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Abstract: The problem of interoperability is still open in fingerprint presentation attack detection
(PAD) systems. This involves costs for designers and manufacturers who intend to change sensors of
personal recognition systems or design multi-sensor systems, because they need to obtain sensor-
specific spoofs and retrain the system. The solutions proposed in the state of the art to mitigate the
problem still require data from the target sensor and are therefore not exempt from the problem of
obtaining new data. In this paper, we provide insights for the design of PAD systems thanks to an
overview of an interoperability analysis on modern systems: hand-crafted, deep-learning-based, and
hybrid. We investigated realistic use cases to determine the pros and cons of training with data from
multiple sensors compared to training with single sensor data, and drafted the main guidelines to
follow for deciding the most convenient PAD design technique depending on the intended use of the
fingerprint identification/authentication system.

Keywords: fingerprint; presentation attack detection; interoperability

1. Introduction

Biometric technologies are gaining popularity owing to their reliability and ease. Faces,
fingerprints, and other biometric traits can identify individuals with a high degree of accu-
racy. Among these, the fingerprint is the most widespread due to its uniqueness and ease
of use. However, artificial fingerprint replicas, also called spoofs or presentation attacks
(PAs), can circumvent fingerprint-based personal recognition. Both consensual and non-
consensual procedures may be used to replicate a fingerprint. Consensual techniques need
the awareness and cooperation of the intended person, whereas nonconsensual approaches
are more dangerous and covert and are based on the acquisition of latent fingerprints left
unknowingly on reflective or partially reflective surfaces. Given that automated fingerprint
identification systems (AFIS) frequently secure sensitive and critical data, it is crucial to
equip them with presentation attack detectors (PADs) that help determinine whether the
fingerprint acquired by the sensor is genuine (live) or a replica (fake). Although PADs are
nowadays very accurate, their development and use still present open problems.

One of these is the so-called lack of interoperability. A PAD trained on data from one
sensor works precisely on images of that sensor. However, it can lead to much lower results
when used on images of different sensors. This is a frequent problem when a manufacturer
or user needs to replace the sensor of an authentication system with a more current and
high-performing device. In this case, in fact, it is not possible to use the previous PAD; the
system must be retrained, fine-tuned, or updated on new images. Obtaining these new
images may not be easy, as it requires multiple acquisitions of real users and fake fingerprints
made with different materials and techniques. Although some recently proposed works
aim to mitigate the problem of interoperability [1], they require a subset of the target sensor
samples. This makes interoperability an open and critical issue for AFIS systems, especially
when obtaining target samples at the design stage is difficult or even infeasible.
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Another open problem is the lack of ability of modern PADs to recognize PAs obtained
with acquisition techniques and/or materials not used during the training phase. Even in
this case, to make the PAD robust and able to recognize the greatest number of types of
PAs, a designer must predict, obtain, and use them in the training phase. Obtaining PAs
made with all known state-of-the-art techniques and materials can be very expensive.

As the organizers of the Fingerprint Liveness Detection Competition (LivDet) (https://
livdet.diee.unica.it/, accessed on 19 September 2022) we were able to observe some different
PAD training techniques among researchers. In fact, most of the LivDet competitors trained
their PADs on single-sensor data. This training procedure is recommended and rewarded
for the purposes of the competition because it allows a precise reading of the results
and associates cause and effect in the proposed challenges. However, other competitors
used all the data of the training sets from different acquisition sensors simultaneously,
and others on additional data compared to the training sets provided. These procedures
proved successful in the latest edition of the competition, LivDet 2021, obtaining the best
results in terms of presentation attack detection, even on the “advanced“ never-seen-before
attacks perpetrated by a new semi-consensual acquisition technique called ScreenSpoof [2].
Moreover, these large-trained algorithms have been shown to be particularly robust across
the sensors of the competition. Based on this evidence, we wondered to which extent
training on data acquired with multiple sensors helps detect artificial replicas. Is this
procedure truly beneficial in solving the interoperability and/or generalization problem?

To properly answer, we designed different PADs from scratch and investigated how
the performances change by varying the composition of the training set, exploring different
interoperability scenarios using LivDet 2013, 2019, and 2021 data sets. As a matter of
fact, although the problems of interoperability and generalization are well known at the
state of the art [3], this work aims to systematically analyze the various real application
contexts in which a PAD can be used. In particular, we represented and examined different
combinations between training and use contexts (intra-method and intra-sensor, cross-
method, cross-sensor, etc.) and then evaluated which ones can preferably be addressed
with a single-sensor training approach, i.e., with a PAD trained on data acquired from
a single sensor or with a multi-sensor training approach, that is, a PAD trained on data
acquired from different sensors. These experiments allowed us to outline the limits and
potentials of single-sensor and multi-sensor training solutions when tested on entirely or
partially unknown data.

2. Fingerprint Presentation Attack Detection and Interoperability
2.1. FPAD

The threat of fingerprint spoofs has been known since 1998, the year of publication
of the first paper that demonstrated the vulnerability of fingerprint sensors to artificial
replicas [4]. A few years later, the first hardware and software countermeasures were
proposed [5,6]. The PAD software systems focus on anatomical, physiological, and textural
properties and other features that can be extracted and used for matching purposes. As
in all fields of pattern recognition, the feature extraction and image classification phases
for the detection of presentation attacks have passed from hand-crafted approaches and
shallow classifiers to the deep-learning era. Among the hand-crafted extraction methods
are local descriptors such as SIFS, BSIF, LBP, and LPQ [7,8]. These approaches use a binary
code to characterize each pixel’s neighborhood, which is derived by computing the image’s
convolution with a collection of linear filters and then binarizing the filter responses. The
resulting feature vectors are often inputs to shallow classifiers such as SVM [9], but can
be input to complex neural networks. Other deep learning techniques are often based on
convolutional neural networks (CNN) [10]. They provide extremely high accuracy, but
require many training data and a significant amount of time and resources. In recent years,
the two types of techniques, hand crafted and deep learning-based, have been increasingly
combined to overcome limitations such as the difficulty of modern PADs to generalize
and the need for extensive computational resources. One example is Fingerprint Spoof

https://livdet.diee.unica.it/
https://livdet.diee.unica.it/
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Buster [11], which uses locally centered and aligned patches using fingerprint minutiae to
train a MobileNet-v1 model.

