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Abstract: To provide an artificial intelligence service such as pose estimation with a PoseNet model in
an Artificial Intelligence of Things (AIoT) system, an Internet of Things (IoT) sensing device sends a
large amount of data such as images or videos to an AIoT edge server. This causes serious data traffic
problems in IoT networks. To mitigate these problems, we can apply compressed sensing (CS) to the
IoT sensing device. However, the AIoT edge server may have poor pose estimation accuracy (i.e.,
pose score), because it has to recover the CS data received from the IoT sensing device and estimate
human pose from the imperfectly recovered data according to CS rates. Therefore, in this paper,
we analyze the effect of CS rates (from 100% to 10%) and video resolutions (1280× 720, 640× 480,
480× 360) in the IoT sensing device on the pose score of the PoseNet model in the AIoT edge server.
When only considering the meaningful range of CS rates from 100% to 50%, we found that the higher
the video resolution, the lower the pose score. At the CS rate of 80%, we could reduce data traffic by
20% despite the degradation in pose score of less than about 0.03 for all video resolutions.

Keywords: Internet of Things; data traffic; compressed sensing; deep learning; edge computing;
MobileNet v1; PoseNet

1. Introduction

The Internet of Things (IoT) denotes a global infrastructure, enabling advanced services
by interconnecting physical and virtual things based on existing and evolving interoperable
information and communication technologies [1–4]. Artificial intelligence (AI) is defined as
an artificial creation of human-like intelligence and designed to imitate human abilities to
understand and solve problems [5,6]. Recently, the Artificial Intelligence of Things (AIoT),
combining AI and IoT, has attracted widespread attention from researchers, because it
enables more effective IoT operations and creates AI services based on IoT data [7]. The
AIoT systems generally collect and process a large amount of data (audio, image, video,
etc.), and then they analyze and train the data to provide AI services (smart home control,
object detection, pose estimation, etc.). In [8], recent developments in AIoT systems and
their applications supported by AI (i.e., machine learning/deep learning algorithms) were
introduced. In addition, Chen et al. in [9] proposed an AIoT-based smart agricultural
system that identifies pests by using YOLOv3 object detection built from the image from
drones and mobile devices and predicts the occurrence of pests by using the LSTM built
from environmental data from weather stations.

As mentioned before, the AIoT systems have to send and receive a large amount of
data between things such as IoT devices and an AIoT edge server through the Internet.
Inevitably, this causes serious data traffic problems, which may lead to time delays and
unstable channel conditions (congestion, collisions, etc.) due to limited bandwidth [10,11].
Many research studies have been conducted to reduce the problems in the AIoT sys-
tem [12–17]. A general distributed federated learning framework was presented to avoid
the communication bottleneck of most centrally managed AIoT systems in [12]. Baliarsingh
et al. in [13] proposed an algorithm using transform techniques for cardiac data compres-
sion to reduce the data traffic caused by a large amount of electrocardiogram data in the
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Artificial Intelligence of Medical things (AIoMT) system and Makarichev et al. in [14]
presented a discrete atomic transformation-based lossless image compression algorithm
to reduce the resources required for image processing, storage, and transmission over the
network in the IoT system. Djelouat et al. in [15] reviewed compressed sensing (CS)-based
IoT applications and identified avenues for future CS-based IoT research. In [16], the
authors presented a gradient CS method for image data reduction in unmanned aerial
vehicles. Finally, we proposed a oneM2M-compliant AIoT system with the CS to reduce
data traffic and analyzed the effects of CS rates on the performance of YOLOv5 object
detection in [17].

Pose estimation is a research field in computer vision, which plays a prominent role in
various applications, such as healthcare, sports sciences, animations, robotics, intelligent
video analytics, etc. [18–21]. This aims to determine the position or spatial location of
body keypoints (e.g., parts, joints) of a person from a given image or video in [22]. Siddiq
et al. in [23], proposed an IoT technology integration device for a smart home system
with a human posture recognition function using the kNN method, and human pose is
detected through a PoseNet model. In [24], the authors showed an intelligent collaborative
inference approach for a PoseNet model-based service in mobile edge computing networks.
Kim et al. in [25] presented a oneM2M-compliant AIoT system with an AIoT edge device
and a floating population-monitoring server applicable to commercial area analysis in a
smart city, where the AIoT edge device estimates human poses using two PoseNet models
built on MobileNet v1 and ResNet-50 backbone architectures. However, to the best of
our knowledge, we could not find any literature considering the use of CS for data traffic
mitigation in AIoT systems for pose estimation services.

