8912 0.4447 0.1762 0.8936 0.1388

G2 W2

0.2027 0.2721 0.7467 0.4659 0.5251
0.1987 0.1988 0.4450 0.4186 0.2026
0.6037 0.0152 0.9318 0.8462 0.6721
−0.1 ≤ xi ≤ 2.0, i = 1, 2, 3, 4
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The inequality constrained equation can be expressed as[
GT

2 I4 ⊗ [1 −1]
]T

X ≤
[
WT

2 I4 ⊗ [0.1 2]
]T

Equality constraints:
[
−2 1 3 0

]
X = 2.

Table 5 presents the adjustment results in three different methods: (1) only inequality
constraints are considered by using the Fang algorithm presented by Fang and Wu (2016),
IC-Fang; (2) only inequality constraints are considered by using our general solution,
IC-EIV; (3) equations and inequality constraints are considered simultaneously by using
our general solution, EIC-EIV; and (4) the Fang algorithm presented byFang and Wu [19],
EIC-Fang.

Table 5. Adjustment results of equality and inequality constraints.

IC-Fang IC-EIV EIC-Fang EIC-EIV

X1 −0.10000 −0.10000 −0.10000 −0.10000
X2 −0.10000 −0.10000 −0.10000 −0.10000
X3 0.16870 0.16870 0.63333 0.63333
X4 0.39961 0.39961 −0.09432 −0.09432

TSSR 0.13974 0.13974 0.21074 0.21074
D(X1) 0.09069 0.04 × 10−6 0.06845 0.04 × 10−6

D(X2) 0.10011 0.04 × 10−6 0.07127 0.04 × 10−6

D(X3) 0.08969 0.056 0.06866 0.03 × 10−6

D(X4) 0.09747 0.063 0.09309 0.3 × 10−6

From Table 5, we can estimate that the parameter estimates of considering inequality
constraints only is different from that of considering both equality and inequality con-
straints. The results of our general solution are identical to those presented in Fang and
Wu [19]. It discloses the feasibility of our general solution. It is obvious that the TSSR
of EIC-EIV and EIC-Fang are larger than that of IC-EIV and IC-Fang, which is due to
the newly added equality constraint. However, the precision of the parameter estimates
is improved [19]. It is worth noting that different results of precision for the parameter
estimates are shown in two appraisal approaches.

5. Conclusions

In this paper, a general solution for the errors-in-variables (EIV) model with equality
and inequality constraints is proposed based on the penalty function and the weight in
measurement. The iteration formula of the general solution is similar to that of the least
squares. It can maintain the EIV model with equality and inequality constraints on the
one hand, and it can support the EIV model with equality and inequality constraints
simultaneously on the other hand. Furthermore, it can also solve Gauss–Markov (G-M)
model with equality and inequality constraints. Finally, three examples are testified,
showing that the proposed general solution is effective and feasible.
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