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Abstract: Digital aerial photogrammetry (DAP) has emerged as an alternative to airborne laser
scanning (ALS) for forest inventory applications, as it offers a low-cost and flexible three-dimensional
(3D) point cloud. Unlike the forest inventory attributes (e.g., tree height and diameter at breast height),
the relative ability of DAP and ALS in predicting canopy structural variables (i.e., canopy cover and
leaf area index (LAI)) has not been sufficiently investigated by previous studies. In this study, we
comprehensively compared the canopy cover and LAI estimates using DAP- and ALS-based methods
over 166 selected tropical forest sample plots with seven different tree species and forest types. We also
explored the relationship between field-measured aboveground biomass (AGB) and the LAI estimates.
The airborne LAI estimates were subsequently compared with the Sentinel-2-based LAI values that
were retrieved using a one-dimensional radiative transfer model. The results demonstrated that
the DAP-based method generally overestimated the two canopy variables compared to ALS-based
methods but with relatively high correlations regardless of forest type and species (R2 of 0.80 for
canopy cover and R2 of 0.76 for LAI). Under different forest types and species, the R2 of canopy cover
and LAI range from 0.64 to 0.89 and from 0.54 to 0.87, respectively. Apparently, different correlations
between AGB and LAI were found for different forest types and species where the mixed coniferous
and broad-leaved forest shows the best correlation with R2 larger than 0.70 for both methods. The
comparison with satellite retrievals verified that the ALS-based estimates are more consistent with
Sentinel-2-based estimates than DAP-based estimates. We concluded that DAP data failed to provide
analogous results to ALS data for canopy variable estimation in tropical forests.

Keywords: canopy cover; leaf area index (LAI); airborne laser scanning (ALS); digital aerial
photogrammetry (DAP); tropical forest

1. Introduction

Canopy structure is characterized by the position, orientation, size, and shape of
the vegetative elements [1]. Canopy cover and leaf area index (LAI) are two canopy
structural variables that are critical for many forest and ecological applications [2–5].
They are commonly used as ecological indicators [6] and input parameters for biosphere
modeling [7]. Both of them play a vital role in ecological and physical processes, such
as photosynthesis, transpiration, and carbon cycling [8]. Canopy cover was defined as
the proportion of the forest floor covered by the vertical projection of the tree crowns [4]
and was then extended to the area of the vertical projection of the outermost perimeter
of the crown on the horizontal plane [2]. LAI was first defined as the total one-sided
area of photosynthetic tissue per unit of ground surface area for broad-leaf forests [9] and
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consequently LAI was defined as the maximum projected leaf area per unit of ground
surface area [10]. Multispectral remote sensing has been widely used to estimate these
parameters through statistical methods based on field measurements [11] or physical
methods based on a radiative transfer model [12]. However, those approaches cannot
obtain direct indications of canopy structure, in both horizontal and vertical dimensions [13].
Therefore, methods which can provide canopy structural information in three-dimensional
(3D) space with high precision can improve the estimation of canopy cover and LAI [14–16].

During the past 20 years, airborne laser scanning (ALS) systems have become primary
data collectors for 3D characteristics of canopy and forest structure [13]. Therefore, ALS
systems are proven to be efficient tools to estimate forest 3D structure parameters from
3D point clouds [15,17]. Different methods have been applied to estimate canopy cover
and LAI from ALS data. Regression methods use different variable metrics based on
ALS data and ground measurements to quantify the complexity of forest canopies [18].
Contact frequency methods are based on the contact frequency, and calculate the probability
of a beam penetrating the canopy coming into contact with a vegetative element [19].
The accuracy of contact frequency methods depends on the size of voxels and they are
time-consuming during data acquisition and registration processes [20]. Gap fraction
methods generate the correlation between LAS data and an area property such as gap
fraction and canopy cover, where the return of each pulse is classified as either canopy or
gap [21]. Based on the Beer–Lambert law, canopy cover can be further converted into LAI
by inverting the gap fraction and log-transformation [22]. Studies have demonstrated that
such log-transformed, inverted gap fraction data from ALS are in good agreement with
field measurements [16,23,24].