2.2. The Interoperability and Generalization Problem

The interoperability challenge is fundamentally connected to the hardware and soft-
ware variations between fingerprint acquisition sensors. Optical, solid-state, and ultrasonic
sensors are the three most common types of acquisition hardware. Each type of sensor
produces a particular distortion in the image linked to a different physical phenomenon,
which encodes the valleys and ridges. In addition to the kind of acquisition, scanners can be
grouped by image characteristics such as DPI (dot per inch), scan area, geometric precision,
etc. The interoperability problem across sensors was recognized in the first instance from
the point of view of fingerprint verification. Numerous works over the years have pro-
posed effective solutions to mitigate the drop in accuracy due to the scanner change [12,13].
Recently, this problem has also been addressed in the field of presentation attack detec-
tion, proving to be particularly critical. As a matter of fact, many modern solutions still
suffer poor generalization performance when tested on data not seen during the training
phase, leading to spoof detection error rates up to three times higher [14]. One potential
reason for this complexity in generalizing across sensors is that fingerprint images from
different sensors possess different textural characteristics (Figure 1). This complexity is
exacerbated by the employment of different acquisition procedures and materials between
the training and system use phases, which provides an additional degree of freedom to the
fingerprint’s appearance.

(a) (b) (c)

(d) (e)

Figure 1. Examples of acquisitions with different sensors: (a) Biometrika, (b) DigitalPersona, (c) Or-
canthus, (d) GreenBit, (e) Dermalog. The characteristics of the images are strictly influenced by the
acquisition technology.

In recent years, numerous works have aimed at overcoming these limits. For instance,
authors in [1,10,15] mitigated such differences by designing a style-transfer wrapper to add
on top of any CNN architecture in order to reduce the performance gap due to cross-sensor
evaluations. Their idea is to use a limited number of live fingerprints of the “new” sensor,
hereinafter called the target sensor, in order to project its style into live and spoof samples
coming from the “old” sensor. This new synthetically generated dataset is then employed
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to train a liveness detector from scratch, improving the average cross-sensor spoof detection
performance by approximately 13%.

Another plausible justification for the problem of interoperability is that the different
ways of representing the ridges and valleys of a fingerprint affects the frequencies of the
grey-level histogram of the images. Figure 2 supports this idea, where we can observe
the mean grayscale histogram for the five sensors investigated in this paper. Starting
from this peculiarity, Tuveri et al. [16] reached a significant level of interoperability by
shifting sensor-specific feature distributions based on the least squares algorithm. The
feature vectors were calculated by using textural algorithms. This solution is optimal since
it does not require any additional PAD training. Nevertheless, both live and spoof samples
are needed to relocate the feature space of the target sensor into that of the original sensor.

Figure 2. Mean histogram of grayscale for all the five considered datasets.

All these works generally acknowledge the need for a subset of the target sensor’s
samples to solve the interoperability problem. This inevitably leads to issues from an
economic point of view. In fact, effort and money are necessary to collect a spoof dataset; it
is essential to find volunteers willing to donate their fingerprints, fabricate fakes of each
finger with a substantial number of materials, and finally acquire them via the scanner.
Furthermore, based on the employed materials, costs can grow considerably.

The procedure shown in [15] is not affected by these obstacles. On the other hand, it
substitutes the original FPAD with a new one tailored to the target sensor. In many applica-
tions, this procedure is not feasible. Moreover, this implies that it would be challenging for
companies to scale up FPAD tools since each scanner would require its custom detector.

Therefore, with no access to the target sensor data, is it possible to mitigate the sensor
dependence on an FPAD system? The goal of this work is to answer this question.

3. Interoperability Scenarios for the Design of Fingerprint PAD

In this paper, we investigated to what extent the interoperability problem afflicts
modern PAD systems and whether some solutions such as training on multiple types
of data are beneficial or counterproductive. In particular, we want to evaluate whether
training on data from different sensors helps the system to generalize or if it allows to it
recognize more types of data, but lowers the general performance. For this purpose, we
identified the following project scenarios based on the concept of interoperability applied
to fingerprint sensors and the PAI fabrication methods:

• Intra-sensor and intra-method: this is the standard and optimal application scenario.
The PAD is used to analyze and classify images acquired with the same sensor used in
the training phase. The type of PAI used to attack the system is known by the system;
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• Intra-sensor and cross-method: this is a standard, but unfavorable application scenario.
The PAD is used to analyze and classify images acquired with the same sensor used
in the training phase. The type of PAI used to attack the system are unknown to the
system. Such a scenario is unpredictable by the designer as new replication methods
can be discovered and used after the PAD has been designed and trained;

• Cross-sensor and intra-method: the designer/manufacturer decides, knowing the
risks, to use a PAD trained on a sensor on a AFIS consisting of a different acquisition
sensor. This choice is not optimal, but is made for economic reasons or in the absence
of data to retrain/fine-tune a new PAD. The type of PAI used to attack the system is
known by the system, but since the acquisition sensor is different, the resulting images
could be very different;

• Cross-sensor and cross-method: as in the previous scenario, the designer uses a PAD
trained on a sensor on an AFIS consisting of a different acquisition sensor. Moreover,
the type of PAI used to attack the system is unknown to the system.

The first two scenarios exemplify the standard functioning of a PAD and allow us to
evaluate the system’s robustness to never-seen-before attacks.

On the other hand, cross-sensor scenarios assess the ability of PADs to generalize
concerning the scanner change. These are typically non-optimal cases, useful to assess a
situation in which a designer cannot easily collect the data with the new sensor or cannot
replace the PAD.

