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Abstract: Diagnosis of bearings and gears, traditionally uses the envelope (i.e., demodulation) ap-
proach. The spectral kurtosis (SK) is a technique used to identify frequency bands for demodulation.
These frequency bands are related to the structural resonances, excited by a series of fault-induced
impulses. The novel approach for bearing/gear local fault diagnosis is proposed, based on division
of bearing/gear vibration signals into specially defined short duration segments and simultane-
ous processing of SKs of all these segments for damage diagnosis. The SK-filtered vibrations are
used for diagnostic feature extraction further subjected to the decision-making process, based on
k-means and k-nearest neighbors. The important feature of the proposed approach is robustness
to random slippage in bearings. The experimental validation of a bearing inner race local defects
(1.2% relative damage size), and simulated gear vibration (15% relative pitting size), shows a very
good diagnostic performance on bearing vibrations and gear vibrations to diagnose local faults.
Novel diagnostic effectiveness comparison between the proposed technology and wavelet-based
technology is performed for diagnosis of local bearing damage.

Keywords: gearbox; bearing; vibrations; diagnosis; spectral kurtosis

1. Introduction

General wear of bearings and gears often leads to unexpected failures, causing un-
scheduled maintenance interventions, downtime, and economic losses. In the literature,
the vibration-based approaches for bearing and gear diagnosis have been widely studied
and a variety of processing techniques is currently available [1–10].

Gearbox diagnostic features measure the impulse responses, introduced to gearbox
during operation, when pitted teeth come into meshing contact, or bearing rolling elements
pass through the faulty races. Damaged components in contact will excite high-frequency
resonances of the structure. Moreover, a series of impulse responses in the vibration signal
are modulated by shaft or cage frequencies, which is the key fault signature to be recognized
in fault identification and localization.

One of the most commonly used approaches is the demodulation analysis (i.e., enve-
lope analysis), where a vibration signal is band-pass filtered and demodulated [2,3,6–9,11].
The spectrum of the envelope is used to detect characteristic defect frequencies in the
low-frequency range. Although useful, this approach presents some disadvantages due to
the need for selection of the demodulation frequency band and poor performance under
high noise levels [3].

To address the challenge of the demodulation frequency band selection, an adaptive
SK technique has been proposed and applied to the diagnosis of bearings [2,12–19] and
gears [19–22]. As an extension to the SK approach, the fast kurtogram technique has been
proposed to determine the optimal SK resolution parameter and generalize the SK approach
to a wider class of non-stationary signals [13,14,23]. Furthermore, the SK technique has
been used to design detection filters, such as an optimal denoising (Wiener) filters, to extract
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non-stationary component with the highest level of impulsiveness from the background
stationary noise [24].

Despite improvements, the above techniques did not address varying nature of bearing
and gear signals due to a fault progression, a bearing slippage, and varying transmission
path. In these conditions, damage-related frequency bands, estimated by the SK, can
become less effective resulting in a poor denoising and a non-effective fault diagnosis.

Therefore, in this study, we propose a novel technology based on simultaneous pro-
cessing of SKs and the optimal denoising (Wiener) filter to address these challenges in
rolling element bearings and gearboxes. The main novelty of the technology is a division of
bearing/gear vibration signals into specially defined short duration segments, and simulta-
neous processing of SKs of multiple segments for damage diagnosis. The short duration of
segments is defined as a specific time duration corresponding to the slowest modulating
frequency of a component. Segments angular alignment, using the cross correlation, allows
tracking of impacts, produced by the same rolling element or tooth.

Low speed fluctuations are compensated by applying the angular resampling pro-
cedure [24,25]. The frequency bands, selected by the SK for filtering/demodulation, are
adapted for each short duration vibration segment to ensure accurate estimation of fre-
quency bands, filtering of the stationary noise, and extraction of—the SK-filtered signals.
The SK-filtered signals are demodulated, and a squared envelope is used as the diagnostic
feature.