With the recent development of small aircraft technology over recent years, aerial
photographs from digital cameras have been widely used in forest inventory. Compared
with ALS systems, they are more cost-efficient and suitable for continuous monitoring
over large areas with good availability [25,26]. Point clouds are generated from the digital
images through the structure from motion (SfM) algorithm [27], which is one of the digital
aerial photogrammetry (DAP) techniques. For single-layered forests, forest attributes
such as canopy height model (CHM) and LAI can be captured well from DAP and show
good agreement with ALS-based results [15,28]. For more complex forest environments,
even though there are difficulties for DAP to estimate under-canopy structural and terrain
information, accurate upper canopy structure can be obtained with the input digital terrain
models (DTMs) [29,30]. Therefore, more efforts are still needed to explore the potentiality
of DAP to estimate canopy structural variables for forestry applications.

This study aimed to compare the performance of airborne LiDAR and digital imagery
in the estimation of canopy cover and LAI in tropical forests. Airborne LiDAR and digital
imagery were first processed. Methods to estimate canopy cover and LAI from two data
sources were then presented. The estimated results from both airborne LiDAR and digital
imagery were compared together with the results from Sentinel-2 data and the relationship
between canopy cover, LAI, and tree height were investigated. Finally, we discuss the
implications of our results for further forestry inventory.

2. Materials
2.1. Study Area and Field Inventory of Plots

The study area is located in a national tropical rainforest park in Hainan Province,
China (108◦36′~109◦57′ E, 18◦23′~19◦11′ N), covering approximately 4900 km2 with ele-
vation ranging from 100 m to 1876 m (Figure 1). The region is characterized by a tropical
maritime monsoon climate with annual average temperature of 22.5~26.0 ◦C and annual av-
erage precipitation of 1759 mm. Mixed broad-leaved forests and pure broad-leaved forests
are the main land cover types in the study area where rubber tree (Hevea spp.), eucalyptus
(Eucalyptus spp.), and Taiwan acacia (Acacia spp.) are dominant among various tree species.
To evaluate the relationship between remotely sensed estimated canopy structural variables
(i.e., canopy cover and LAI) and forest inventory variables (i.e., tree height, diameter at
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breast height (DBH), crown diameter), we conducted a field campaign to measure the forest
inventory variables. Three canopy coverage levels and five tree height levels were set in
the selection of forest sample plots, resulting in 166 plots with a diameter of 30 m. These
plots were positioned according to the trade-off between the accessibility and the random
sampling rule.
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Figure 1. Study area in the Hainan national tropical rainforest park with the background being a
Sentinel-2 true color image. Yellow dots refer to the forest sample plots in the field inventory.

We used a real-time kinematic (RTK) GPS to accurately measure the plot center and
each tree’s position in every forest plot. The age group of each plot was recorded where the
tree age was measured by counting the tree rings obtained by a growth cone. The dominant
tree species in each mixed forest plot was also recorded where the dominant species
was identified according to the ratio of the number of a specific tree species to the total.
Tree height and DBH of each tree were separately measured by a laser altimeter (Haglof
Vertex Laser developed by Haglöf Sweden) and a tape measure. The crown diameter
was estimated by averaging two measurements taken from two measuring tapes laid
perpendicular to each other at the largest width of each crown. These plots were categorized
into seven types according to the forest species which include 6 mixed coniferous and
broad-leaved forest plots, 18 mixed broad-leaved forest plots, 49 Eucalyptus robusta Smith
plots, 30 Acacia confusa Merr. plots, 49 Hevea brasiliensis plots, 2 Chinese fir plots, and
12 other coniferous trees plots. The AGBs of all tree species and forest types were calculated
using allometry equations (Table 1) [31].

Table 1. Allometry equations of aboveground biomass (AGB) of individual trees for different tree
species and forest types. D and H represent the DBH and tree height, respectively.