Experimental Protocol

To replicate the application scenarios identified in the previous section, we carried out
the following experiments:

• Intra-sensor and intra-method: the training set is partially or totally composed of data
belonging to the target sensor. The PAIs are created with the same method in the
two sets;

• Intra-sensor and cross-method: the training set is partially or totally composed of
data belonging to the target sensor. The spoofs of the training set were created with a
different method than the test set ones;

• Cross-sensor and intra-method: the training set does not contain data on the target
sensor. The PAIs are created with the same method in the two sets;

• Cross-sensor and cross-method: the training set does not contain information on the
target sensor. The spoofs of the training set were created with a different method than
the test set ones.

For each application scenario, we divided the experimentation into two protocols
based on the designer’s choice to use a pre-trained model or to train a model from scratch:

• Pre-trained: some competitors from the eighth edition of the Fingerprint Liveness
Detection Competition have been selected (Table 1). Certain of them used additional
data for training, although the use of only the LivDet 2021 training dataset was
recommended. This experiment is strongly representative of the current state of the
art, but it is not completely controlled, since the implementation details are unknown;

• Self-trained: the experiments are fully controlled and the details and training data are
known. In particular, (i) two hand-crafted PADs have been implemented consisting of
a feature extractor via BSIF and LBP, respectively, followed by a linear SVM classifier
and (ii) one deep-learning based PAD. The Spoof Buster method is implemented.

LBP and BSIF allow for obtaining a statistically meaningful representation of the finger-
print data by respectively applying hand-crafted and a fixed set of filters on sub-portions
of the image. The feature extraction step is followed by a shallow classifier, a linear SVM.
On the other hand, the Spoof Buster method is based on a CNN trained on local patches
centered and aligned using minutiae location and orientation.

The performances of the FPADs were evaluated using the ISO metrics [17], in particular,
(i) APCER (attack presentation classification error rate), that is, the rate of misclassified
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fake fingerprints; (ii) BPCER (bona-fide presentation classification error rate), that is, the
rate of misclassified live fingerprints; and (iii) liveness accuracy, the percentages of samples
correctly classified by the PAD.

Table 1. Characteristics of the pre-trained PAD LivDet 2021 competitors used for the analysis.

Participant Algorithm Name Type Acronym

Dermalog LivDet21ColC2 Deep-learning Col

LivDet21DobC2 Deep-learning Dob

Unesp contreras Hand-crafted con

Hangzhou Jinglianwen
Tech. Co., Ltd. JLWLivDetL Hybrid JLW

MEGVII (BEIJING)
Technology Co., Ltd.

megvii_single Deep-learning m_s

megvii_ensemble Deep-learning m_e

University of Applied Sciences Darmstadt PADUnk Hand-crafted PAD

Chosun University B_ld2 Deep-learning bld

Anonymous
bb8 Hybrid bb8

r2d2 Hybrid r2d2

4. Results
4.1. Dataset

In general, the cross-sensor analysis can be viewed as two separate cases: (i) all sensors
in the evaluation utilize the same sensing technology, and (ii) the sensing mechanisms differ.
We explored both cases and, in this respect, we utilized datasets from LivDet 2013, 2019, and
2021 competitions [18] in our experimental analysis. They consist of live and spoof finger-
print images from five different devices, which differ in scan area and sensing technology
(Table 2). The spoof images were collected using cooperative and non-cooperative methods
based on the LivDet edition.

Table 2. Device characteristics for LivDet 2013, 2019, and 2021 datasets.

Scanner Model Resolution [dpi] Image Size [px] Format Type

Biometrika FX2000 569 315x372 PNG Optical

Orcanthus Certis2 Image 500 300xN PNG Thermal swipe

DigitalPersona U.are.U 5160 500 252x324 PNG Optical

GreenBit DactyScan84C 500 500x500 BMP Optical

Dermalog LF10 500 500x500 PNG Optical

Furthermore, the materials used to fabricate the PAIs vary across the training and
the test sets, as reported in Tables 3 and 4. Due to this lack of knowledge of the spoofing
nature, we can simulate a true attack scenario, following the typical fingerprint PAD
evaluation protocols.

Table 3. Number of samples for each scanner employed in the training phase.

Training Sets Live Latex RProFast WoodGlue Ecoflex Gelatine

LivDet 2021 GreenBit Training 1250 750 750 - - -

LivDet 2021 Dermalog Training 1250 750 750 - - -

LivDet 2019 DigitalPersona Training 1000 250 - 250 250 250
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Table 4. Number of samples for each scanner employed in the test phase.

Dataset Test Set

LivDet 2021
GreenBit CC/SS

Live Mix1 BodyDouble ElmersGlue

2050 820 820 820

LivDet 2021
Dermalog CC/SS

Live GLS20 RFast30

2050 1230 1230

LivDet 2019
Orchantus

Live Mix1 Mix2 Liquid Ecoflex

990 384 308 396

LivDet 2013
Biometrika

Live Ecoflex Gelatine Latex Modasil WoodGlue

1000 200 200 200 200 200

4.2. Pre-Trained Analysis

To evaluate how much the problem of interoperability affects modern PADs, we stud-
ied the behavior of a selection of competitors in the latest edition of the LivDet competition.
The LivDet 2021 competitors’ detectors are typically composed of two models, each trained
on a different type of data: a set acquired with the GreenBit sensor and one with the
Dermalog sensor, the characteristics of which are reported in Section 4.1. Nevertheless,
some competitors claimed to have obtained a single model by training on both sets simulta-
neously; others added additional data to the training data. These cases will be marked with
a single (*) or double (**) asterisk, respectively. The results reported in the Tables 5 and 6
refer to the GreenBit and Dermalog test sets, respectively. Although half of the PADs show
a drop in the cross-sensor performance, the other half maintains the same accuracy. We
hypothesized that PADs with the same or similar intra-sensor and cross-sensor accuracy
were related to models trained on both sensors or additional data. This hypothesis is
confirmed by the competitors, who have declared this training approach (marked with
the asterisk). The PADs that have this behavior, that is, LivDet_Col_C2, LivDet_DOB_c2,
megvii, and PADUnk, are also the best detectors of the eighth edition of the competition on
the cross-method data, that is, the spoofs acquired with the semi-consensual ScreenSpoof
(SS) technique. We therefore wondered if the training technique on multiple types of data
could mitigate the problem of interoperability or make the PADs more robust to attacks
“never seen before”, such as fakes made on new materials or with new acquisition tech-
niques. However, these systems, except for megvii, are also the ones that, in the intra-dataset
scenario, have a higher APCER and perform worse.

