Antioxidant and Antibacterial Activity of Extracts from Selected Plant Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extract Preparation
2.3. Total Phenolics Content (TPC) Determination
2.4. HPLC Analysis
2.5. DPPH Radical Scavenging Activity
2.6. ABTS Assay
2.7. Ferric Reducing Antioxidant Power Assay (FRAP)
2.8. Antibacterial Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield and Total Phenolics Content (TPC)
3.2. Phenolic Compound Profile
3.3. Antioxidant Activity
3.4. Antibacterial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huyut, Z.; Beydemir, Ş.; Gülçin, İ. Antioxidant and Antiradical Properties of Selected Flavonoids and Phenolic Compounds. Biochem. Res. Int. 2017, 2017, 7616791. [Google Scholar] [CrossRef] [PubMed]
- Ziarno, M.; Kozłowska, M.; Ścibisz, I.; Kowalczyk, M.; Pawelec, S.; Stochmal, A.; Szleszyński, B. The effect of selected herbal extracts on lactic acid bacteria activity. Appl. Sci. 2021, 11, 3898. [Google Scholar] [CrossRef]
- Kozłowska, M.; Ścibisz, I.; Zaręba, D.; Ziarno, M. Antioxidant properties and effect on lactic acid bacterial growth of spice extracts. Cyta J. Food 2015, 13, 573–577. [Google Scholar] [CrossRef]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, M.; Żbikowska, A.; Szpicer, A.; Półtorak, A. Oxidative stability of lipid fractions of sponge-fat cakes after green tea extracts application. J. Food Sci. Technol. 2019, 56, 2628–2638. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, M.; Żbikowska, A.; Marciniak-Łukasiak, K.; Kowalska, M. Herbal extracts incorporated into shortbread cookies: Impact on color and fat quality of the cookies. Biomolecules 2019, 9, 858. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Quave, C.L.; Estévez-Carmona, M.; Compadre, C.M.; Hobby, G.; Hendrickson, H.; Beenken, K.E.; Smeltzer, M.S. Ellagic Acid Derivatives from Rubus ulmifolius Inhibit Staphylococcus aureus Biofilm Formation and Improve Response to Antibiotics. PLoS ONE 2012, 7, e28737. [Google Scholar] [CrossRef]
- Benayad, N.; Mennane, Z.; Charof, R.; Hakiki, A.; Mosaddak, M. Antibacterial activity of essential oil and some extracts of Cistus ladaniferus from Oulmes in Morocco. J. Mater. Environ. Sci. 2013, 4, 1066–1071. [Google Scholar]
- Saifulazmi, N.F.; Rohani, E.R.; Harun, S.; Bunawan, H.; Hamezah, H.S.; Muhammad, N.A.N.; Azizan, K.A.; Ahmed, Q.U.; Fakurazi, S.; Mediani, A.; et al. A Review with Updated Perspectives on the Antiviral Potentials of Traditional Medicinal Plants and Their Prospects in Antiviral Therapy. Life 2022, 12, 1287. [Google Scholar] [CrossRef]
- Gori, A.; Ferrini, F.; Marzano, M.C.; Tattini, M.; Centritto, M.; Baratto, M.C.; Pogni, R.; Brunetti, C. Characterisation and Antioxidant Activity of Crude Extract and Polyphenolic Rich Fractions from C. incanus Leaves. Int. J. Mol. Sci. 2016, 17, 1344. [Google Scholar] [CrossRef]
- Tomou, E.-M.; Lytra, K.; Rallis, S.; Tzakos, A.G.; Skaltas, H. An updated review of genus Cistus L. since 2014: Traditional uses, phytochemistry, and pharmacological properties. Phytochem. Rev. 2022, 1–39. [Google Scholar] [CrossRef]
- Akhlaq, S.; Ara, S.A.; Fazil, M.; Ahmad, B.; Akram, U.; Haque, M.; Khan, A.A. Ethno pharmacology, phytochemical analysis, safety profile, prophylactic aspects, and therapeutic potential of Asarum europaeum L. in Unani medicine: An evidence-based appraisal. Phytomed. Plus 2022, 2, 100226. [Google Scholar] [CrossRef]
- Kopyt’ko, Y.F.; Shchurevich, N.N.; Sokol’skaya, T.A.; Markaryan, A.A.; Dargaeva, T.D. Uses, Chemical Composition, and Standardization of Plant Raw Material and Medicinal Substances from Plants of the Genus Asarum L. Pharm. Chem. J. 2013, 47, 157–168. [Google Scholar] [CrossRef]