Another paper novelty is a novel diagnosis effectiveness comparison of the proposed
technology and wavelet-based technology for diagnosis of local bearing damage.

The main objectives of this paper are:

• to experimentally validate the proposed technology via a bearing test rig during
operation under undamaged and damaged conditions,

• to validate the proposed technology via simulation on simulated gear vibration data
under undamaged conditions and 15% pitted surface damage, distributed among
all teeth,

• to perform a novel diagnostic effectiveness comparison between the proposed technol-
ogy and wavelet-based technology for diagnosis of a local bearing damage.

2. The Proposed SK Diagnosis Technology
2.1. The SK and Optimal Denoising Filtering

The spectral kurtosis (SK) is interpreted in [12] as an adaptive technique used to deter-
mine the most suitable frequency band for an extraction of the non-stationary component.
It extends the statistical measure of the kurtosis to the function of frequency and indicates
how the impulsivity in the signal is distributed in its frequency domain. As defined in [12],
the spectral kurtosis K(f ) of the signal x(t) is the fourth-order spectral moment:

K( f ) =

〈
|X(t, f )|4

〉
〈
|X(t, f )|2

〉2 − 2 (1)

where 〈〉 is the time average operator and X(t, f ) represents the complex envelope of the
signal x(t).

The X(t, f ) may be estimated by the short-time Fourier transform (STFT) by moving a
relatively short window along the signal. The subtraction of 2 in Equation (1) is used to set
K(f ) = 0 in the case X(t, f ) contains only noise.

The SK can be used to design detection filters since it takes large values at those
frequencies where impulsivity is dominant and low values where there is noise only [3].
It is shown in [8] that the SK of the sum y(t) = x(t) + n(t) where x(t) is the non-stationary
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component and n(t) is the stationary Gaussian noise, can be related to the SK of the non-
stationary part x(t) by

Ky( f ) =
Kx( f )

[1 + ρ( f )]
(2)

where ρ( f ) = Sn( f )
Sx( f ) is the ratio of the power spectral densities of n(t) and x(t), reflecting the

noise-to-signal ratio with respect to the frequency.
The signal to noise ratio will be high (i.e., f ≈ 0) within the resonance bandwidth and

low outside, in other words, the Ky( f ) ≈ Kx( f ) within the same bandwidth and Ky( f ) ≈ 0
otherwise [13]. Under these assumptions, the Wiener filter

W( f ) =
1

1 + ρ( f )
(3)

is proportional to the square root of the SK, which offers a possibility for SK to identify the
optimal filter W(f ) for extraction of transients from stationary components [12,13]:

Ŵ( f ) =
√

Ky( f ) f or Ky( f ) > s 0 otherwise (4)

The SK should be compared to the significance threshold, indicating the values signifi-
cantly greater than zero. In [7,8] a statistical significance threshold s = sα is calculated on
behalf of the properties of the Gaussian noise. Supposing that the signal is only Gaussian
stationary noise, the STFT-based SK has a normal distribution with zero mean and variance
4
N , where N is the number of averages. A statistical threshold given at level of significance
is sα = u1−α

2√
N

, where u1−α is the percentile of the normal distribution at 1− α and all
values below this level will have probability of 1− α of not being a transient [13].

2.2. The Procedure for Extraction of Diagnostic Feature

Figure 1 shows the steps of the proposed technology, which concludes with extraction
of the diagnostic features, used for the final diagnosis purposes.

(a) Angular resampling

Systems operating under fluctuating speed (low level of fluctuation) can inaccurately
track shaft instantaneous speed and cause spectral smearing of shaft harmonic frequencies.
Sampling vibrations signals at constant angular intervals by using optical encoders can
alleviate this problem. This is done by interpolating the space between tachometer pulses
to obtain the new sample times.