Table 5. Results of LivDet 2021 competitors on test sets acquired with the GreenBit sensor. In particular,
GB CC is a test set acquired with the consensual technique, while GB SS is a test set acquired with the
ScreenSpoof technique. (*) indicates training on both GreenBit and Dermalog Livdet training sets. (**)
indicates training on additional data with respect to LivDet training sets.

Alg.

Trained on GB and
Tested on GB CC

Trained on DL and
Tested on GB CC

Trained on GB and
Tested on GB SS

Trained on DL
and Tested on GB SS

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

Col (**) 0.20 29.88 83.61 0.24 23.78 86.92 0.20 24.76 86.41 0.24 21.38 88.23

Dob (**) 0.59 25.41 85.88 0.44 29.84 83.53 0.59 3.25 97.96 0.44 4.72 97.23

con 8.98 3.94 93.77 1.85 80.69 55.14 8.98 26.67 81.37 1.85 94.55 47.58

JLW 2.59 8.21 94.35 0.20 87.76 52.04 2.59 54.11 69.31 0.20 79.76 56.41

m_s (*) 0.29 6.30 96.43 0.29 6.30 96.43 0.29 13.94 92.26 0.29 13.95 92.26

m_e (*) 0.05 2.72 98.49 0.05 2.72 98.49 0.05 13.62 92.55 0.05 13.62 92.55

PAD (*) 1.46 37.20 79.05 1.46 37.20 79.05 1.46 18.42 89.29 1.46 18.42 89.29

Bld 3.61 5.37 95.43 6.49 86.18 50.04 3.61 27.56 83.32 6.49 89.47 48.25

bb8 3.46 7.85 94.15 2.29 98.25 45.37 3.46 39.8 76.72 2.29 91.54 49.02

r2d2 2.20 12.36 92.26 1.66 96.34 46.70 2.20 57.93 67.06 1.66 89.02 50.69
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Table 6. Results of LivDet 2021 competitors on test sets acquired with the Dermalog sensor. In particular,
Derm CC is a test set acquired with the consensual technique, while Derm SS is a test set acquired with
the ScreenSpoof technique. (*) indicates training on both GreenBit and Dermalog Livdet training sets.
(**) indicates training on additional data with respect to LivDet training sets.

Alg.

Trained on DL and
Tested on DL CC

Trained on GB and
Tested on DL CC

Trained on DL and
Tested on DL SS

Trained on GB and
Tested on DL SS

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

Col (**) 1.61 26.71 99.18 1.51 0.29 99.16 1.61 58.86 67.16 1.51 61.5 65.76

Dob (**) 1.07 0.16 99.37 1.27 0.20 99.31 1.07 31.34 82.41 1.27 26.59 84.92

con 5.27 0.28 93.46 36.44 0.16 83.35 5.27 73.94 57.27 36.44 45.50 58.07

JLW 0.68 30.65 98.16 5.51 25.08 83.81 0.68 95.12 45.41 5.51 99.92 43.00

m_s (*) 0.83 2.80 99.20 0.83 0.77 99.20 0.83 29.07 83.77 0.83 29.07 83.77

m_e (*) 0.24 0.77 99.87 0.24 0.04 99.87 0.24 28.66 84.26 0.24 28.66 84.26

PAD (*) 2.68 13.13 96.16 2.68 4.80 96.16 2.68 24.72 85.30 2.68 24.72 85.30

Bld 2.59 4.80 94.28 5.85 0.37 97.14 2.59 77.97 56.30 5.85 22.03 85.32

bb8 2.39 8.33 96.58 3.61 49.59 71.31 2.39 69.51 46.03 3.61 99.88 43.88

r2d2 1.27 4.27 98.03 0.73 68.29 62.42 1.27 82.11 45.85 0.73 100.00 45.12

To control the experiment more and to select data that were unknown during the
training phase, we submitted images to the LivDet 2021 PADs acquired with two very
different sensors compared to those used during the eighth edition of the competition,
LivDet Orchantus 2019 and LivDet Biometrika 2013. The results of this analysis are shown
in Table 7. In this case, some data are unavailable, so we have to restrict the analysis to
six PADs. Apart from a few exceptions with megvii, all PADs show a significant drop in
performance and are completely ineffective on the new data. This is evident, above all,
from the results on Orchantus 2019, whose non-optical acquisition technology obtains very
different images compared to the sensors of the training set. It is worth underlining that,
based on the type of image, the error can be shifted entirely to fakes, as in the case of
Biometrika 2013, or entirely to live, as in the case of Orcanthus 2019. From these results,
we can hypothesize that training on different types of data improves the performance on
unknown attacks such as ScreenSpoof at the expense of a greater intra-sensor APCER. This
is evident, for example, from LivDet_Dob_C2 in Table 5, which, in the intra-method test (i.e.,
trained on the GreenBit train and tested on the consensual GreenBit test (GB CC), is among
the least accurate PADs with 85.88% accuracy, while in the cross-method test (i.e., trained
on the GreenBit train and tested on the GreenBit ScreenSpoof (GB SS) test), it is the highest
performing, exceeding 97% accuracy.

Table 7. Results of LivDet 2021 competitors on LivDet Biometrika 2013 and LivDet Orcanthus 2019
test sets. (*) indicates training on both GreenBit and Dermalog Livdet training sets.

Alg.