- Zaharieva, M.M.; Dimitrova, L.L.; Philipov, S.; Nikolova, I.; Vilhelmova, N.; Grozdanov, P.; Nikolova, N.; Popova, M.; Bankova, V.; Konstantinov, S.M.; et al. In Vitro Antineoplastic and Antiviral Activity and In Vivo Toxicity of Geum urbanum L. Extracts. Molecules 2022, 27, 245. [Google Scholar] [CrossRef]
- Dimitrova, L.; Zaharieva, M.M.; Popova, M.; Kostadinova, N.; Tsvetkova, I.; Bankova, V.; Najdenski, H. Antimicrobial and antioxidant potential of different solvent extracts of the medicinal plant Geum urbanum L. Chem. Cent. J. 2017, 11, 113. [Google Scholar] [CrossRef]
- Antsyshkina, A.M.; Ars, Y.V.; Bokov, D.O.; Pozdnyakova, N.A.; Prostodusheva, T.V.; Zaichikova, S.G. The Genus Asarum L.: A Phytochemical and Ethnopharmacological Review. Sys. Rev. Pharm. 2020, 11, 472–502. [Google Scholar]
- Bunse, M.; Lorenz, P.; Stintzing, F.C.; Kammerer, D.R. Insight into the Secondary Metabolites of Geum urbanum L. and Geum rivale L. Seeds (Rosaceae). Plants 2021, 10, 1219. [Google Scholar] [CrossRef]
- Bhat, Z.A.; Kumar, D.; Shah, M.Y. Angelica archangelica Linn. is an angel on earth for the treatment of diseases. Int. J. Nutr. Pharmacol. Neurol. Dis. 2011, 1, 36–50. [Google Scholar] [CrossRef]
- Oliveira, C.R.; Spindola, D.G.; Garcia, D.M.; Erustes, A.; Bechara, A.; Palmeira-Dos-Santos, C.; Smaili, S.S.; Pereira, G.J.; Hinsberger, A.; Viriato, E.P.; et al. Medicinal properties of Angelica archangelica root extract: Cytotoxicity in breast cancer cells and its protective effects against in vivo tumor development. J. Integr. Med. 2019, 17, 132–140. [Google Scholar] [CrossRef]
- Hao, J.-Y.; Wan, Y.; Yao, X.-H.; Zhao, W.-G.; Hu., R.-Z.; Chen, C.; Li, L.; Zhang, D.-Y.; Wu, G.-H. Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in Southern China. PLoS ONE 2018, 13, e0198072. [Google Scholar] [CrossRef] [PubMed]
- Polumackanycz, M.; Wesolowski, M.; Viapiana, A. Morus alba L. and Morus nigra L. Leaves as a Promising Food Source of Phenolic Compounds with Antioxidant Activity. Plant Foods Hum. Nutr. 2021, 76, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Petrisor, G.; Motelica, L.; Craciun, L.N.; Oprea, O.C.; Ficai, D.; Ficai, A. Melissa officinalis: Composition, Pharmacological Effects and Derived Release Systems—A Review. Int. J. Mol. Sci. 2022, 23, 3591. [Google Scholar] [CrossRef]
- Lopez-Corona, A.V.; Valencia-Espinosa, I.; González-Sánchez, F.A.; Sánchez-López, A.L.; Garcia-Amezquita, L.E.; Garcia-Varela, R. Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Phenolic Compound Family Extracted from Raspberries (Rubus idaeus): A General Review. Antioxidants 2022, 11, 1192. [Google Scholar] [CrossRef] [PubMed]
- Raal, A.; Boikova, T.; Püssa, T. Content and Dynamics of Polyphenols in Betula spp. Leaves Naturally Growing in Estonia. Rec. Nat. Prod. 2015, 9, 41–48. [Google Scholar]
- Penkov, D.; Andonova, V.; Delev, D.; Kostadinov, I.; Kassarova, M. Antioxidant Activity of Dry Birch (Betula Pendula) Leaves Extract. Folia Medica 2019, 61, 95–102. [Google Scholar] [CrossRef]
- Kozłowska, M.; Ścibisz, I.; Przybył, J.L.; Ziarno, M.; Żbikowska, A.; Majewska, E. Phenolic contents and antioxidant activity of extracts of selected fresh and dried herbal material. Pol. J. Food Nutr. Sci. 2021, 71, 269–278. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- ChromaDex, Standards, Tech Tips 0003: Reference Standard Recovery and Dilution. 2016. Available online: https://standards.chromadex.com/Documents/Tech%20Tips/techtip0003-recoverydilutionprocedures_nl_pw.pdf (accessed on 1 February 2016).