(b) Segmentation into segments

The novel technology proposes segmentation of the vibration signal into specially
selected short segments; segment duration is defined as 1

( fr − FTF) seconds for inner race

defect, and 1
fr

for gear defects, where fr is the rotational frequency and FTF the cage fault
frequency. Duration of each bearing segment is selected in a way, that faulty area is coming
into contact with all N rolling elements, and, thus, producing exactly N impulse responses
per segment in case of a defective bearing. In case of gears, a gear segment should cover
one shaft revolution when all teeth once come into meshing.

(c) Time synchronous averaging (TSA) of gear vibration signal and removal of
gear-mesh components
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Prior to the estimation of the SK and filtering, the raw vibration signal needs to be
pre-processed to isolate vibrations of a single component and remove interfering periodic
components. Therefore, in case of gears, the SK should be estimated on a gear residual
signal, which is obtained by time synchronous averaging and cleaning of periodic gear
mesh components.

The time synchronous average (TSA) mt is estimated as the signal average (first order
cyclostationary part) on the selected cycle [6] as:

m(t) =
1

Nr

Nr−1

∑
k=0

x(t− kTr) (5)

where Tr is the period of rotation of the shaft of interest and Nr the number of rotations for
the averaging.

The effect of incipient gear tooth fault will be to create a low intensity impact, which
may not be visible in the TSA signal itself. Since high intensity mesh harmonics are masking
these low intensity impacts, the common practice is to extract these mesh harmonics to
form the classical residual signal r(t) [26]. It is shown that the process of removing mesh
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harmonics is in fact equivalent to the subtraction of an averaged tooth meshing vibration
(the regular signal) from the original TSA signal [27], which reads

r(t) = m(t)− 1
Nt

Nt−1

∑
k=0

m(t− kTm) (6)

where Tm is the mesh period and Nt the number of teeth of the gear of interest.

(d) Estimation of the spectral kurtosis (SK) and denoising filter

Each signal segment is subjected to the estimation of the SK using Equation (1).
The Hamming window is used for STFT estimation, in which the main parameter is the
window length. The length should be smaller than the distance between two impulses and
larger than the length of a single impulse response [3]. By following these guidelines, the
length can be chosen based on BPFI, or Fgmf, as they are related to the frequency of the
excitation impulses.

In this study, the window length of 1/10 times the duration between consequent
impulses is used for processing bearing vibration data, which corresponds to the frequency
resolution of 10 times of the bearing characteristic defect frequency. A window size equal
to half meshing period is used for estimation of the SK of gear simulated vibrations.

The SK is used to define the Wiener filter by Equation (4). Before filtering, the SK
should be compared to so-called the “significance threshold” s that indicates the values
of SK greater than the SK produced by the Gaussian noise. It is proposed in [12,13] to
use the static statistical significance threshold to filter out all noise components with 1− α
probability of not being produced by transients. This way, the filter will produce near-
to-zero SK-residuals in the fault-free case, when mostly stationary noise is present, and
non-zero SK-residuals in the faulty case.

(e) SK based optimal denoising (Wiener) filtering

Upon estimation of the filter using SK, the filtering is performed in the frequency
domain as:

Yi( f ) = Ŵ( f ) · Xi( f ) (7)

where Xi( f ) is the Fourier transform of the i-th segment of the raw vibration xi(t), and
Yi( f ) is the Fourier transform of the i-th segment of the SK-filtered signal yi(t), containing
non-stationary impulsive components.

(f) Diagnostic feature extraction SK-filtered squared envelope

The SK- filtered yi(t) can be considered as an amplitude modulated signal, where
the amplitude modulation part, also known as the envelope, reflects the degree of non-
stationarity of the fault-induced transients. The envelope can be extracted, using the Hilbert
transform [28], and the final diagnostic feature is defined as the squared envelope, reflecting
the power of the SK-filtered signal.

