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Abstract

:

For the bearing-only target motion analysis (TMA), the pseudolinear Kalman filter (PLKF) solves the complex nonlinear estimation of the motion model parameters but suffers serious bias problems. The pseudolinear Kalman filter under the minimum mean square error framework (PL-MMSE) has a more accurate tracking ability and higher stability compared to the PLKF. Since the bearing signals are corrupted by non-Gaussian noise in practice, we reconstruct the PL-MMSE under Gaussian mixture noise. If some prior information, such as state constraints, is available, the performance of the PL-MMSE can be further improved by incorporating state constraints in the filtering process. In this paper, the mean square and estimation projection methods are used to incorporate PL-MMSE with linear constraints, respectively. Then, the linear approximation and second-order approximation methods are applied to merge PL-MMSE with nonlinear constraints, respectively. Simulation results demonstrate that the constrained PL-MMSE algorithms result in lower mean square errors and bias norms, which demonstrates the superiority of the constrained algorithms.
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1. Introduction


Target motion analysis (TMA) refers to the real-time estimation of the position, speed, and other motion parameters of the tracked target by using sensors to obtain the measured information of the target by signal processing technology [1,2,3]. It has many applications in civilian and military fields, including military reconnaissance, intelligent transportation systems, and satellite navigation systems.The measurement information includes the angle of arrival (AOA) [4], time of arrival (TOA), time difference of arrival (TDOA) [5], and received signal strength (RSS) [6]. In this paper, we focus on AOA-based TMA, i.e., analyzing the target motion based on the bearing-only data emitted from the motion target and collected by the sensors.



The main difficulty of the bearing-only TMA is how to handle the nonlinear characteristic of the measurement equation. Methods for dealing with bearing-only problems can generally be divided into three categories. The first category is developed from the perspective of statistics [7]. The maximum likelihood estimator (MLE) uses the iterative optimization method to solve nonlinear equations to obtain the target position estimation. Since then, evolved methods [8,9] have been proposed to tackle the TMA problems. In [8], optimizing the likelihood function equipped with extra penalized terms gives the result that has a lower Cramér-rao bound than the standard estimator. The second category is the Kalman filter (KF) and its related methods. Due to the poor initialization, the standard Kalman filter [10] has shortcomings in robustness, convergence speed, and tracking accuracy. Many variant structures of the KF have been proposed to solve the nonlinear estimation problem. For example, Bucy et al. [11] proposes the nonlinear extended Kalman filter (EKF). Julier et al. [12,13] proposes the method of the unscented Kalman filter. The particle filter [14,15,16] (PF) is also used for the bearing-only target motion analysis. Zheng Yi et al. [17] proposes an initial value optimization method for inverse smoothing filtering. This method effectively solves the problem that Kalman filtering methods are sensitive to initial value selection and reduces the estimation error. The third category is to linearize the nonlinear angle measurement equation by using the pseudolinear estimator (PLE) method [18]. The pseudolinear Kalman filter (PLKF) [19,20] is produced by combining the Kalman filter with the pseudolinear estimator method. Compared with other filtering methods, the main advantages of PLKF are high stability, good tracking performance, and small initial error under lower computational complexity [21]. However, the PLKF has a large bias due to the correlation between the measurement matrix and the pseudo-linear noise variable. Hence, several methods have been proposed to improve the performance of PLKF by compensating or reducing the pseudolinear estimation bias, including the modified pseudolinear estimator (MPLE) [22], bias-compensated PLKF (BC-PLKF) [23], IV Kalman filter (IVKF) [24] and IVKF based on the selective-angle-measurement (SAM-IVKF) [25] strategy. These variants of PLKF based on bias compensation are not always perfect when the measurement noise is large and the geometry is unfavorable. Based on the PLKF, Bu et al. [26] proposes a new pseudolinear filter under the minimum mean square error (PL-MMSE) framework without offset compensation, which shows better tracking performance under the large measurement noise than the above algorithms.