Tree Species and Forest Types Allometry Equation of
Individual Tree AGB of Plot (t/ha)

Coniferous and broad-leaved mixed forest AGB = 0.2253× D2.4213 124.6 ± 106.4
Broad-leaved mixed forest AGB = 0.1131×

(
D2 H

)0.8407 113.5 ± 260.2
Other coniferous trees AGB = 0.2309×

(
D2 H

)0.6838 185.0 ± 174.6
Chinese fir AGB = 0.0182×

(
D2 H

)0.9710 46.8 ± 7.3
Eucalyptus robusta Smith AGB = 0.0576×

(
D2 H

)0.8587 89.2 ± 175.3
Acacia confusa Merr. AGB = 1.4240×

(
D2 H

)0.5680 127.6 ± 170.0
Hevea brasiliensis AGB = 0.0524× D2.7451 46.5 ± 87.7
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2.2. Airborne LiDAR Data and Preprocess

We conducted aerial campaigns over the study area from March 2020 to February
2021 using the National Forest and Grassland Inventory Airborne Observatory Platform
that is an integrated observation equipment with a small-footprint LiDAR (RIEGL VQ-
1560i (Riegl GmbH, Horn, Austria) with a laser wavelength of 1064 nm), a digital imager
(Phase One iXU-RS 1000 (Phase One Inc, Copenhagen, Denmark)), and a position and
orientation system (Applanix AP-60 (Trimble Inc., Sunnyvale, CA, USA)). The LiDAR uses
an analogue detector to record discrete, time-stamped trigger pulses from the received
waveform in real time, i.e., the discrete-return system. The airplane (Cessna 208B-9617)
flew at a relative flight altitude of about 1800 m relative to the take-off point and with flight
speed of around 260 km/h, resulting in a LiDAR beam diameter of about 0.45 m. The laser
emission frequency is 2000 kHz and the lateral overlap of LiDAR was set as 22%.

After airborne LiDAR (ALS) data acquisition, the aircraft GPS trajectories for each
airborne survey were firstly corrected to the ground-based GPS base station using the
POSpac version 8. 3 software (Trimble Inc., Sunnyvale, CA, USA). The scan angles and
laser pulse return were then integrated with the trajectories using the RiProcess version
1.8.5 software (Riegl GmbH, Horn, Austria). The point cloud files were finally exported
and geographic coordinates, elevation, and intensity information were included. Based
on 263 ground control points, the horizontal and vertical errors were less than 0.15 m and
0.08 m, respectively.

The ALS point clouds were classified into ground return and other returns using
the cloth simulation filter (CSF) algorithm [32]. The digital terrain model (DTM) with
spatial resolution of 1 m was created using the ground points with the k-nearest neighbor
with inverse distance weighting interpolation algorithm. The produced ALS-based DTM
(DTMALS) was used to normalize the ALS point clouds and subsequently used in the
process of airborne image-based point clouds. After normalization, all elevations of points
were relative to the same ground level datum. The ALS point clouds were divided into
canopy returns and below-canopy returns using a height threshold of 2.0 m.

2.3. Airborne Digital Imagery and Preprocess

The airborne digital imager was equipped with a 50 mm focal length lens and a
11,608 × 8708-pixel (4.6 µm physical pixel size) sensor, resulting in a field of view of
56.2◦ × 43.7◦. The imager achieved a ground resolution of 0.165 m relative to the flight
altitude of 1800 m. The forward overlap and side overlap of the imager are 63% and
20%, respectively.

After airborne digital imagery acquisition, the position information and orientation
information of each image were extracted based on the onboard GPS and IMU data. The
red–green–blue (RGB) images were processed by a photogrammetry technique, so-called
digital aerial photogrammetry (DAP). The overlapped RGB images with the corresponding
geographic coordinates of waypoints were imported into Agisoft Metashape Pro (Agisoft
LLC, St. Petersburg, Russia) to produce a dense point cloud and a georeferenced DSM. Our
processing steps are identical to the recommended photogrammetry processing pipeline,
as can be found in the Metashape user manual. The resulting point density of DAP was
around 50 points/m2 while, in contrast, the point density of ALS was about 10 points/m2.