Therefore, in this paper, we propose an AIoT system with the CS to efficiently provide
pose estimation with a PoseNet model, which consists of an IoT-sensing device and an
AIoT edge server. Additionally, we analyze the effect of CS rates and video resolutions in
the IoT-sensing device on the pose score of the PoseNet model in the AIoT edge server. The
main contributions of this paper are summarized as follows:

• This paper analyzed the effects of CS rates and video resolutions on the PoseNet
model in the AIoT system. We used CS among various compression techniques to
mitigate data traffic. We chose this because it reduces the amount of data by randomly
selecting pixels according to the CS rate and recovers at a rate close to perfection even
with a small number of pixels.

• In addition, the pose score of the PoseNet model was used to analyze the effect of
CS on pose estimation and the effects of 10 CS rates and 3 video resolutions were
analyzed.

• Through this analysis, we can see that CS can effectively mitigate data traffic, but that
the pose score does not significantly decrease.

The rest of this paper is organized as follows. Section 2 describes the configuration
and operation of the proposed AIoT system and explains the CS for data traffic mitigation
and pose estimation with the PoseNet model in detail. Section 3 provides experimental
results to analyze the pose scores of the PoseNet model according to CS rates and video
resolutions. Finally, concluding remarks are presented in Section 4.

2. Proposed AIoT System with Compressed Sensing and Pose Estimation
2.1. Description of an AIoT System

The proposed AIoT system is shown in Figure 1, where an IoT-sensing device used a
random sampling matrix function of the CS for data traffic mitigation, and an AIoT edge
server used CS recovery and domain transformation matrix functions of the CS and a
PoseNet model for pose estimation.

First, the IoT-sensing device extracts large amounts of data such as images or videos
(O) from a high-definition (HD) camera sensor and then uses a random sampling matrix
function (Φ) to obtain a compressed image (c) according to the CS rate (r). The compressed
image is forwarded to the IoT client application modeled, as an application-dedicated
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node-application entity (ADN-AE) in oneM2M specifications [26]. Then, the IoT client
application transmits the compressed image to an IoT edge middleware (MW) in the AIoT
edge server. The IoT edge MW, modeled as an infrastructure node-common service entity
(IN-CSE) in oneM2M specifications, forwards the compressed image to a CS recovery
function. The CS recovery function generates a sparse transform domain representation
(x̂) of the original image O via Orthant-Wise Limited-memory Quasi-Newton (OWL-
QN) [27–29]. After a domain transformation matrix function (Ψ) inversely transforms x̂ to
produce the recovered image (Ô), we estimate human poses from the recovered image Ô
using the PoseNet model with the MobileNet v1 architecture where the human keypoints
on the body were used [30–32]. The MobileNet v1 function takes the recovered image
with red, green, and blue (RGB) channels and outputs a feature map [25]. In the feature
map, the keypoint heatmaps function predicts a heatmap as a binary classification task.
The short-range offsets function improves keypoint positioning accuracy by predicting a
short-range offset vector pointing from the image location within the keypoint disk to the
keypoint of the nearest human instance. The mid-range pairwise offsets function predicts
a separate pairwise mid-range 2D offset vector, which is the target regression vector for
each directional edge connecting adjacent pair of keypoints in a human tree-structured
kinematics graph. The multi-person pose decoding function uses Hough voting to compute
heatmaps and short-range offsets into a 2D Hough score map and finally outputs the
estimated human poses.

Figure 1. Proposed AIoT system with an IoT sensing device for CS and an AIoT edge server for CS
recovery and pose estimation.

2.2. Compressed Sensing for Data Traffic Mitigation

Compressed sensing is a framework that samples a high-dimensional sparse signal at
much lower rates than the Nyquist rate by sensing or measurement matrices (e.g., random
sampling matrix), and this greatly improves the sampling efficiency [33,34]. In a recovery
process (e.g., CS recovery), a sparse transform domain representation is produced by
solving the optimization problem (i.e., L1 norm minimization) [17,35–39]. Then, by its
inverse transformation (e.g., transform matrix), we can obtain a recovered signal. We will
explain the use of CS in data traffic mitigation in our AIoT system.