If the prior information, such as linear or nonlinear constraints on motion state, is available, we can take these conditions into consideration to improve the state estimation [27]. For example, tracking the vehicle driven on a straight or curved road is a constrained state estimation problem with the available road information [28]. Similar models also appear in other engineering applications, including the compartmental models method [29], turbofan engine health estimation [30] and so on. To estimate the states in such systems, some methods have been proposed, e.g., the model parameters reduction method [31], perfect measurements approach [32], estimation projection [33], linear approximation [33], second-order approximation [34,35]. For linear constraints, the model parameters’ reduction method [31] transforms the constrained state estimation to the unconstrained state estimation. However, the reduction of the state constrained equations makes the interpretation such as the physical meaning of the states more difficult. The perfect measurements approach [32] adds state equality constraints into the measurement equation. The method increases the dimension of the state estimation problem and hence increases the computation effort. Estimation projection [33] incorporates the equality constraints into the state estimation frame. It projects the unconstrained state estimation to the constrained surface. For nonlinear constraints, linear approximation [33] uses the Taylor series expansion to the nonlinear state constraints. This method linearizes the nonlinear state constraints by keeping only the first-order terms. Distinct from the linear approximation, second-order approximation [34,35] keeps both the first-order and second-order terms to maintain the nonlinearity of constraints.



In practice, the bearing noise of the sensor is not always Gaussian. For example, the measurement disturbance is described by distribution with impulsive (heavy-tailed) properties in [36]. The performance of standard Kalman filters based on the MMSE framework does not behave well under such noise [37]. To study such heavy-tailed signals, Ref. [38] proposes a suitable method to approximate the heavy-tailed gamma distribution of random telegraph noise by Gaussian mixture distribution. Inspired by [38], the PL-MMSE is extended to estimate the bearings-only target motion model parameters in the presence of Gaussian mixture noise as the first contribution of this paper. This contribution can be deemed as the application of PL-MMSE under heavy-tailed noise with adaptive adjustment of the noise weights. Secondly, we focus on merging the PL-MMSE with constraints by four approaches to address TMA. The mean square method is applied with the PL-MMSE for linear constraints by minimizing the conditional mean square error subject to the state constraints. The estimation projection method is incorporated into the PL-MMSE by projecting the unconstrained estimate onto the constrained surface. For nonlinear constraints, the linear approximation method is to linearly approximate the nonlinear constraints by using Taylor series expansion. Then, the estimation projection method follows to equip with the PL-MMSE filter. The second-order approximation method views the nonlinear constraint function as a second-order approximation to the nonlinearity. It constructs an extra optimization step after the PL-MMSE by projecting an unconstrained state estimation onto a nonlinear constrained surface and solves this optimization to realize the estimation. Finally, the PL-MMSE filter with state constraints is tested for TMA on the straight line and the arc section. Experimental results confirm that the behavior of our constrained method is better than other competitors.



The rest of this paper is organized as follows. In Section 2, the PL-MMSE under Gaussian mixture noise is designed after the notations are introduced. Section 3 and Section 4 combine constrained estimation technologies with the PL-MMSE to derive the PL-MMSE filter with linear and nonlinear state constraints, respectively. Section 5 simulates the two bearings-only TMA examples to show the sound performance of the constrained PL-MMSE algorithms. Section 6 concludes the whole paper and points out future research directions.




2. PL-MMSE Kalman Filter Under Gaussian Mixture Noise


In the bearing-only two-dimensional (2D) plane TMA, the target-sensor model is established, as shown in Figure 1.



As shown in Figure 1, the moving target position and velocity are    T k  =    t  x , k     t  y , k    T    and    V k  =    v  x , k     v  y , k    T   , respectively, where


     t  x , k      =  t  x , k − 1   +  v  x , k − 1   T ,     



(1)






     t  y , k      =  t  y , k − 1   +  v  y , k − 1   T .     



(2)







T is the sampling interval. The sensor locates at    S k  =    s  x , k     s  y , k    T   . The real angle information received from the sensor is given by


   φ k  =  tan  − 1       t  y , k   −  s  y , k      t  x , k   −  s  x , k      .  