The DAP and LiDAR point clouds of the entire study area were firstly co-registered
through a coarse adjustment by hand then a fine iterative closest point (ICP) algorithm.
After the co-registration, the DAP and LiDAR point clouds were processed according to
the boundary of forest plots. For each plot, the co-registration between DAP and LiDAR
point clouds was fine-tuned using the ICP algorithm to achieve the optimal co-registration
in local extent. The point clouds of each plot were denoised to remove isolated outlier
points using a manual trimming by visual interpretation and automatic noise removal by a
median filter in CloudCompare version 2.11.0 software (https://www.danielgm.net/cc/,
accessed on 10 August 2022). The DAP-based digital surface model (DSMDAP) with grid
size (i.e., spatial resolution) of 1 m was then created using all points with the k-nearest

https://www.danielgm.net/cc/
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neighbor with inverse distance weighting interpolation algorithm. Next, the normalized
canopy height model (CHMDAP) was generated by subtracting DTMALS from DSMDAP. It
is noted that no DTMDAP was created from DAP point clouds. This is because DAP points
of the ground surface were usually scarce due to crown occlusion, especially in dense forest
regions, thus failing to obtain an effective DTM. Finally, with the reported 30 m resolution
land cover product, we extracted the forest regions from the generated CHMDAP.

3. Methods
3.1. Canopy Cover Estimation
3.1.1. Estimating Canopy Cover from Airborne LiDAR

The canopy cover can be estimated from discrete-return LiDAR data using various
approaches based on the assumption that nadir gap fraction (i.e., the opposite of canopy
cover) is equivalent to the canopy transmittance to the forest floor. The simplest method is
quantifying the proportion of LiDAR pulses that were intercepted by the tree canopy. Note
that the canopy elements that are much smaller than the pulse area are not considered in
the estimation of canopy cover, thus resulting in underestimation. Conversely, the canopy
elements with the size of less than 100% of the pulse area are also not considered, thus the
canopy cover would be overestimated. The first echo cover index (FCI), as the common
one of the echo-number-based methods, was used to be the proxy of canopy cover as the
probability of a non-first echo is conditional on that of the first echo and thus may bias the
estimation [23,33]. To minimize the negative effect of the oblique pulses on canopy cover
(the metric from nadir direction) estimation, we used the near-vertical pulses [16], i.e., the
scan angle of less than 10◦.

FCI = (∑ Rsingle
canopy + ∑ R f irst

canopy)/(∑ Rsingle
all + ∑ R f irst

all ). (1)

3.1.2. Estimating Canopy Cover from Digital Aerial Photogrammetry

The canopy cover estimation from digital imagery was based on the DAP point clouds,
although the digital orthomosaic can also be used to determine canopy cover through
image segmentation techniques. As the tree canopy and understory show high spectral
similarity on the pixel level and texture similarity on the object level, image segmentation
methods usually introduce relatively large uncertainty in the separation of canopy and
below-canopy pixels. In this study, we used the normalized CHMDAP to extract canopy
by a height threshold of 2.0 m. Note that the empty cells in CHMDAP were filled with the
median of the neighboring cells. In addition, the outlier cells were removed based on the
minimum and standard deviation of the eight neighboring pixels introduced in [2].

3.2. Leaf Area Index (LAI) Estimation

The theoretical basis of LAI estimation is the Beer–Lambert law, which was originally
used to depict the light attenuation in uniform mediums (e.g., liquid) and later extended
to the light interception of homogeneous canopies with continuously random distribu-
tion of leaves, known as the gap fraction theory [5]. For vegetation canopy, the canopy
transmittance is equivalent to gap fraction in a specific direction [34]. Accordingly, the gap
fraction P0(θv, φv) in the direction (θv, φv) is related to the LAI by Equation (2). Readers
are recommended to refer to the review articles and book chapters about the indirect LAI
measurements for more detail about the derivation [1,5,22].