After the IoT-sensing device extracts a large amount of data P×Q original image O,
the K× P random sampling matrix Φ compresses the original image O according to the CS
rate r = K/P to generate a K×Q compressed image c, as given below

c = ΦO (1)
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where Φ randomly selects pixels from the original image O. The compressed image c
will be sent to the AIoT edge server. In other words, we can mitigate the data traffic by
generating the compressed image according to the CS rate.

In the AIoT edge server, the CS recovery reconstructs the sparse transform domain
representation x̂ from the compressed image c by solving the L1 norm minimization with
the above OWL-QN algorithm [27]. In this Algorithm 1, an object function is assumed
to minimize f (x) = `(x) + C‖x‖1 where `(x) is the loss term, and C is a given constant.
Additionally, � f (x) denotes the pseudo-gradient of f at x

�i f (x) =


∂−i f (x) if ∂−i f (x) > 0
∂+i f (x) if ∂+i f (x) < 0
0 otherwise,

(2)

where right and left partial derivatives are given by ∂+i f (x) and ∂−i f (x), Hj denotes the
limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) approximation to the in-
verse Hessian of the loss, and π(x; v), denoted as the projection of x onto an orthant defined
by v

πi(x; v) =

{
xi if σ(xi) = σ(vi)

0 otherwise
(3)

where σ(·) denotes the sign function to take values in {−1, 0, 1}. The two-dimensional (2D)
inverse discrete cosine transform (IDCT) matrix Ψ transforms the sparse transform domain
representation x̂ to obtain the recovered image Ô, which can be represented by

Ô = Ψx̂ (4)

Algorithm 1 Orthant-Wise Limited-memory Quasi-Neton (OWL-QN)

1: choose initial point x0

2: M⇐ {}, N ⇐ {}
3: for j = 0, 1, . . . , MaxIters do
4: Compute wj = − � f

(
xj)

5: Compute ej ⇐ H jwj using M and N
6: tj ⇐ π

(
ej; wj)

7: Find xj+1 with constrained line search
8: if termination condition satisfied then
9: Stop and return xj+1

10: end if
11: Update M with mj = xj+1 − xj

12: Update N with nj = ∇`
(
xj+1)−∇`(xj)

13: end for

The entries of Ô are defined as

[Ô]pq =
P−1

∑
b=0

Q−1

∑
d=0

rbrd[x̂]bd cos
π(2p + 1)b

2P
cos

π(2q + 1)d
2Q

(5)

where 0 ≤ p ≤ P− 1, 0 ≤ q ≤ Q− 1, and

rb =


1√
P

, b = 0√
2
P , 1 ≤ b ≤ P− 1

and rd =


1√
Q , d = 0√

2
Q , 1 ≤ d ≤ Q− 1

(6)
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2.3. Pose Estimation with a PoseNet Model

Pose estimation is the process of determining the configuration of the body from
images or videos to estimate the positions of human keypoints, typically human joints,
and associate them [40]. This is a highly popular research topic in the field of computer
vision, which is widely used in human–computer interactions, gaming, virtual reality,
video surveillance, etc. [41]. As mentioned above, we used the PoseNet model for pose
estimation [25].

Figure 2 illustrates the PoseNet model with the MobileNet v1 backbone architecture
proper for our AIoT edge server. When making pose estimations using the PoseNet model,
17 keypoints were detected, including 5 facial points, such as two eyes, two ears, and one
nose, and 12 joints of the body, such as shoulders, elbows, wrists, hips, knees, and ankles.
Then, the human pose was estimated by associating the closest two keypoints for human
skeleton representation.

Figure 2. The PoseNet model with the MobileNet v1 backbone architecture.