- Gow-Chin, Y.; Hui-Yin, C. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”. The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- CLSI M2–A9; Clinical and Laboratory Standard Institute: Performance Standards for Antimicrobial Disk Susceptibility Test: Approved Standard, 9th ed. CLSI: Wayne, PA, USA, 2006.
- CLSI M7–A7; Clinical and Laboratory Standards Institute: Approved Standard, 7th ed. CLSI: Wayne, PA, USA, 2006.
- Bernacka, K.; Bednarska, K.; Starzec, A.; Mazurek, S.; Fecka, I. Antioxidant and Antiglycation Effects of Cistus x incanus Water Infusion, Its Phenolic Components, and Respective Metabolites. Molecules 2022, 27, 2432. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, S.; Bingol, Z.; Koca, M.; Dagoglu, S.; Pınar, N.M.; Demirci, B.; Gulcin, I.; Brestic, M.; Sytar, O. Identification of non-alkaloid natural compounds of Angelica purpurascens (Avé-Lall.) Gilli. (Apiaceae) with cholinesterase and carbonic anhydrase inhibition potential. Saudi Pharm. J. 2020, 28, 1–14. [Google Scholar] [CrossRef]
- Chwil, M.; Kostryco, M. Bioactive compounds and antioxidant activity of Rubus idaeus L. leaves. Acta Sci. Pol. Hortorum Cultus 2018, 17, 135–147. [Google Scholar] [CrossRef]
- Veljković, B.; Djordjevic, N.; Dolićanin, Z.; Braho, L.; Topuzović, M.; Stanković, M.; Zlatić, N.; Dajić-Stevanović, Z. Antioxidant and Anticancer Properties of Leaf and Fruit Extracts of the Wild Raspberry (Rubus idaeus L.). Not. Bot. Horti Agrobot. Cluj Napoca 2018, 47, 359–367. [Google Scholar] [CrossRef]
- Moacă, E.-A.; Farcaş, C.; Ghiţu, A.; Coricovac, D.; Popovici, R.; Cărăba-Meiţă, N.-L.; Ardelean, F.; Antal, D.S.; Dehelean, C.; Avram, Ş. A Comparative Study of Melissa officinalis Leaves and Stems Ethanolic Extracts in terms of Antioxidant, Cytotoxic, and Antiproliferative Potential. Evid. Based Complement. Altern. Med. 2018, 2018, 7860456. [Google Scholar] [CrossRef]
- Ziagova, M.G.; Mavromatidou, C.; Samiotis, G.; Amanatidou, E. Total phenolic content and antioxidant capacity of Greek medicinal and aromatic plant extracts using pulsed electric field followed by ultrasounds extraction process. J. Food Process. Preserv. 2022, 46. [Google Scholar] [CrossRef]
- Ordaz, J.J.; Martínez Hernández, J.; Ramírez-Godínez, J.; Castañeda-Ovando, A.; Guillermo González-Olivares, L.; Contreras-López, E. Bioactive compounds in aqueous extracts of lemon balm (Melissa officinalis) cultivated in Mexico. Arch. Latinoam. Nutr. 2018, 68, 268–279. [Google Scholar]
- Przygoński, K.; Wojtowicz, E. The optimization of extraction process of white mulberry leaves and the characteristic bioactive properties its powder extract. Herba Pol. 2019, 65, 12–19. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Flaczyk, E.; Podgorski, T. In vitro and in vivo analyses of Morus alba Polish var. wielkolistna zolwinska leaf ethanol-water extract-antioxidant and hypocholesterolemic activities in hyperlipideamic rats. Eur. J. Lipid Sci. Technol. 2017, 119, 160514. [Google Scholar] [CrossRef]