P0(θv, φv) = exp
(
−G(θv, φv)·LAI

cos(θv)

)
, (2)

where G(θv, φv) is defined as the mean projection of a unit leaf area on the plane perpen-
dicular to the observation direction. Based on the assumption that leaf inclination angles



Appl. Sci. 2022, 12, 9882 6 of 13

are independent of azimuth, G(θv, φv) is rewritten as G(θv) that can be approximated by
an ellipsoidal function of zenith angle and leaf inclination distribution.

G(θv) =
(χ2 + (tanθ)2)

0.5·tanθ

χ + 1.774·(χ + 1.182)−0.733 , (3)

where χ is a shape parameter representing the ratio of vertical to horizontal projections of
canopy elements. In this study, the value of χ is set as 2, i.e., close to the planofile type.

Nilson (1971) indicated that the exponential relationship between gap fraction and
LAI is effective even though the continuously random distribution of leaves is not satis-
fied [35]. Following this statement, scholars proposed the clumping index (Ω0) to correct
the cases of regular and clumped leaf arrangement [22]. Naturally, Equation (1) is written
as Equation (3). Note that the LAI estimate based on Equation (1) is considered as effective
LAI whereas that based on Equation (4) is considered as true LAI.

P0(θv) = exp
(
−Ω0·G(θv)·LAI

cos(θv)

)
(4)

To eliminate the clumping effect, Lang and Xiang (1986) proposed to average the
logarithms of gap fractions over segments of finite length [36]. The Ω0 can be expressed by

Ω0(θv) =
ln[P0(θv) ]

ln[P0(θv)]
. (5)

3.3. Sentinel-2-Based LAI Estimation

To compare with the estimated airborne results, Sentinel-2 satellite data were also
applied. In addition to the visible and near-infrared wavelengths, the Sentinel-2 multi-
spectral instrument which included bands in the red-edge region was found to be critical
for vegetation monitoring [37]. The Sentinel Application Platform (SNAP) software ver-
sion 9.0.0 (European Space Agency), which was developed to work with Sentinel images,
provides a scientific processor named “Biophysical Processor”. It could give immediate
retrieval results of LAI, canopy chlorophyll content, and some other biophysical variables
from Sentinel-2 images [8] with different canopy reflectance bands and the geometrical
configuration of illumination and observation as input parameters.

The training database was generated through the PROSAIL model [12] to simulate
top-of-canopy reflectance. Considering the canopy architecture, the PROSAIL model was
based on the turbid medium assumption for different vegetation types. The derived LAI
based on the assumption should be seen as effective LAI.

Based on the generated training database, a back-propagation artificial neural network
(ANN) was applied to retrieve these parameters from Sentinel-2 observations in SNAP.
The architecture of the ANN was made up of two layers. The first layer was made up
of five neurons using tangent sigmoid transfer functions, and the second one contained
one neuron using linear transfer functions [38]. Two steps were used to train the neural
network: Firstly, a feed forward iteration was used to compute the output. Secondly, a
back-propagation learning rule was applied to minimize the error between predicted results
and the input values.

In this study, Sentinel-2 satellite data on 21 June 2021 were selected corresponding to
the field campaigns. The atmospheric correction of the Sentinel-2 images was performed
using the Sen2cor atmosphere correction toolbox in the SNAP software. Nine bands (B3,
B4, B5, B6, B7, B8a, B11, and B12) at 20 m resolution were utilized to estimate LAI using
Biophysical Processor from SNAP. In order to keep the spatial resolution the same as the
field measurements, the estimated result was resampled to 30 m after calculation.
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4. Results
4.1. Comparison of Canopy Cover and LAI Estimates