(g) Angular alignment of segments by cross correlation to compensate for bearing
random slip

To clarify the impulses, which may be affected by random bearing slippage, it is
proposed a novel improvement to the squared envelope diagnostic features by aligning the
impulses using the cross-correlation approach via the following steps:

1. Initial segment i is considered as a reference to align segment i + 1 by maximizing
the cross correlation.

2. The mean of aligned segments i and i + 1 is taken as a new reference and used to
align segment i + 2.

3. The mean of aligned segments i, i + 1, and i + 2 are then used to define the new
reference to align segment i + 3, and so forward.

The result of the alignment process are straightened lines of impulses allowing to track
these impulses, caused by the same ball/roller.
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2.3. Diagnosis Effectiveness Estimation

Characterization of technology diagnostic effectiveness is achieved by means of the
Fisher criterion (FC) [28], following authors in refs. [4,15,29–36], who also applied the FC
to measure a technology diagnostic effectiveness. Thus, we are able to directly compare
diagnostic technologies and to evaluate a diagnostic effectiveness, using the FC. The FC is a
statistical measure that uses the ratio of the between-class scatter to the within-class scatter
to indicate the level of feature separation between damaged and undamaged conditions.
For validation of the SK based diagnostic features, the FC is applied as [28]:

FC(θ) =
(µD(θ)− µND(θ))

2

σ2
D(θ) + σ2

ND(θ)
(8)

where µ and σ2 are, respectively, the mean and variance of the diagnostic features estimated
for all segments, D and ND indicate damaged and undamaged conditions, respectively.

The novel decision-making method to rolling element bearings, based on the k-nearest
neighbors (kNN) and the majority rule [24,37], is applied in this study. The method
considers as training and testing diagnostic features the maximum values of squared
envelope from each segment. The approach first creates M one-dimensional clusters of the
fault free training data by using the k-means method. After clustering, the calculation of
the novelty scores for testing data is done in the following five steps:

• The nearest neighbor distance dNN1ij is calculated for each training data sample xij
in the cluster j, where i = 1, . . . ,Nj and j = 1, . . . ,M. Nj is the number of samples in
cluster j and M is the number of clusters.

• The k maximal NN distances among the Nj-1 NN distances are used for each cluster
and their mean value D1j = EmaxdNN1ij is calculated.

• Euclid distances between testing data sample yi and training data samples xj in cluster
j are calculated.

• The averaged kNN distance dNN2 for cluster j and test data sample is then calculated
as the mean value of k minimal NN distances.

• The novelty score of the test data sample for cluster j, NSij, is calculated as the ratio
between distances D1 and D1 and average kNN distance dNN2 as NSij = dNN2ijD1j
and the minimal novelty score for sample yi is selected.

After decisions are obtained, the total probability of correct diagnosis is used to
estimate diagnosis effectiveness.

3. Experimental Technology Validation for Bearing Race Defect

The experimental rig (Figure 2) has a coupled variable speed drive (VSD) motor with
20–60 Hz shaft rotation frequency, adjusting eccentricity of the coupling, and angular or
parallel misalignment. The shaft is supported by three pillow block rolling element bearings
of the same specification (FK UCP203), where two bearings are fixed (left and middle) and
one is a replaceable testing bearing (right).

The specifications of the testing bearing are shown in Table 1, which lists characteristics
of bearing geometry and frequencies related to defect of an inner race (BPFI), an outer race
(BPFO), a cage (FTF) and a rolling element (BSF) with respect to the frequency of rotation f.

Two sets of experiments were conducted at speed of 3600 rpm, and the resultant radial
load of 192 N, which is adjusted by inserting pre-machined shims under the test bearing
housing. The first experiment is performed with undamaged bearing, and the second
experiment is performed using a bearing with damaged inner race. The inner race defect
extended through 0.8 mm of circumferential length and is 0.2 mm deep, with the relative
damage size equal to 1.2% of circumference, which indicates an early stage of damage
development (Figure 3). The damage level is not critical, it is selected at an early stage of a
damage, that is important for multiple industrial applications.
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Table 2. KCF AG107M accelerometer specification.