The MobileNet v1 consists of 18 Conv2D layers and 13 Depthwise Conv2D layers. The
first Conv2D layer receives an input image of (1× 481× 641× 3) as a tensor of (batch×
height×width× channels). Then, it outputs a feature map of (1× 241× 321× 24) with a
filter of (24× 3× 3× 3) and a bias of (24). The second DepthwiseConv2D layer receives the
feature map and outputs a new feature map with a weight of (1× 3× 3× 24) and a bias of
(24). The above process is repeated for other Conv2D and DepthwiseConv2D layers. The
last Conv2D layer feeds the same feature map of (1× 31× 41× 384) to keypoint heatmaps,
short-range offsets, and mid-range pairwise offsets functions. The keypoint heatmaps
function with a Conv2D layer predicts 17 heatmaps of (1× 31× 41× 17) with a filter of
(17× 1× 1× 384) and a bias of (17). During training, the average logistic loss was considered
for predicted heatmaps. To improve the keypoint position accuracy, the short-range offsets
function with a Conv2D layer predicts short-range offset vectors pointing from the position
within the keypoint disks to the keypoint of the closest human instance [25]. During
training, the short-range offset prediction errors were penalized with the L1 loss, and only
the errors at the position in the keypoint disks were averaged and back-propagated. To
connect pairs of keypoints belonging to each human instance, the mid-range pairwise offset
function with two Conv2D layers and concatenation predicts separate pairwise mid-range
2D offset vectors, which are target regression vectors for each directed edge, connecting
pairs of keypoints that are adjacent to each other in a tree-structured kinematic graph of
the person. During training, the average L1 loss of the regression prediction errors over
the source keypoint disks was computed and back-propagated through the network. The
multi-person pose decoded function group keypoints into detected human instances using
Hough score maps and mid-range offset vectors. The Hough score maps can be obtained
by aggregating heatmaps and short-range offsets through Hough voting.

The pose score, which is the average of keypoint scores, is calculated using Expected-
Object Keypoint Similarity (OKS), keypoint heatmaps pk(x), and the Hough score maps
[42]. The detected human instance with key point coordinates ypj,pk is called pj, and λp j is
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the square root of the bounding box area, which tightly contains all detected keypoints of
the pj-th person instance. We define the Expected-OKS for the pk-th keypoint as:

spsj,psk = E
{

OKSpsj,psk

}
= pk

(
ypsj,psk

) ∫
x∈DR(ypsj,psk)

ĥpsk(x) exp

−
(

x− ypsj,psk

)2

2λ2
psjκ

2
psk

dx (7)

where ĥpsk(x) is the Hough score maps normalized to DR

(
ypsj,psk

)
. The Expected-OKS

keypoint level score is the confidence that a keypoint exists multiplied by the OKS lo-
calization accuracy confidence. The pose score is calculated as the instance-level score
sh

psj = (1/K)∑k spsj,psk, followed by non-maximum suppression (NMS).

spsj = (1/K) ∑
k=1:K

spsj,psk

[∥∥∥ypsj,psk − ypsj′ ,psk

∥∥∥ > r, for every psj′ < psj
]

(8)

where r = 10 is the NMS radius.
The PoseNet model has 1,180,147 parameters calculated by NConv 2D = {( fw × fh ×

fn) + 1} × fi where fw is the width of a filter, fh is the height of a filter, fn is the number of
filters in the previous layer, and fi is the number of filters.

3. Experimental Results

We describe experimental results to analyze the effect of CS rates and video resolutions
on the PoseNet model in the proposed AIoT system. First, the IoT-sensing device was
developed using a Raspberry Pi 4 Model B equipped with a C270 HD webcam to extract
and compress real-time videos at 30 frames per second (fps). Its IoT client application was
implemented by modifying an open-source IoT device platform, called &Cube-Thyme. For
the convenience of the experiment, we used three 50-second video clips [43] with 1280× 720,
640× 480, and 480× 320 resolutions pre-recorded by the IoT-sensing device. We used the
same video extracted at three video resolutions, the network input size of the PoseNet
model. Next, the AIoT edge server was developed by using a laptop equipped with a
Google Coral USB Accelerator, where we installed PyCoral, TensorFlow Lite Runtime, and
libedgetpu-max [44]. Its IoT edge middleware was implemented with an open source IoT
server platform, called Mobius.