Figure 2 shows the comparisons of canopy cover and LAI estimates between the ALS-
based and DAP-based methods across different species and forest types. Overall, canopy
cover estimates using ALS-based and DAP-based methods showed superior correlations
with a coefficient of determination (R2) of 0.80 with R2 ranging from 0.64 to 0.89 for
different species. Accordingly, the LAI estimates using these two methods were also highly
correlated with an R2 of 0.76 with the lowest R2 being 0.54 for the mixed broad-leaved forest
and the highest R2 being 0.87 for the mixed coniferous and broad-leaved forest (Table 2).
Despite the high correlations, it can be noted that almost all DAP-based estimates of canopy
cover and LAI are larger than ALS-based estimates. The differences in canopy cover
estimates between the two methods are not consistent across the range of canopy cover
levels. Particularly, the differences are especially large in the case of low canopy cover levels.
Due to the gap probability theory in the LAI estimation, the differences in LAI estimates
between the two methods are large in the case of high LAI levels corresponding to the low
canopy cover levels. From the perspective of forest type, there is no obvious difference
in correlation between the two methods among different tree species and forest types.
DAP-based canopy cover estimation tends to be closer to 1, especially for Eucalyptus robusta
Smith and Acacia confusa Merr. when canopies are dense. Correspondingly, the DAP-based
LAI estimates even approach 7 which represents very dense canopies in tropical forests.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 13 
 

up of five neurons using tangent sigmoid transfer functions, and the second one contained 

one neuron using linear transfer functions [38]. Two steps were used to train the neural 

network: Firstly, a feed forward iteration was used to compute the output. Secondly, a 

back-propagation learning rule was applied to minimize the error between predicted re-

sults and the input values. 

In this study, Sentinel-2 satellite data on 21 June 2021 were selected corresponding to 

the field campaigns. The atmospheric correction of the Sentinel-2 images was performed 

using the Sen2cor atmosphere correction toolbox in the SNAP software. Nine bands (B3, 

B4, B5, B6, B7, B8a, B11, and B12) at 20 m resolution were utilized to estimate LAI using 

Biophysical Processor from SNAP. In order to keep the spatial resolution the same as the 

field measurements, the estimated result was resampled to 30 m after calculation. 

4. Results 

4.1. Comparison of Canopy Cover and LAI Estimates 

Figure 2 shows the comparisons of canopy cover and LAI estimates between the ALS-

based and DAP-based methods across different species and forest types. Overall, canopy 

cover estimates using ALS-based and DAP-based methods showed superior correlations 

with a coefficient of determination (R2) of 0.80 with R2 ranging from 0.64 to 0.89 for differ-

ent species. Accordingly, the LAI estimates using these two methods were also highly 

correlated with an R2 of 0.76 with the lowest R2 being 0.54 for the mixed broad-leaved 

forest and the highest R2 being 0.87 for the mixed coniferous and broad-leaved forest (Ta-

ble 2). Despite the high correlations, it can be noted that almost all DAP-based estimates 

of canopy cover and LAI are larger than ALS-based estimates. The differences in canopy 

cover estimates between the two methods are not consistent across the range of canopy 

cover levels. Particularly, the differences are especially large in the case of low canopy 

cover levels. Due to the gap probability theory in the LAI estimation, the differences in 

LAI estimates between the two methods are large in the case of high LAI levels corre-

sponding to the low canopy cover levels. From the perspective of forest type, there is no 

obvious difference in correlation between the two methods among different tree species 

and forest types. DAP-based canopy cover estimation tends to be closer to 1, especially 

for Eucalyptus robusta Smith and Acacia confusa Merr. when canopies are dense. Corre-

spondingly, the DAP-based LAI estimates even approach 7 which represents very dense 

canopies in tropical forests. 

 
Figure 2. Comparison of canopy cover (a) and leaf area index (LAI) (b) between DAP-based and
ALS-based estimation methods across different forest types.



Appl. Sci. 2022, 12, 9882 8 of 13

Table 2. Coefficients of determination (R2) of fitted curves between DAP-based and the ALS-based
estimated canopy cover and LAI under different forest types.