Frequency response 1 Hz–5 kHz

Axial sensitivity 5.21 pC/ms2

Resonance frequency 25 kHz

Max acceleration 80 g

Mass 28 g

Piezo material PZT-5

Isolation resistance 10 × 109 Ohm

Capacitance 1200 pF

Temperature range −40 to 150 degC

Shock limit 800 g

Temperature sensitivity 4 mg/degC

Structural strain sensitivity 0.2 mg/micro strain

Magnetic field sensitivity 2 g/T

The output connector featured waterproof sealing. Active antialiasing filter (cut-off
frequency = 13.5 kHz) is used before capturing the digitized data. A speed reference signal
(1 pulse per shaft revolution) is also captured synchronously. The data sampling is done at
40 kHz to provide a necessary bandwidth for channel recording.

Technology Validation on Inner Race Fault

Bearing vibration signals were resampled into the angular domain using a tachometer
signal. The SK is calculated individually for each short vibration segment to identify the
excited resonant frequency bands, and the optimal denoising Wiener filter parameters are
also adapted individually for each vibration segment. Figure 4 shows the SK vs. frequency
for fault free (a) and damaged (b) cases for 340 short segments.

In the fault-free case, the SK remained below 1.5 for all segments and frequency bands
(Figure 4a), which suggests the dominant presence of stationary noise of a fault-free bearing.
The SK of a damaged bearing shows multiple resonant frequency bands, excited by a fault
exceeding amplitude of 12. Figure 4b shows three main resonant frequency bands at
central frequencies 5 kHz, 12 kHz and 16 kHz. As can be seem from Figure 4b, the SK has
the highest peak amplitude at 12 kHz, which indicates that the structural resonances are
dominant within 12 kHz band. The bands at 5 kHz and 16 kHz have slightly lower but
comparable amplitude indicating additional resonant behaviour within those bands as
well. Given that different realisations excite resonant bands with varying amplitude, this
phenomenon could be attributed to the variation in location of the damaged area (the inner
race damage is not static; but, rotates with a shaft), which is causing partial smearing of
the frequency bands due to two effects: (a) varying fault induced excitations with higher
amplitudes, when the damaged area is within the load zone, and with lower amplitude
outside; and (b) varying transfer function between the source of the excitation and the
sensor with rotating damaged area (unknown transmission path). The varying nature
of bearing inner race faults and consequent excitation requires observation of multiple
consequent segments over time to capture multiple responses of the bearing, where each
response is shown with a different colour in Figure 5. As can be seen in Figure 5, resonances
at frequency bands 5 kHz and 12 kHz are excited for three realisatons, while resonances
at 16 kHz band were only excited twice out of three times. The amplitude of SK peaks
also varies between 12–21, which gives further evidence to varying nature of bearing
damage signals.
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According to Equation (4), the SK is used to design the optimal denoising (Wiener)
filter upon being compared to the statistical significance threshold s. The presented results
are achieved using 1% statistical significance. The filtering is achieved using Equation (7)
in frequency domain, and resulted in removal of the stationary noise, thus, retaining the
non-stationary fault-related component—the SK-filtered signal. The diagnostic features for
all 340 segments are shown in Figure 6 for fault-free (a) and damaged (b) cases.
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The feature maps show mainly low amplitude (<10) apart from the high amplitude
features in damaged case (b) due to extracted impulsive components. The diagnostic
features have high amplitudes at the moment of the impact and low amplitudes between
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impacts. According to the specially defined length of each segment, the envelope sig-
nals cover exactly 8 impacts, produced by 8 balls of the bearing. Dependency of diag-
nostic features vs. shaft angle reveals inclined line impact patterns (as expected) rather
than straight lines. This phenomenon is due to the presence of the random slippage be-
tween the rolling elements and bearing races. Although the impacts are clearly visible,
to track impacts, produced by the same rolling element, over prolonged periods of time,
additional alignment is performed on all segments, using the novel cross-correlation ap-
proach. The alignment, using the novel correlation approach, makes the inclined lines
of impacts vertically straight (Figure 7). The main purpose of the alignment is to retain
impacts, produced by the same ball/roller within a consistent angular band for improved
fault localization.
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To evaluate the separation between the diagnostic features, extracted under damaged
and undamaged conditions, the FC is applied. Figure 8 shows essential values of FC in
range [2,4] related to a moment of an impact when a rolling element passed through the
damaged inner race area. The FC is calculated based on histograms from damaged and
undamaged cases and represents a measure of a separation between them. This means,
only a single FC graph is obtained from the entire experiment from both feature histograms
for damaged and undamaged conditions. In addition, the FC, shown in Figure 8, is a
measure of a separation between the diagnostic feature histograms from inner race defect
and undamaged cases, and shows the FC values for a complete cycle, including the time
of impact (FC peak values) as well as the time between impacts (FC of low values). The
FC values suggest a clear separation between diagnostic features, extracted from damaged
and undamaged conditions, which is the main requirement for reliable diagnosis.