Figures 3–5 show the outputs of the PoseNet model for original and recovered images
according to CS rates and video resolutions. It should be noted that the recovered images
are typically contaminated by recovery errors, measured for various values of the CS rate. In
Figure 3, the outputs of the PoseNet model are represented according to the CS rates when
the input video resolution is 1280× 720. Compared with Figure 3a, Figure 3b,d indicate
that the PoseNet model similarly detects keypoints of human instances but misconnects
some keypoints due to the recovery errors. The number of estimated human poses is
slightly reduced in Figure 3e, whereas it is significantly reduced in Figure 3f, where only a
few keypoints are detected. In Figure 4, the outputs of the PoseNet model are represented
according to the CS rates when the input video resolution is 640× 480. Comparing Figure 4a
with Figure 3a, the PoseNet model can estimate the human pose of the largest human
instance as well as that of the human instance climbing stairs. As shown in Figure 4d,e, it
can detect and connect some keypoints of the largest human instance. In Figure 4f, it can
not detect any keypoint of human instances due to severe recovery errors. In Figure 5, the
outputs of the PoseNet model are represented according to the CS rates when the input
video resolution is 480× 360. Figure 5b,c show that most keypoints of the largest human
instance are detected, but a few detected keypoints are misconnected. The number of
estimated human poses in Figure 5e is lower than the number of those in Figure 4e. As in
Figure 4f, no keypoint of human instances is detected in Figure 5f.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Outputs of the PoseNet model for video resolution of 1280× 720: (a) original image, (b) CS
rate of 90%, (c) CS rate of 70%, (d) CS rate of 50%, (e) CS rate of 30% and (f) CS rate of 10%.

(a) (b) (c)

(d) (e) (f)

Figure 4. Outputs of the PoseNet model for video resolution of 640× 480: (a) original image, (b) CS
rate of 90%, (c) CS rate of 70%, (d) CS rate of 50%, (e) CS rate of 30% and (f) CS rate of 10%

In Figure 6, pose scores of the PoseNet model are shown according to CS rates and
video resolutions, where the pose score denotes the overall confidence in pose estimation
and ranges between 0.0 and 1.0. The pose score is the average pose score for the entire frame
of each video. Regardless of video resolution, the pose score gradually decreased as the
CS rate decreased from 100% to 50%, but sharply decreased as the CS rate decreased from
50% to 10%. In addition, when the CS rate ranged from 100% to 50%, the PoseNet model
showed better pose scores at lower video resolutions. At the CS rate of 80%, we could
reduce the data traffic by 20%, but the pose score slightly decreased at all video resolutions.
At the CS rate of 70%, the data traffic was reduced by 30%, even though each pose score
for video resolutions of 1280× 720, 640× 480, and 480× 360 decreased by 0.0208, 0.0467,
and 0.0539, respectively. At the CS rate of 60%, we could reduce the data traffic by 40%,
but the pose scores for video resolutions of 640× 480, and 480× 360 decreased by more
than 0.05. Note that when the CS rate was 80% and the video resolution was 1280× 720,
we could reduce the data traffic by 20%, and the pose score only decreased by about 0.01.
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Therefore, we think that the CS rate of 80% and the video resolution of 1280× 720 are the
most suitable for the PoseNet model in the proposed AIoT system.

(a) (b) (c)

(d) (e) (f)

Figure 5. Outputs of the PoseNet model for video resolution of 480× 360: (a) original image, (b) CS
rate of 90%, (c) CS rate of 70%, (d) CS rate of 50%, (e) CS rate of 30% and (f) CS rate of 10%

Figure 6. Pose scores of the PoseNet model according to CS rates and video resolutions.

4. Conclusions

In this paper, we proposed an AIoT system consisting of an IoT-sensing device and
an AIoT edge server. The IoT-sensing device exploited a random sampling function of
compressed sensing for data traffic mitigation, and the AIoT edge server fulfilled the CS
recovery and domain transform functions of compressed sensing and a PoseNet model
based on the MobileNet v1 architecture for pose estimation. To investigate the trade-off
between data traffic mitigation and pose estimation accuracy (i.e. pose score), we analyzed
the effects of CS rates and video resolutions on pose estimation in the AIoT edge servers
in terms of pose score. In the meaningful range of CS rates from 100% to 50%, the higher
the video resolution, the lower the pose score. At the CS rate of 80%, we could reduce data
traffic by 20%, but the pose score decreased less than about 0.03 for all video resolutions.
When the range of CS rates from 50% to 10%, the quality of the recovered image is very
low, so it is difficult to properly estimate human pose and the pose score decreases sharply.
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Therefore, when the CS rate is 80% and the video resolution is 1280× 720, we can achieve
the most effective data traffic mitigation and pose score.
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