Coefficients of Determination Canopy Cover LAI

Mixed coniferous and broad-leaved forest 0.64 0.87
Mixed broad-leaved forest 0.79 0.54

Other coniferous trees 0.94 0.66
Eucalyptus robusta Smith 0.81 0.84

Acacia confusa Merr. 0.89 0.82
Hevea brasiliensis 0.71 0.67

All 0.80 0.76

4.2. Relationship between LAI and Aboveground Biomass

The relationship between the field-measured AGB and remote sensing-estimated
LAI is shown in Figure 3. Similar correlations were found between LAIDAP–AGB (R2 of
0.43) and LAIALS–AGB (R2 of 0.45), although the correlations are relatively low. There are
apparent differences in correlations among forest types (Table 3). The mixed coniferous and
broad-leaved forest shows the best correlation between aboveground biomass and derived
LAI with R2 larger than 0.70. For mixed broad-leaved forest, other coniferous trees, and
Eucalyptus robusta Smith, R2 is around 0.50 with AGB ranging from 0 to 400 t/ha. However,
for Hevea brasiliensis, there is almost no correlation between derived LAI and aboveground
biomass (R2 = 0.03 for ALS and 0.01 for DAP). Derived LAI of Hevea brasiliensis is centered
between 0 and 3 with aboveground biomass less than 150 t/ha. Since there are only
two plots of Chinese fir, the correlation between derived LAI and aboveground biomass is
not computed.
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Table 3. Coefficients of determination (R2) of fitted curves between field-measured aboveground
biomass (AGB) and the estimated LAI using ALS and DAP methods under different forest types.

Coefficients of Determination LAIALS–AGB LAIDAP–AGB

Mixed coniferous and broad-leaved forest 0.77 0.96
Mixed broad-leaved forest 0.39 0.65

Other coniferous trees 0.67 0.55
Eucalyptus robusta Smith 0.67 0.63

Acacia confusa Merr. 0.30 0.24
Hevea brasiliensis 0.03 0.01

4.3. Comparison between Airborne and Sentinel-2 LAI Estimates

As shown by Figure 4, the ALS- and DAP-based LAI estimates were compared
with Sentinel-2-retrieved LAI, respectively. The ALS results have better agreement with
Sentinel-2 results with an R2 of 0.54 while DAP results show quite low correlation with
Sentinel-2 retrievals. It should be noted that the Sentinel-2-based LAI estimates were
obtained using a turbid medium radiative transfer model, implying no clumping effect
was considered. This may explain the relatively high correlation between airborne and
satellite estimates. In addition, we used a series of soil spectra obtained from a public
library rather than the field measurements due to the high heterogeneity of the forest floor.
The differences in LAI between ALS and Sentinel-2 are generally less than 1.5 despite the
very few points falling outside this range. In contrast, the maximum difference in LAI
between DAP and Sentinel-2 may be up to about 3.0.
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5. Discussion

Prior to this study, the relative suitabilities of DAP and ALS data for canopy cover and
LAI estimation have not been sufficiently compared. We collected DAP and ALS data of
166 tropical forest plots as well as ground-based forest inventory measurements. A CHM-
based canopy cover estimation method was used based on DAP data whereas an echo
index-based canopy cover estimation was used for ALS data. Both DAP- and ALS-derived
LAIs were determined based on gap probability theory (also known as the Beer–Lambert
law) with nadir gap fraction observation (i.e., the opposite of canopy cover). Our results
indicate significant differences in the canopy cover and LAI estimation over tropical forests
using ALS and DAP data, as well as different correlations with field-measured AGB.
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Almost all DAP-based canopy cover estimates were larger than those using ALS-based
methods, which was in accordance with findings from other studies [3,15,29]. Generally,
ALS-based canopy variable estimation was recognized as a benchmarking method when
no ground-based measurements were apparent [39], hence the DAP-based method tended
to overestimate. This overestimation can be attributed to the characteristics of the DAP
data themselves (including flight settings and camera configurations), the complexity of the
forest structure, and the illumination environment [27,29]. DAP data mainly characterize
the outer canopy envelope where the shadows and occlusions from surrounding trees can
negatively influence the completeness of SfM point clouds. Additionally, the grid size also
impacts the canopy cover estimation during the rasterization of SfM point clouds. Both the
neglect of small canopy gaps and the large grid size led to the overestimation of canopy
cover [32]. Compared to the CHM-based estimation using DAP data, ALS data enable
the echo index (also known as light penetration index) to represent canopy cover using
the echo-number-based method (i.e., the method using LiDAR echo number to derive
an echo index) [33]. FCI is a widely used proxy of canopy cover although many other
echo indices have been proposed in the last decade. It should be noted that FCI tends
to only characterize between-crown gaps because the within-crown gaps are generally
smaller than the pulse footprint, and hence may lead to overestimation [23]. Much explicit
evidence indicates that effective canopy cover is overestimated in most forest stands and
the estimates show a saturation effect in dense forests [40]. As we defined the canopy
cover without considering the within-crown gaps, the FCI seems more adequate than other
reported echo indices, such as SCI and WCI [14,41]. Our comparison demonstrated that
the DAP data failed to estimate canopy cover with the same level of accuracy as the ALS
data. The further investigation based on multiple forest types verified this finding.