- Dimcheva, V.; Karsheva, M. Cistus incanus from Strandja Mountain as a Source of Bioactive Antioxidants. Plants 2018, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Gaweł-Bęben, K.; Kukula-Koch, W.; Hoian, U.; Czop, M.; Strzępek-Gomółka, M.; Antosiewicz, B. Characterization of Cistus × incanus L. and Cistus ladanifer L. Extracts as Potential Multifunctional Antioxidant Ingredients for Skin Protecting Cosmetics. Antioxidants 2020, 9, 202. [Google Scholar] [CrossRef] [PubMed]
- Sayah, K.; Marmouzi, I.; Mrabti, H.N.; Cherrah, Y.; Faouzi, M.E.A. Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia. Biomed. Res. Int. 2017, 2017, 2789482. [Google Scholar] [CrossRef] [PubMed]
- Viapiana, A.; Konopacka, A.; Waleron, K.; Wesolowski, M. Cistus incanus L. commercial products as a good source of polyphenols in human diet. Ind. Crops Prod. 2017, 107, 297–304. [Google Scholar] [CrossRef]
- Kuczerenko, A.; Krawczyk, M.; Przybył, J.L.; Geszprych, A.; Angielczyk, M.; Bączek, K.; Węglarz, Z. Morphological and chemical variability within the population of common avens (Geum urbanum L.). Herba Pol. 2011, 57, 16–21. [Google Scholar]
- Al-Snafi, A.E. Constituents and pharmacology of Geum urbanum—A Review. IOSR J. Pharm. 2019, 9, 28–33. [Google Scholar]
- Costea, T.; Vlase, L.; Gostin, I.N.; Olah, N.K.; Predan, G.M.I. Botanical characterization, phytochemical analysis and antioxidant activity of indigenous red raspberry (Rubus idaeus L.) leaves. Stud. Univ. Vasile Goldis Ser. Stiintele Vietii 2016, 26, 463–472. [Google Scholar]
- Kutlimurotova, R.K.; Pulatova, L.T.; Khaitbaev, A.K.; Kutlimurotova, N.K. Studying the stimulating properties of Asarum europaeum L. growing in Republic of Uzbekistan. Ann. Phytomed. 2022, 11, 657–662. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Zhang, B.; Wang, J.; Shi, X.; Huang, J.; Yang, J.; Zhang, Y.; Deng, Z. Nutritional and functional components of mulberry leaves from different varieties: Evaluation of their potential as food materials. Int. J. Food Prop. 2018, 21, 1495–1507. [Google Scholar] [CrossRef]
- D’Ambrosio, M.; Bigagli, E.; Cinci, L.; Gori, A.; Brunetti, C.; Ferrini, F.; Luceri, C. Ethyl acetate extract from Cistus x incanus L. leaves enriched in myricetin and quercetin derivatives, inhibits inflammatory mediators and activates Nrf2/HO-1 pathway in LPS-stimulated RAW 264.7 macrophages. Z. Nat. 2021, 76, 79–86. [Google Scholar] [CrossRef]
- Tóth, J.; Mrlianová, M.; Tekeľová, D.; Koreňová, M. Rosmarinic acid—An important phenolic active compound of lemon balm (Melissa officinalis L.). Acta Fac. Pharm. Univ. Comen. 2003, 50, 139–146. [Google Scholar]
- Binello, A.; Cravotto, G.; Boffa, L.; Stevanato, L.; Bellumori, M.; Innocenti, M.; Mulinacci, N. Efficient and selective green extraction of polyphenols from lemon balm. Comptes Rendus Chim. 2017, 20, 921–926. [Google Scholar] [CrossRef]
- Dimcheva, V.; Kaloyanov, N.; Karsheva, M. The polyphenol composition of Cistus incanus L., Trachystemon orientalis L. and Melissa officinalis L. infusions by HPLC-DAD method. Open J. Anal. Bioanal. Chem. 2019, 3, 31–38. [Google Scholar] [CrossRef]