Trained on GB and
Tested on BK 2013

Trained on DL and
Tested on BK 2013

Trained on GB and
Tested on OR 2019

Trained on DL and
Tested on OR 2019

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

BPCER
[%]

APCER
[%]

Liv.
Acc. [%]

con 16.30 5.70 89.00 0.00 100.00 50.00 98.18 22.89 41.24 83.23 62.87 27.43

JLW 70.40 4.40 62.60 52.90 2.20 72.45 89.80 22.61 45.38 74.85 65.81 29.88

m_s 0.30 11.10 94.30 0.30 11.10 94.30 93.54 0.46 55.20 93.54 0.46 55.20

m_e 0.30 0.20 99.75 0.30 0.20 99.75 97.27 0.37 53.46 97.27 0.37 53.46

PAD (*) 0.00 92.40 53.80 0.00 92.40 53.80 53.64 39.34 53.85 53.64 39.34 53.85

Bld 18.17 34.00 73.65 16.10 97.70 43.10 99.80 0 52.45 81.21 10.02 56.06

However, the lack of controllability of the training phase is a limitation of this analysis.
For this reason, in the next section, we analyzed the behavior of completely self-trained
PADs where both the implementation and the training data were known.
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4.3. Self-Trained Analysis

Starting from the findings reported in the previous section, we decided to carry out new
experiments in which we carefully selected the training and test sets to evaluate different
interoperable scenarios. We chose the same training sets of LivDet 2021 to compare the
results directly and added the LivDet 2019 DigitalPersona dataset, keeping the same sensing
technology of GreenBit and Dermalog scanners. We then merged these three datasets in
different proportions while maintaining a regular training set size. Accordingly, we used
half or one-third of the datasets when we combined two or three of them, respectively. This
approach helps evaluate the impact of heterogeneous data on classification.

Thus, we designed three different PADs: two hand-crafted, based on a linear SVM
classifier trained with two of the most adopted textural algorithms at the state of the art,
namely BSIF and LBP [7,8]; and one based on the SpoofBuster algorithm [11]. We did not
carry out any parameter optimization since our purpose was not to design the optimal
PAD, but to enhance the improvement achievable when introducing samples coming from
multiple scanners.

As a first analysis, we investigated the PADs’ accuracies at a decision threshold of
0.5 score (range [0,1]) (Tables 8 and 9). Figure 3 illustrates the accuracy analysis visually to
make it easy to read. From these results, it can be seen that, except for some tests related to
LBP, the use of training on different types of data benefits the performance of the PADs.
Again, this benefit is nil in the case of the Orcanthus 2019 test, in which all our self-trained
PADs fail to classify the images. This is because this dataset is the only cross-sensing one.
In fact, its PAs were acquired with thermal swipe technology, while all the training sets are
related to optical technology, albeit with different sensors.

Table 8. Results in terms of accuracy, BPCER, and APCER with a threshold at 0.5 of BSIF, LBP, and
SpoofBuster PADs with different single-sensor and multi-sensor training techniques for LivDet 2021
datasets.

Scanner
DL CC DL SS GB CC GB SS

BPCER APCER Accuracy BPCER APCER Accuracy BPCER APCER Accuracy BPCER APCER Accuracy

BSIF

DL 4.93 11.02 91.75 4.93 55.85 67.29 3.56 47.11 72.68 3.56 58.25 66.61

DP 42.63 20.89 69.22 42.63 4.76 78.03 19.56 87.36 43.46 19.56 38.25 70.24

GB 8.49 14.31 88.34 8.49 86.50 48.96 4.49 18.98 87.61 4.49 52.64 69.25

DL+GB 4.83 10.00 92.35 4.83 73.05 57.96 5.46 17.68 87.87 5.46 30.41 80.93

DL+DP 5.66 9.96 92.00 5.66 45.77 72.46 2.39 75.16 57.92 2.39 46.95 73.30

DP+GB 9.76 15.57 87.07 9.76 42.64 72.31 7.07 9.35 91.69 7.07 18.41 86.74

DL+GB+DP 4.39 13.21 90.80 4.39 66.22 61.88 5.17 11.34 91.46 5.17 24.47 84.30

LBP

DL 5.80 14.15 89.65 5.80 76.26 55.76 37.02 43.17 59.62 37.02 44.59 58.85

DP 84.93 1.10 60.80 84.93 0.04 61.37 49.17 86.87 30.27 49.17 38.13 56.85

GB 24.83 16.59 79.67 24.83 92.03 38.51 8.59 23.90 83.06 8.59 56.54 65.25

DL+GB 6.73 24.02 83.84 6.73 96.30 44.41 12.63 28.09 78.94 12.63 64.47 59.09

DL+DP 11.27 16.50 85.88 11.27 32.64 77.07 15.95 78.29 50.04 15.95 60.61 59.69

DP+GB 37.56 7.97 78.58 37.56 26.67 68.38 10.68 31.59 77.92 10.68 31.10 78.18

DL+GB+DP 11.02 17.32 85.54 11.02 65.53 59.25 15.51 32.64 75.14 15.51 45.20 68.29

SpoofBuster

DL 1.22 2.60 98.03 1.22 99.23 45.32 1.71 30.57 82.55 2.83 63.37 64.15

DP 90.49 4.76 56.27 90.49 2.64 57.42 48.24 11.67 71.71 51.12 5.89 73.55

GB 1.36 32.15 81.84 1.37 99.80 44.94 2.34 4.71 96.36 2.14 43.82 75.12

DL+GB 1.37 2.89 97.80 1.37 98.54 45.63 1.27 5.45 96.45 1.41 36.91 79.22

DL+DP 1.02 6.54 95.96 1.02 99.88 45.05 8.93 31.50 78.76 12.54 34.39 75.54

DP+GB 4.24 10.61 92.28 4.24 77.80 55.63 1.12 6.91 95.72 1.12 21.50 87.76

DL+GB+DP 8.00 1.95 95.30 8.00 69.67 58.36 4.05 12.52 91.33 4.10 25.45 84.26
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Table 9. Results in terms of accuracy, BPCER, and APCER with a threshold at 0.5 of BSIF, LBP, and
SpoofBuster PADs with different single-sensor and multi-sensor training techniques for earlier LivDet
editions datasets.