The airborne LAI estimation accuracy is influenced by the correctness of gap fraction
observations, the representativeness of leaf angle distribution, and the characterization
of clumping effect regardless of wood elements (e.g., branches). Importantly, the small
difference in canopy gap fraction in dense forests can lead to significant differences in
LAI estimates due to the logarithmic expression in the gap probability model [5]. In this
study, we assumed a spherical leaf angle distribution due to the lack of field measurements
of leaf angles. This assumption might be inadequate for tropical forests because of the
diversity of forest canopies. We also assumed the random spatial distribution of leaves,
i.e., ignoring the clumping effect, which may cause LAI underestimation [42]. Despite
the large uncertainty of ALS-based LAI estimation, it theoretically yielded more accurate
estimates than the DAP-based method. We investigated the relationship between LAI and
AGB over all forest plots and found relatively high correlations, especially for the mixed
coniferous and broad-leaved forest. The high correlation may be partly explained by the
competitive growth.

The comparison between airborne and satellite LAI estimates basically verified that the
ALS-based LAI might be more reliable since they showed high consistency with the widely
used Sentinel-2 retrievals using the PROSAIL model and ANN machine learning [43]. As
the clumping effect was ignored in both airborne and satellite estimation, there were no
apparent systematic differences in LAI between them. Some significant differences in LAI
between ALS and Sentinel-2 retrievals may be explained by the topography effect because
rugged terrain may cause variation in spectral reflectance. Complex forest background is
another uncertainty source that contributes heterogeneous background spectral reflectance,
resulting in limited representativeness when using a soil library [44]. Although DAP has
proven its merit in forest inventory applications, our study showed it has relatively low
capacity in canopy biophysical variable estimation, especially in LAI estimation.

6. Conclusions

This study evaluated the performance of ALS- and DAP-based methods in canopy
cover and LAI estimation using many tropical forest plots. As the DAP data produced by
the SfM algorithm cannot offer a detailed enough 3D canopy like ALS data, the canopy
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cover and the associated LAI estimates were remarkably larger than the ALS-based es-
timates. Differences in correlation among different forest types and tree species were
also found (R2 of canopy cover and LAI range from 0.64 to 0.89 and from 0.54 to 0.87,
respectively), regardless of the overall R2 of 0.80 for canopy cover and overall R2 of 0.76
for LAI. We explored the relationship between airborne LAI estimates and field-measured
AGB and found better correlation between ALS-based LAI and AGB, indirectly validating
the credibility of the ALS-based method. Different forest types and tree species exhibited
different correlations where the optimal correlation occurred in the mixed coniferous and
broad-leaved forests. The comparison between airborne and Sentinel-2-based LAI estimates
again verified the value of the ALS-based method, given its better consistency with the
widely used satellite-scale hybrid retrieval method. This study provides an insight on the
ability of the existing 3D data in canopy variable estimation.
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