- Carev, I.; Maravić, A.; Nada, I.; Čikeš Čulić, V.; Politeo, O.; Zorić, Z.; Radan, M. UPLC-MS/MS Phytochemical Analysis of Two Croatian Cistus Species and Their Biological Activity. Life 2020, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, D.; St-Pierre, A.; Bourdeau, N.; Bley, J.; Lajeunesse, A.; Desgagné-Penix, I. Antimicrobial activity and chemical composition of white birch (Betula papyrifera Marshall) bark extracts. MicrobiologyOpen 2020, 9, e944. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Saklani, S. Phytochemical investigation, antioxidant activity and nutraceutical potential of Angelica archangelica. Eur. J. Biomed. Pharm. Sci. 2017, 4, 418–422. [Google Scholar]
- Irshad, M.; Shahid, M.; Aziz, S.; Ghous, T. Antioxidant, Antimicrobial and Phytotoxic Activities of Essential Oil of Angelica glauca. Asian J. Chem. 2011, 23, 1947–1951. [Google Scholar]
- Kaur, A.; Singh, N.; Bhatti, M.S.; Bhatti, R. Optimization of extraction conditions of Angelica archangelica extract and activity evaluation in experimental fibromyalgia. J. Food Sci. 2020, 85, 3700–3710. [Google Scholar] [CrossRef]
- Zidane, H.; Elmiz, M.; Aouinti, F.; Tahani, A.; Wathelet, J.; Sindic, M.; Elbachiri, A. Chemical composition and antioxidant activity of essential oil, various organic extracts of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. Afr. J. Biotechnol. 2013, 12, 5314–5320. [Google Scholar] [CrossRef]
- Farzaneh, A.; Faramarzi, M.A.; Delnavazi, M.R.; Monsef-Esfahani, H.R.; Adhami, H.R. In Vitro Anti-Diabetic and Anti-Oxidant Activities of Geum Species from Iran. Res. J. Pharmacogn. 2022, 9, 37–44. [Google Scholar] [CrossRef]
- Saeedi, M.; Vahedi-Mazdabadi, Y.; Rastegari, A.; Soleimani, M.; Eftekhari, M.; Akbarzadeh, T.; Khanavi, M. Evaluation of Asarum europaeum L. Rhizome for the Biological Activities Related to Alzheimer’s Disease. Res. J. Pharmacogn. 2020, 7, 25–33. [Google Scholar] [CrossRef]
- Abdellatif, F.; Begaa, S.; Messaoudi, M.; ·Benarfa, A.; Ouakouak, H.; Hassani, A.; Sawicka, B.; Gandara, J.S. HPLC–DAD Analysis, Antimicrobial and Antioxidant Properties of Aromatic Herb Melissa ofcinalis L., Aerial Parts Extracts. Food Anal. Methods 2022, 1–10. [Google Scholar] [CrossRef]
- Alfei, S.; Marengo, B.; Zuccari, G. Oxidative Stress, Antioxidant Capabilities, and Bioavailability: Ellagic Acid or Urolithins? Antioxidants 2020, 9, 707. [Google Scholar] [CrossRef]
- Owczarek, A.; Olszewska, M.A.; Gudej, J. Quantitative Determination of Ellagic Acid and Gallic Acid in Geum rivale L. and G. urbanum L. Acta Biol. Crac. Ser. Bot. 2014, 56, 74–78. [Google Scholar] [CrossRef]
- Memar, M.Y.; Yekani, M.; Sharifi, S.; Dizaj, S.M. Antibacterial and Biofilm Inhibitory Effects of Rutin Nanocrystals. Biointerface Res. Appl. Chem. 2022, 13, 132. [Google Scholar] [CrossRef]
- Usta, C.; Yildirim, A.B.; Turker, A.U. Antibacterial and antitumour activities of some plants grown in Turkey. Biotechnol. Biotechnol. Equip. 2014, 28, 306–315. [Google Scholar] [CrossRef]
- Šarić, L.; Čabarkapa, I.; Beljkaš, B.; Mišan, A.; Sakač, M.B.; Plavšić, D. Antimicrobial activity of plant extracts from Serbia. Food Process. Qual. Saf. 2009, 36, 1–5. [Google Scholar]