Scanner
BK 2013 OR 2019

BPCER APCER Accuracy BPCER APCER Accuracy

BSIF

DL 71.80 0.10 64.05 99.90 0.00 52.41

DP 98.00 0.00 51.00 99.90 0.00 52.41

GB 3.10 98.20 49.35 96.67 4.41 51.64

DL+GB 33.00 3.20 81.90 99.70 0.00 52.50

DL+DP 49.30 1.30 74.70 100.00 0.00 52.36

DP+GB 7.30 72.30 60.20 99.29 0.00 52.69

DL+GB+DP 0.50 92.70 53.40 99.90 0.00 52.41

LBP

DL 0.00 95.00 52.50 96.57 2.11 52.89

DP 92.50 0.70 53.40 99.80 0.00 52.45

GB 30.50 34.10 67.70 99.09 1.19 52.17

DL+GB 0.00 96.30 51.85 89.49 29.50 41.92

DL+DP 0.00 99.60 50.20 91.41 8.36 52.07

DP+GB 43.20 31.50 62.65 100.00 0.00 52.36

DL+GB+DP 0.30 89.00 55.35 95.25 5.24 51.88

SpoofBuster

DL 74.50 1.10 62.20 83.23 18.84 50.48

DP 99.70 0.00 50.15 93.93 0.37 55.05

GB 0.20 96.70 51.55 80.60 20.86 50.67

DL+GB 80.60 1.50 58.95 94.14 2.48 53.85

DL+DP 94.00 0.00 53.00 99.80 0.28 52.31

DP+GB 42.20 13.50 72.15 93.84 0.46 55.05

DL+GB+DP 96.70 0.10 51.60 98.38 0.18 53.03

(a) (b) (c)

Figure 3. Comparison of self-trained protocol accuracies for (a) BSIF, (b) LBP, and (c) SpoofBuster
with different single-sensor and multi-sensor training techniques.

The next step has been to extend the investigation to all the liveness thresholds. The
resulting analysis suggests that the advantages of employing multiple sensors depend on
the final operating context. For a more precise reading, we have reported the errors related
to some specific operational points in Tables 10 and 11, in particular, the BPCER value when
the APCER is less than 5%, the APCER value when the BPCER is less than 5%, and the EER.
This allows the simulation of application contexts in which first- and second-type errors
weigh differently. The results indicate that, in an interoperable situation where avoiding
presentation attacks is a primary concern, utilizing diverse data sources is ineffective since
it increases the BPCER. In fact, in the intra-sensor and intra-method experiments, i.e.,
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training and testing on data obtained from the same sensor and acquisition method, the
use of additional data increases the error. Conversely, if the system is to be used in critical
applications and the priority is to avoid rejecting genuine users, adding various sensors in
the training set improves the spoof detection. This is especially evident when PADs are
assaulted with never-seen-before attacks in the cross-method scenario, but it is also true in
the intra-sensor and intra-method scenarios. For example, note the behavior of the PAD
SpoofBuster when tested on consensual GreenBit data (GB CC); training on GreenBit data
alone leads to an APCER at 5% and a BPCER equal to 9.88%; adding Dermalog data during
the training phase drops the error to 6.41%. About the same improvement is obtained by
adding DigitalPersona data.

ROC curves shown in Figures 4–9 give us more insights about these scenarios. They
highlight that for the BSIF detector, training on GreenBit, Dermalog, and DigitalPersona
is optimal at various operational points; for the SpoofBuster detector, the most effective
combination is given by training on GreenBit and DigitalPersona.

It is also easy to see how the training can sometimes be ineffective; for instance, a BSIF-
based PAD cannot distinguish the images coming from the Orcanthus sensor (Figure 5),
and the LBP-based detector even reciprocates the classes, namely, it predicts a negative class
as a positive class and vice versa, since the ROC is u-shaped. This case is frequent when
DigitalPersona is used as the only dataset for training in combination with hand-crafted
features. This is due to the great difference in the characteristics of the images acquired
with the DigitalPersona sensor compared to those of GreenBit and Dermalog, as is evident
from Figure 1. This behavior highlights how the same sensing technology does not always
equate to a correspondence between the images’ characteristics. In designing the PAD
training phase, it is, therefore, necessary to know these characteristics to face a cross-sensor
scenario. However, the minutiae-based approach of the FSB partly solves the difficulties
of the textural algorithms, proving to be more efficient when trained on DigitalPersona,
especially in the cross-scenarios. For this reason, we further investigate this method’s
behavior through its probability distributions (Figures 10–15).

Table 10. Results in terms of accuracy, BPCER, and APCER at different operational points of BSIF,
LBP, and SpoofBuster PADs with different single-sensor and multi-sensor training techniques for
LivDet 2021 datasets.