The performance of the SK-based diagnostic features defined within this paper is
compared to the wavelet-based features obtained from the same vibration signals acquired
under the same experimental conditions [5]. The authors have used wavelet transform for
frequency band selection as well as filtering for feature extraction and have obtained the
FC values close to 1 for all 8 peaks, summarized in Table 3.



Appl. Sci. 2022, 12, 9970 12 of 21

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 19 
 

inner race defect and undamaged cases, and shows the FC values for a complete cycle, 
including the time of impact (FC peak values) as well as the time between impacts (FC of 
low values). The FC values suggest a clear separation between diagnostic features, 
extracted from damaged and undamaged conditions, which is the main requirement for 
reliable diagnosis. 

 
Figure 8. The FC measures of diagnostic feature separation between inner race defect and 
undamaged case. 

The performance of the SK-based diagnostic features defined within this paper is 
compared to the wavelet-based features obtained from the same vibration signals 
acquired under the same experimental conditions [5]. The authors have used wavelet 
transform for frequency band selection as well as filtering for feature extraction and have 
obtained the FC values close to 1 for all 8 peaks, summarized in Table 3. 

Table 3. Comparison of FC for the wavelet approach [5] and the proposed approach. 

Rolling Element N Wavelet SK Gain  
1 1.2 3.6 3 
2 1.2 3.8 3.2 
3 1.1 3.9 3.5 
4 1.1 2.1 1.9 
5 0.9 2.6 2.9 
6 1.2 3.3 2.8 
7 1 3.6 3.6 
8 0.9 4.1 4.6 

Hence, according to the higher FC values in Table 3, the proposed technology offers 
much better separation and superior diagnostics compared to the wavelet approach. The 
diagnostic features, extracted via the proposed technology indicate FC values with a mean 
of 3.4 (Figure 8). The results indicate effectiveness gain (EG) in range of [1.9, 4.6] in terms 
of the FC, where EG is the ratio of the FC of the proposed technology to the FC of the 
wavelet technology 𝐸𝐺 =  ி஼ೄ಼ி஼ೈ . 

The experimental validation of the proposed technology is also estimated via 
artificial intelligence decision making, using the k-NN and k-means supervised 
approaches. Upon creating the clusters, representing undamaged conditions, using the k-
means technique and training data from fault-free case, the testing diagnostic features 
from undamaged and damaged cases were classified. As a result, the decision maps in 
Figure 9 shows the amount of false detections and missed detections. 

Figure 8. The FC measures of diagnostic feature separation between inner race defect and
undamaged case.

Table 3. Comparison of FC for the wavelet approach [5] and the proposed approach.