- Kuchta, A.; Konopacka, A.; Waleron, K.; Viapiana, A.; Wesołowski, M.; Dąbkowski, K.; Ćwiklińska, A.; Mickiewicz, A.; Śledzińska, A.; Wieczorek, E.; et al. The effect of Cistus incanus herbal tea supplementation on oxidative stress markers and lipid profile in healthy adults. Cardiol. J. 2021, 28, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Bunse, M.; Mailänder, L.K.; Lorenz, P.; Stintzing, F.C.; Kammerer, D.R. Evaluation of Geum urbanum L. Extracts with Respect to Their Antimicrobial Potential. Chem. Biodivers. 2022, 19, e202100850. [Google Scholar] [CrossRef]
- Suriyaprom, S.; Kaewkod, T.; Promputtha, I.; Desvaux, M.; Tragoolpua, Y. Evaluation of Antioxidant and Antibacterial Activities of White Mulberry (Morus alba L.) Fruit Extracts. Plants 2021, 10, 2736. [Google Scholar] [CrossRef]
- Rather, R.A.; Rehman, S.; Syed Naseer, S.; Lone, S.; Bhat, K.A.; Chouhan, A. Flash chromatography guided fractionation and antibacterial activity studies of Angelica archangelica root extracts. IOSR J. Appl. Chem. 2013, 4, 34–38. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Deepa, P.; Kim, M.; Park, S.J.; Kim, S. A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species. Sci. Pharm. 2017, 85, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Latin Name of Plant | Common Names (English) | Family | Part of Plant | Extraction Yield(%) | TPC (mg GAE/g of Extract) |
---|---|---|---|---|---|
Cistus incanus L. | hairy rockrose | Cistaceae | herb | 23.26 ± 1.29 d | 363.61 ± 2.29 a |
Morus alba L. | white mulberry, common mulberry, silkworm mulberry | Moraceae | leaves | 32.16 ± 1.03 b | 45.94 ± 0.24 f |
Geum urbanum L. | St. Benedict’s herb, herb Bennet, wood avens, colewort | Rosaceae | rhizome | 29.94 ± 0.20 b | 234.52 ± 1.16 b |
Asarum europaeum L. | European wild ginger, hazelwort, wild spikenard, asarabacca | Aristolochiaceae | herb | 16.79 ± 0.38 e | 73.35 ± 1.37 e |
Rubus idaeus L. | raspberry, red raspberry | Rosaceae | leaves | 40.16 ± 0.59 a | 143.60 ± 2.23 c |
Angelica archangelica L. | garden angelica, wild celery, Norwegian angelica | Apiaceae | root | 30.43 ± 1.15 b | 20.35 ± 0.37 g |
Betula pendula Roth. | silver birch, warty birch, European white birch, East Asian white birch | Betulaceae | leaves | 26.03 ± 0.58 c | 97.23 ± 1.67 d |
Melissa officinalis L. | lemon balm, English balm, garden balm, balm mint, common balm, melissa, sweet balm | Lamiaceae | leaves | 18.92 ± 0.55 e | 139.71 ± 1.40 c |
Phenolic Compound | C. incanus | M. alba | G. urbanum | A. europaeum | R. idaeus | A. archangelica | B. pendula | M. officinalis |
---|---|---|---|---|---|---|---|---|
Gallic acid | 0.46 ± 0.01 a | - 1 | - | - | 0.24 ± 0.02 b | - | - | - |
(+)-Catechin | - | - | - | - | - | - | - | 0.99 ± 0.30 |
Neochlorogenic acid | - | 1.55 ± 0.10 a | - | 1.58 ± 0.02 a | - | - | - | - |
Chlorogenic acid | - | 2.93 ± 0.02 b | - | 2.46 ± 0.17 c | 1.00 ± 0.04 d | 3.65 ± 0.26 a | 0.97 ± 0.09 d | - |
Caffeic acid | - | - | - | 0.52 ± 0.02 c | 0.80 ± 0.06 b | - | - | 2.45 ± 0.17 a |
p-Coumaric acid | - | - | - | - | - | - | 0.58 ± 0.02 | - |
Ferulic acid | - | - | - | 0.58 ± 0.07 a | 0.20 ± 0.01 b | - | 0.14 ± 0.01 b | |
Peltatoside | 2.94 ± 0.18 | - | - | - | - | - | - | - |
Rutoside | 1.65 ± 0.20 b | 2.9 8± 0.14 a | - | 0.7 8± 0.01 d | 1.26 ± 0.13 c | - | 3.02 ± 0.08 a | - |
Ellagic acid | 0.39 ± 0.01 a | - | 3.29 ± 0.15 b | - | 3.65 ± 0.44 b | - | - | - |