Scanner
DL CC DL SS GB CC GB SS

APCER (%)@
BPCER = 5%

BPCER (%)@
APCER = 5% EER APCER (%)@

BPCER = 5%
BPCER (%)@
APCER = 5% EER APCER (%)@

BPCER = 5%
BPCER (%)@
APCER = 5% EER APCER (%)@

BPCER = 5%
BPCER (%)@
APCER = 5% EER

BSIF

DL 100.00 17.07 6.32 100.00 100.00 17.40 75.49 100.00 15.16 83.82 100.00 16.34

DP 100.00 72.00 35.18 100.00 62.39 20.78 100.00 100.00 53.42 100.00 100.00 28.83

GB 100.00 100.00 11.00 100.00 100.00 50.42 57.85 14.05 6.57 80.28 100.00 16.28

DL+GB 100.00 18.63 6.48 100.00 100.00 27.79 60.89 17.32 8.03 70.24 100.00 11.93

DL+DP 65.24 23.27 6.92 86.71 100.00 19.28 88.86 100.00 25.88 61.46 100.00 14.19

DP+GB 100.00 48.39 11.41 100.00 100.00 17.85 72.76 17.66 7.87 74.27 24.63 9.96

DL+GB+DP 62.97 21.95 6.67 96.14 100.00 17.81 60.20 15.37 6.79 68.01 29.90 10.84

LBP

DL 61.67 23.22 9.04 94.27 100.00 32.00 100.00 100.00 38.78 100.00 100.00 39.83

DP 100.00 85.27 42.80 100.00 80.68 40.61 100.00 100.00 67.33 100.00 100.00 44.29

GB 100.00 60.20 21.73 100.00 100.00 58.45 100.00 100.00 13.73 100.00 100.00 23.01

DL+GB 100.00 40.05 12.27 100.00 100.00 48.85 100.00 100.00 16.63 100.00 100.00 29.11

DL+DP 81.22 37.66 12.63 86.38 100.00 18.66 100.00 100.00 35.97 100.00 100.00 33.59

DP+GB 100.00 61.85 25.95 100.00 100.00 31.79 76.10 100.00 17.83 70.69 100.00 18.11

DL+GB+DP 100.00 44.73 12.98 100.00 100.00 30.11 100.00 100.00 20.07 100.00 100.00 24.79

SpoofBuster

DL 3.98 2.20 1.78 99.51 100.00 24.22 41.26 100.00 9.43 86.99 77.80 21.46

DP 100.00 96.34 51.09 100.00 93.27 35.58 97.20 100.00 29.57 100.00 76.83 24.50

GB 36.79 33.95 8.75 99.92 100.00 58.74 9.88 100.00 3.55 62.64 60.49 12.39

DL+GB 5.69 3.56 1.95 99.51 100.00 26.35 6.14 100.00 3.40 43.09 57.12 9.81

DL+DP 6.54 5.80 2.80 99.88 100.00 34.83 84.51 100.00 16.87 87.89 73.12 21.10

DP+GB 33.25 22.88 6.71 95.20 56.29 22.66 7.20 100.00 3.57 28.01 38.24 6.21

DL+GB+DP 24.27 12.49 4.38 99.80 53.32 22.25 43.70 100.00 7.51 62.64 35.80 9.09
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Table 11. Results in terms of accuracy, BPCER, and APCER at different operational points of BSIF,
LBP, and SpoofBuster PADs with different single-sensor and multi-sensor training techniques for
earlier LivDet editions datasets.

Scanner
BK 2013 OR 2019

APCER (%)@
BPCER = 5%

BPCER (%)@
APCER = 5% EER APCER (%)@

BPCER = 5%
BPCER (%)@
APCER = 5% EER

BSIF

DL 100.00 62.50 31.50 100.00 99.49 49.84

DP 100.00 93.00 46.50 100.00 99.60 49.80

GB 99.30 100.00 50.45 100.00 98.59 51.27

DL+GB 100.00 45.40 18.40 100.00 98.89 49.49

DL+DP 100.00 53.10 20.70 100.00 100.00 50.00

DP+GB 100.00 100.00 28.60 100.00 97.98 48.99

DL+GB+DP 89.70 100.00 38.65 100.00 96.36 48.18

LBP

DL 90.80 100.00 45.55 100.00 97.68 51.83

DP 100.00 91.90 45.90 100.00 99.80 49.90

GB 100.00 100.00 32.95 100.00 99.49 54.36

DL+GB 100.00 100.00 46.30 100.00 100.00 67.99

DL+DP 100.00 100.00 49.50 100.00 97.78 54.94

DP+GB 100.00 100.00 35.25 100.00 97.07 49.09

DL+GB+DP 85.20 100.00 42.45 100.00 98.99 59.95

SpoofBuster

DL 95.20 75.50 31.15 100.00 97.58 50.18

DP 100.00 87.20 32.25 100.00 91.41 28.26

GB 87.60 100.00 21.65 98.90 99.70 51.09

DL+GB 100.00 84.50 39.55 100.00 97.17 42.72

DL+DP 100.00 79.60 37.45 100.00 99.60 49.01

DP+GB 92.70 74.70 28.05 94.03 88.69 32.62

DL+GB+DP 100.00 87.30 46.60 100.00 94.65 47.65

Figure 4. Comparison between ROCs of our self-trained PAD systems in an intra- (dashed) and cross-
(solid) sensor scenario on the Biometrika dataset from LivDet 2013.



Appl. Sci. 2022, 12, 9941 13 of 18

Figure 5. Comparison between ROCs of our self-trained PAD systems in an intra- (dashed) and cross-
(solid) sensor scenario on the Orcanthus dataset from LivDet 2019.

Figure 6. Comparison between ROCs of our self-trained PAD systems in an intra- (dashed) and cross-
(solid) sensor scenario on the Dermalog Consensual dataset from LivDet 2021.

Figure 7. Comparison between ROCs of our self-trained PAD systems in an intra- (dashed) and cross-
(solid) sensor scenario on the Dermalog ScreenSpoof dataset from LivDet 2021.

Figure 8. Comparison between ROCs of our self-trained PAD systems in an intra- (dashed) and cross-
(solid) sensor scenario on the GreenBit consensual dataset from LivDet 2021.
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Figure 9. Comparison between ROCs of our self-trained PAD systems in an intra- (dashed) and cross-
(solid) sensor scenario on the GreenBit ScreenSpoof dataset from LivDet 2021.

(a) (b)

Figure 10. Probability distributions of (a) real and (b) fake fingerprint scores of the GreenBit consen-
sual dataset obtained by the PAD Spoofbuster.

(a) (b)

Figure 11. Probability distributions of (a) real and (b) fake fingerprint scores of the GreenBit Screen-
Spoof dataset obtained by the PAD Spoofbuster.

(a) (b)

Figure 12. Probability distributions of (a) real and (b) fake fingerprint scores of the Dermalog consensual
dataset obtained by the PAD Spoofbuster.
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(a) (b)

Figure 13. Probability distributions of (a) real and (b) fake fingerprint scores of the Dermalog Screen-
Spoof dataset obtained by the PAD Spoofbuster.

(a) (b)

Figure 14. Probability distributions of (a) real and (b) fake fingerprint scores of the Biometrika 2013
dataset obtained by the PAD Spoofbuster.

(a) (b)

Figure 15. Probability distributions of (a) real and (b) fake fingerprint scores of the Orchantus 2019
dataset obtained by the PAD Spoofbuster.