Rolling Element N Wavelet SK Gain

1 1.2 3.6 3

2 1.2 3.8 3.2

3 1.1 3.9 3.5

4 1.1 2.1 1.9

5 0.9 2.6 2.9

6 1.2 3.3 2.8

7 1 3.6 3.6

8 0.9 4.1 4.6

Hence, according to the higher FC values in Table 3, the proposed technology offers
much better separation and superior diagnostics compared to the wavelet approach. The
diagnostic features, extracted via the proposed technology indicate FC values with a mean
of 3.4 (Figure 8). The results indicate effectiveness gain (EG) in range of [1.9, 4.6] in terms of
the FC, where EG is the ratio of the FC of the proposed technology to the FC of the wavelet
technology EG = FCSK

FCW
.

The experimental validation of the proposed technology is also estimated via artificial
intelligence decision making, using the k-NN and k-means supervised approaches. Upon
creating the clusters, representing undamaged conditions, using the k-means technique
and training data from fault-free case, the testing diagnostic features from undamaged
and damaged cases were classified. As a result, the decision maps in Figure 9 shows the
amount of false detections and missed detections.
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In the undamaged case (Figure 9a), the number of false alarms is relatively low, equal
to 0.1%. In the damaged case (Figure 9b), the number of missed detections is 7.7%. The
total probability of correct diagnosis (TPCD) equals to 96.2%, which can be considered as a
successful diagnosis.
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4. Technology Validation Via Simulation for Fault Diagnosis of Gear Pitting

The mathematical model, used to simulate gear vibrations under undamaged and
damaged conditions is a lumped mass model, which considers spur gears as rigid disks,
coupled along the line of action through a time varying mesh stiffness, as shown in
Figure 10 [31].
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Figure 10. Dynamic model of spur gear pair [31].

Number of teeth is equal to 31 for a pinion and 39 for a gear. Vibration data for each
case are sampled using a sampling frequency of 80 kHz and provided recordings of 25 s
duration. The speed of the gear shaft is equal to 307.7 rpm (5.1 Hz).

Two sets of simulations were performed: the first set contained no tooth damage, and
the second set contained 15% relative pitting size, which is a ratio between the damaged
and total tooth areas; pitting is distributed equally among all 39 teeth. The pitting level is
simulated by reducing the tooth meshing stiffness.

Authors in [31] have developed an accurate rotation speed estimation method from
the gear mesh harmonics appearing in the vibration signal. To extract the instantaneous
speed, a narrow-band filter is centered at the mesh frequency.

The instantaneous speed profiles are used for angular resampling procedure to trans-
form vibration signals from time into the angular domain. The angular resampled vibration
signals were time-synchronous averaged to isolate vibrations, related to a single gear, from
another mechanical component. The main parameter of the TSA is the number of rotational
segments to be averaged, which is defined via minimization of the TSA variance. For this
purpose, a TSA convergence analysis is performed, which revealed a reliable TSA estimate,
based on 20 segments. From the entire vibration signal a total of 127 shaft rotation segments
were obtained. Since the TSA is calculated from 20 consecutive segments and s performed
without overlapping, a total of 6 TSA signals were obtained for further analysis.

The spectral kurtosis (SK) is estimated for 6 consequent segments of the gear residual
signal obtained after removing mesh harmonics from the TSA signal. Figure 11 shows SK
segments for (a) fault-free and (b) damaged cases, which is estimated using a Hamming
window of size equal to half mesh period. In the damaged case, the SK shows values above
3 within the frequency band of 0 Hz to 6 kHz compared to undamaged case, which are related
to the resonant frequencies of the structure and should therefore be considered for filtering.
It is also evident, that in the fault-free case, the SK acquired values above 0.5 within 0 Hz to
9 kHz, which indicates weak non-stationary behavior even in the case of no damage.