Hyperoside | 6.69 ± 0.47 a | - | - | - | 1.02 ± 0.07 b | - | 7.20 ± 0.49 a | - |
Isoquercetin | 1.85 ± 0.11 d | 5.00 ± 0.11 b | - | 0.39 ± 0.01 e | 6.27 ± 0.45 a | - | 3.29 ± 0.10 c | - |
Cichoric acid | - | - | - | - | - | 0.20 ± 0.01 b | - | 0.34 ± 0.05 a |
Isochlorogenic acid B | - | - | - | - | - | 2.06 ± 0.07 a | - | 0.99 ± 0.09 b |
Nicotiflorin | - | 1.21 ± 0.01 | - | - | - | - | - | - |
Astragalin | - | 1.80 ±0.03 b | - | - | 4.11 ± 0.81 a | - | - | - |
Tiliroside | 0.54 ± 0.02 a | - | - | - | - | 0.18 ± 0.00 b | - | |
Rosmarinic acid | - | - | - | - | - | - | - | 23.70 ± 2.20 |
Phenolic acids content | 0.85 ± 0.01 h | 4.48 ± 0.09 e | 3.29 ± 0.15 f | 5.14 ± 0.21 d | 5.69 ± 0.26 c | 6.11 ± 0.31 b | 1.55 ± 0.08 g | 27.62 ± 2.29 a |
Flavonoids content | 13.67 ± 0.09 a | 10.99 ± 0.28 c | - | 1.17 ± 0.08 d | 12.66 ± 0.41 b | 0.18 ± 0.01 e | 13.51 ± 0.36 a | 0.99 ± 0.37 d |
Plant Material | DPPH (mmol TE/g of Extract) | IC50 DPPH (µg/mL) | ABTS (mmol TE/g of Extract) | IC50 ABTS (µg/mL) | FRAP (mmol TE/g of Extract) |
---|---|---|---|---|---|
C. incanus | 2.52 ± 0.02 a | 9.24 ± 0.08 h | 3.58 ± 0.10 a | 10.59 ± 0.72 g | 1.82 ± 0.05 a |
M. alba | 0.23 ± 0.01 g | 43.85 ± 1.49 b | 0.30 ± 0.01 f | 75.62± 2.80 b | 0.08 ± 0.01 d |
G. urbanum | 1.15 ± 0.02 b | 20.27± 0.14 g | 2.97 ± 0.05 b | 14.60 ± 0.88 f | 0.39 ± 0.02 b |
A. europaeum | 0.40 ± 0.01 f | 38.52± 1.17 c | 0.74 ± 0.04 e | 43.6 ± 2.05 c | 0.11 ± 0.01 d |
R. idaeus | 0.54 ± 0.01 d | 31.26 ± 0.62 e | 0.71 ± 0.03 e | 45.3 ± 1.44 c | 0.34 ± 0.02 b |
A. archangelica | 0.16 ± 0.01 h | 58.91 ± 2.07 a | 0.12 ± 0.01 g | 86.54 ± 3.24 a | 0.07 ± 0.01 d |
B. pendula | 0.48 ± 0.01 e | 36.72 ± 1.04 d | 0.97 ± 0.04 d | 37.1 ± 0.95 d | 0.21 ± 0.02 c |
M. officinalis | 0.58 ± 0.01 c | 29.75 ± 0.80 f | 1.11 ± 0.04 c | 33.6 ± 1.27 e | 0.26 ± 0.01 c |
TPC | DPPH | ABTS | FRAP | |
TPC | ||||
DPPH | 0.966 | |||
ABTS | 0.957 | 0.929 | ||
FRAP | 0.903 | 0.972 | 0.819 |
Bacterial Strain | Diameter of Inhibition Zone (IZ) in Mm | ||||||||
---|---|---|---|---|---|---|---|---|---|
C. incanus | M. alba | G. urbanum | A. europaeum | R. idaeus | A. archangelica | B. pendula | M. officinalis | Nitrofurantoin 2 | |
Gram-positive bacteria | |||||||||
S. aureus ATCC 6538P | trace | - 1 | 11.00 ± 1.00 b | 22.50 ± 0.50 g | - | - | trace | - | 24.17 ± 0.28 h |
S. aureus ATCC 25923 | 14.17 ± 0.29 c | - | 14.00 ± 0.00 c | 25.50 ± 0.50 h,i | 11.33 ± 0.57 b | - | 11.67 ± 0.56 b | - | 23.33 ± 0.57 h |
S. epidermidis ATCC 12228 | 17.33 ± 0.57 e | - | 17.50 ± 0.50 e | trace | 13.33 ± 0.57 c | - | 13.00 ± 0.00 c | - | 29.67 ± 0.29 j |
E. faecalis ATCC 29219 | - | - | - | 15.00 ± 0.03 d | - | - | 11.50 ± 0.50 b | - | 26,83 ± 0.28 i |
E. faecium ATCC 6057 | - | - | - | - | - | - | - | - | 17.67 ± 0.56 e |
B. subtilis ATCC 6633 | - | trace | trace | 17.50 ± 0.50 e | - | trace | 13.00 ± 0.00 c | - | 29.33 ± 0.57 j |
G. stearothermophilis ATCC 7953 | 12.00 ± 0.00 b | 12.00 ± 0.50 b | 11.50 ± 0.50 b | 20.33 ± 0.57 f | 11.00 ± 0.00 b | 11.83 ± 0.57 b | 13.50 ± 0.50 c | - | 27.33 ± 0.58 i |
Gram-negative bacteria | |||||||||
E. coli ATCC 25922 | - | - | - | - | - | - | - | - | 24.00 ± 0.00 h |