Optimal distributions are represented by unimodal distributions with low variability,
averaging equal to zero for lives and equal to one for fakes. Besides confirming the
observation previously presented, this representation allows us to appreciate the impact of
training with multiple data on the classification. The use of multiple data in the training
phase allows us, in fact, to obtain mono-modal distributions using datasets that individually
lead to multi-modal distributions or distributions with averages far from the optimal ones.

This is evident from the GreenBit ScreenSpoof data distributions (Figure 11), in which
the model trained on GreenBit and DigitalPersona positively exploits the GreenBit contribu-
tion on lives and the DigitalPersona contribution on fakes, allowing it to obtain a minimum
overlap with respect to the distributions of the single models (brown curve). Furthermore,
this analysis allows us to explain why fusion does not influence cross-sensor scenarios with
different sensing technology, as in the case of the Orchantus experiments. The samples
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acquired with the Orchantus sensor, in fact, always correspond to a low output score for
all the tested models. The models cannot represent the two classes and all the samples
are classified as fake. The fusion, therefore, fails to bring benefits because the information
at the base is missing; there are no representative samples in the training phase. This
shows that the benefit of training on different types of data must be adequately designed
to cover all the types of data that the system must be able to recognize; if data are not
available on a specific sensor to be integrated into an AFIS, it is necessary to find data as
close as possible in terms of image characteristics to those of the target sensor. This is also
demonstrated by the results on Dermalog ScreenSpoof (DL SS). Training on the DigitalPer-
sona and GreenBit combination obtains an EER almost equal to or less than training on
Dermalog data. The GreenBit data are very similar in terms of image characteristics to
those of Dermalog. Using DigitalPersona data increases the ability to generalize and better
recognize cross-method data.

5. Discussion and Conclusions

In this paper, we analyzed the impact on cross-sensor use of introducing variety in the
type of training data, i.e., when the test data has been acquired with a different sensor than
the training data; and on cross-method use, i.e., when the test data have been acquired with
different techniques. This allowed us to provide some insights to PAD designers based
on cost/efficiency trade-offs and the specific application context of the system. We have
reported the main findings of our investigation in Table 12, from which we can derive the
following guidelines:

• For intra-method and intra-sensor experiments, training on the target sensor is prefer-
able; however, training on multiple sensors does not significantly worsen the results;

• For cross-method experiments, training on different types of images allows obtaining
better results for operational points relative to low APCERs. In general, using numer-
ous data for ScreenSpoof tests at the EER is comparable to or better than the single
best training;

• For the cross-sensor experiments, it is not possible to detect a benefit related to the use
of training on multiple sensors. However, even single-sensor training does not result
in effective PADs, showing that the interoperability problem is still open, and it is not
possible to solve it without references from the target sensor. In particular, the need to
use in training =the same sensing technology for data acquisition with respect to that
expected during system operation was highlighted.

To sum up, if the usage of the AFIS is entirely controlled, there is no expectation of
sensor change over time and there is a low probability of falsification using unknown
techniques. It is preferable to train with specific target data. If the aim is to make the
system more robust to never-before-seen attacks, it is preferable to train it on different data
sources. However, an analysis of the image characteristics is necessary to select the best
training data.

This work also highlights the need for an in-depth study of the characteristics of both
live and fake fingerprint images to obtain a representation capable of including all intra-
class variations due to different factors such as sensing technology, sensor size, materials,
techniques for making a fake (for PAs), or skin conditions (for lives).
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Table 12. Pros and cons of training on data acquired with multiple sensors for the investigated scenarios.

Scenario Property Multi-Sensor Training Pros Multi-Sensor Training Cons

Intra-sensor and
intra-method

• Same sensor in
training and test sets;

• Same method of
spoof fabrication.

-
• Increase the BPCER;

• Effectiveness depends
on the final operating context.

Intra-sensor and
cross-method

• Same sensor in
training and test sets;

• Different methods of
spoof fabrication.

• More robust to PA committed
with unknown methods;

• Better results for operational
points relative to low APCERs.

-

Cross-sensor and
intra-method

Intra-sensing
•

Different sensors in
training and test sets,
but with the same sensing
technology (e.g., all optical);

• Same method of
spoof fabrication.

• Low training costs;
• Beneficial, especially on APCER. • Improvement depends

on the quality of the PAD.

Cross-sensing
•

Different sensors in
training and test sets,
with different sensing
technologies (e.g., optical
and capacitive);

• Same method of
spoof fabrication.

- •
Ineffective: images could
be very different, leading
to a low accuracy.

Cross-sensor and
cross-method

Intra-sensing
•

Different sensors in
training and test sets,
but with the same sensing
technology (e.g., all optical);

• Different methods of
spoof fabrication.

• Low training costs;

•

General improvement with
multi-sensor training; the BPCER
at stringent operational
thresholds improves considerably;

• Better accuracy then single sensor training.

-

Cross-sensing
•

Different sensors in
training and test sets,
with different sensing
technologies (e.g., optical
and capacitive);

• Different methods of
spoof fabrication.

Not evaluated.
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Abbreviations
The following abbreviations are used in this manuscript:

PAD Presentation Attack Detection
FPAD Fingerprint Presentation Attack Detection
SIFS Scale Invariant Feature Transformation
BSIF Binarized Statistical Image Features
LBP Local Binary Pattern
LPQ Local Phase Quantization

https://livdet.diee.unica.it/
https://livdet.diee.unica.it/


Appl. Sci. 2022, 12, 9941 18 of 18

SVM Support Vector Machine
CNN Convolutional Neural Networks
APCER Attack Presentation Classification Error Rate
BPCER Bona fide Presentation Classification Error Rate
ROC Receiver Operating Characteristic
GB GreenBit dataset—LivDet 2021 train
GB CC GreenBit consensual dataset—LivDet 2021 test
GB SS GreenBit ScreenSpoof dataset—LivDet 2021 test
DL Dermalog dataset—LivDet 2021 train
DL CC Dermalog consensual dataset—LivDet 2021 test
DL SS Dermalog ScreenSpoof dataset—LivDet 2021 test
BK Biometrika dataset—LivDet 2013 test
OR Orcanthus dataset—LivDet 2019 test
DP DigitalPersona dataset—LivDet 2019 train
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