The SK threshold for filtering is set to 1. Figure 12 shows the diagnostic features for all
39 teeth and 6 segments. The feature values for the damaged case (b) are significantly higher
compared to the features from undamaged case (a) and have a mean feature value equal to
6.2× 10−3 compared to the undamaged case mean feature value of 10−6. Several orders of
magnitude higher feature values confirm good separation between the undamaged and
damaged cases.
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Figure 13 shows the FC independently for each of the 39 teeth for the selected SK
window durations and thresholds for filtering. Different filtering thresholds and window
sizes were also used for comparison purposes. The FC for half-mesh period and filtering
threshold equal to 1 shows very similar results for the other cases, where the FC acquired
values above 0.5 with a maximum peak value equal to 6. The only case, which shows
poorer separation among diagnostic features is the case where half mesh period is used in
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combination with a threshold 3. In this case, the FC values mostly remain below 0.5. The
reason for a poor performance with half mesh period and 3 SK threshold is related to a
SK threshold: if a threshold being set too high, potentially above SK amplitude values for
a damaged case, then the estimated frequency bands based on the SK values remaining
above the threshold will be narrow and reduce to zero when the threshold and SK peak
values are the same.

Figure 14 shows results obtained by kNN classification of the diagnostic features,
extracted using the SK window of half mesh period and filtering threshold of 1. For
supervised training, a set of diagnostic features, extracted from the fault-free case is used
for k-means clustering. Overall, the fault diagnosis results in full separation between
diagnostic features from undamaged and damaged conditions amounting to 0% missed
detection, 0% false alarms and 100% of the probability of the correct diagnosis. This result is
obtained using 234 diagnostic features for the undamaged case and 234 diagnostic features
for the damaged case.
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While the estimate of the high probability of correct diagnosis of 100% is achieved,
it is important to note, that the results are based on early-stage damage levels of 15%,
distributed across all teeth. This suggests that more simulated work and experimental work
are needed to validate the approach for a very early stage tooth damage development.
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5. Conclusions

The novel diagnosis technology, based on the simultaneous processing of multiple
spectral kurtoses (SK) and SK based optimal denoising Wiener filtering, is proposed, ex-
perimentally validated for early diagnosis of local damage of rolling element bearings and
validated via simulation for diagnosis of a gearbox under undamaged and pitted conditions.
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The main novelty of the proposed technology is division of bearing/gear vibration sig-
nals into specially defined short duration segments and simultaneous analysis/processing
of SKs of all these segments for damage diagnosis. The SK is used to identify the frequency
bands of the fault related impulses in short vibration segments. The approach tackles
diagnostic challenges due to bearing slippage using cross-correlation technique to track
impulsive responses, caused by rolling elements that are going over a damaged area.

The experimental technology validation is performed on early diagnosis of a bearing
inner race defect (1.2% relative damage size). The separation of histograms of the diagnostic
features for fault-free and damaged cases is measured by the FC, which shows essential
separation with FC values between 2.5 and 4.5. The proposed technology provides success-
ful diagnosis results, with 96.2% estimate of the total probability of the correct diagnosis,
0.1% of false alarms and 7.7% of missed detections.

The diagnostic effectiveness, of the proposed approach is shown to be superior to the
wavelet diagnosis approach. While the wavelet approach achieved feature separation with
a mean FC of 1.1, the proposed approach achieved feature separation with a mean FC of
3.4 and an effectiveness gain in range of [1.9, 4.6] in terms of the FC.

In the case of gears, processing of the simulated data revealed very good separation
between diagnostic features from undamaged and damaged conditions with the FC reach-
ing up to 6 for some of the teeth. and 100% estimate of the total probability of the correct
diagnosis.

The use of SK for bearing/gearbox diagnosis via simultaneous processing of SKs of
specially defined short vibration segments makes the technology efficient, adaptive, and easily
implementable for on-line industrial applications. Alternatively, as shown in [22,32–35], the
SK can be used as a pre-processing technique for wavelet-based diagnosis, thus, offering a
possibility of a fault diagnosis via combining several techniques.

A continuation of work towards an ablation study, which would further evaluate the
method’s effectiveness, would be focused on gears for which we are planning experimental
testing with a very early stage of a damage. For bearings we do not see a need for
reducing the bearing damage size given that the current data contains a very early stage of a
bearing damage.
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