K. pneumoniae ATCC 13883 | 15.3 3± 0.76 d | - | - | - | - | - | 11.00 ± 0.00 b | - | 23.33 ± 0.57 h |
P. vulgaris ATCC 13315 | - | - | - | - | - | - | - | - | 11.00 ± 0.00 b |
P. mirabilis ATCC 12453 | - | - | - | - | - | - | - | - | 11.00 ± 0.00 b |
L. monocytogenes 1043 S | - | - | - | - | - | trace | - | - | 17.83 ± 0.76 e |
S. marcescens ATTC 13880 | - | - | - | - | - | - | - | 11.50 ± 0.50 b | |
E. cloacae DSM 6234 | - | - | - | - | - | - | - | - | 18.3 3± 0.29 e |
P. aeruginosa ATCC 27853 | - | - | - | - | - | - | - | - | 21.67 ± 0.57 g |
A. baumannii ATCC 19606 | - | - | - | - | - | - | - | - | 10.00 ± 0.00 a |
S. maltophilia ATCC 12714 | 14.17 ± 0.29 c | - | 12.00 ± 0.00 b | - | - | - | - | - | 21.67 ± 0.56 g |
B. bronchiseptica ATCC 4617 | 17.33 ± 0.57 e | - | 14.00 ± 0.00 c | - | 12.16 ± 0.76 b | - | 12.00 ± 0.00 b | 14.33 ± 0.57 c | 21.50 ± 0.50 g |
Bacterial Strain | MIC (mg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
C. incanus | M. alba | G. urbanum | A. europaeum | R. idaeus | A. archangelica | B. pendula | M. officinalis | Nitrofurantoin 2 | |
Gram-positive bacteria | |||||||||
S. aureus ATCC 25923 | 0.125 | 1 | 0.125 | 2 | 0.125 | >2 | 0.25 | 0.25 | 0.025 |
S. epidermidis ATCC 12228 | 0.125 | >2 | 0.125 | 1 | 0.125 | >2 | 2 | 0.25 | 0.0125 |
E. faecalis ATCC 29219 | 0.125 | 0.5 | 0.0625 | 2 | 0.25 | >2 | 2 | >2 | 0.0125 |
E. faecium ATCC 6057 | 0.5 | >2 | 0.25 | 2 | >2 | >2 | 2 | >2 | nd |
B. subtilis ATCC 6633 | - 1 | - | - | 2 | - | >2 | - | 0.5 | 0.0125 |
G. stearothermophilisATCC 7953 | - | - | - | 2 | - | >2 | - | - | 0.0125 |
Gram-negative bacteria | |||||||||
E. coli ATCC 25922 | >1 | >2 | >2 | >2 | >2 | >2 | >2 | 0.0625 | 0.00625 |
K. pneumoniae ATCC 13883 | >1 | >2 | >2 | 1 | >2 | >2 | >2 | 0.5 | 0.025 |
A. baumannii ATCC 19606 | >1 | >2 | 0.125 | 2 | 2 | >2 | >2 | >2 | nd |
P. aeruginosa ATCC 27853 | >1 | >2 | >2 | >2 | >2 | >2 | >2 | >2 | >0.4 |
S. maltophilia ATCC 12714 | 1 | >2 | 0.25 | 2 | >2 | >2 | >2 | 1 | >0.4 |
B. bronchiseptica ATCC 4617 | >1 | >2 | 0.125 | 1 | 2 | >2 | >2 | 0.5 | >0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowska, M.; Ścibisz, I.; Przybył, J.L.; Laudy, A.E.; Majewska, E.; Tarnowska, K.; Małajowicz, J.; Ziarno, M. Antioxidant and Antibacterial Activity of Extracts from Selected Plant Material. Appl. Sci. 2022, 12, 9871. https://doi.org/10.3390/app12199871
Kozłowska M, Ścibisz I, Przybył JL, Laudy AE, Majewska E, Tarnowska K, Małajowicz J, Ziarno M. Antioxidant and Antibacterial Activity of Extracts from Selected Plant Material. Applied Sciences. 2022; 12(19):9871. https://doi.org/10.3390/app12199871
Chicago/Turabian StyleKozłowska, Mariola, Iwona Ścibisz, Jarosław L. Przybył, Agnieszka E. Laudy, Ewa Majewska, Katarzyna Tarnowska, Jolanta Małajowicz, and Małgorzata Ziarno. 2022. "Antioxidant and Antibacterial Activity of Extracts from Selected Plant Material" Applied Sciences 12, no. 19: 9871. https://doi.org/10.3390/app12199871
APA StyleKozłowska, M., Ścibisz, I., Przybył, J. L., Laudy, A. E., Majewska, E., Tarnowska, K., Małajowicz, J., & Ziarno, M. (2022). Antioxidant and Antibacterial Activity of Extracts from Selected Plant Material. Applied Sciences, 12(19), 9871. https://doi.org/10.3390/app12199871