(3)







The bearing measurement is


    φ ^  k  =  φ k  +  e k  ,  



(4)




which indicates that the sensor measurement is corrupted by the mixed Gaussian noise   e k   with zero mean at time   k T    k = 1 , 2 , 3 , … , n  . The Gaussian mixture noise


   e k  ∼  ∑  j = 1  n    λ j  N  ( 0 ,  σ j 2  )    



(5)




is composed of n independent distributed Gaussian noises with zero mean and variance   σ j 2  , respectively, with


   λ j  > 0    a n d     ∑  j = 1  n   λ j  = 1 .  



(6)







The moving target state vector   X k   is given by


   X k  =    t  x , k     t  y , k     v  x , k     v  y , k    T  .  



(7)







According to (3) and (4), the pseudolinear measurement equation between the target and the sensor is


     sin   φ ^  k   t  x , k   − cos   φ ^  k   t  y , k   =     sin   φ ^  k   s  x , k   − cos   φ ^  k   s  y , k   +  ∥   T k  −  S k   ∥  sin  e k  .     



(8)







The pseudolinear state-space model for bearings-only TMA is


     X k     = F  X  k − 1   +  ω  k − 1   ,     



(9)






     Z k     =  H k   X k  +  τ k  ,     



(10)




where   X k   and   X  k − 1    are the motion states at time   k T   and   ( k − 1 ) T  , respectively. It is assumed that   ω  k − 1    is the Gaussian mixture noise composed of n independent distributed Gaussian noises with zero mean and variance   ξ i 2  , respectively. According to the motion model (8), the state transition matrix F and the process noise Jacobian D are


    F    =     1   0   T   0     0   1   0   T     0   0   1   0     0   0   0   1     ,     



(11)






    D    =     0   0     T 2  / 2    0     0   0   0     T 2  / 2      0   0   T   0     0   0   0   T     .     



(12)







Ref. [39]. In the PLKF algorithm, the estimated state of the target at time   k T   is


    X ^   k | k − 1   = F   X ^   k − 1   .  



(13)







The updated covariance matrix is


   P  k | k − 1   = F  P  k − 1 | k − 1    F T  + D  Q  k − 1    D T   



(14)




where the Gaussian mixture noise variance   Q  k − 1    is


   Q  k − 1   =  ∑  i = 1  n    ρ i   ξ i 2    



(15)




with


   ρ j  > 0    a n d     ∑  i = 1  n   ρ i  = 1 .  



(16)







The observation matrix is


   H k  =   [ sin   φ ^  i   − cos   φ ^  i   0  0 ]  T  .  



(17)







The Kalman gain is


   K k  =  P  k | k − 1    H k T     H k   P  k | k − 1    H k T  +  R k    − 1    



(18)




where the pseudolinear noise variance   R k   is given by


   R k  =  ∥   T k  −  S k   ∥    ∑  i = 1  n    λ i   e   1 −  e  − 2  σ i 2     2     .  



(19)







The updated pseudolinear measurement is


    Z ^   k | k − 1   =  H k    X ^   k | k − 1   .  



(20)







Therefore, the target state and covariance update equation at time   k T   can be described by


      X ^   k | k      =   X ^   k | k − 1   +  K k   (  Z k  −   Z ^   k | k − 1   )  ,     



(21)






     P  k | k      =  P  k | k − 1   −  K k   H k   P  k | k − 1   .     



(22)







Based on the PLKF, the PL-MMSE for Gaussian mixture noise can be rewritten as shown in Table 1 where the pseudolinear observation matrix is given by


     H k 1     = [  tan  − 1    (   X ^   k | k − 1    ( 2 )  −  S k   ( 2 )  )    tan  − 1    (   X ^   k | k − 1    ( 1 )  −  S k   ( 1 )  )   0  0 ] .     



(23)








3. PL-MMSE Kalman Filter with Linear State Constraints


Assume that the motion state is bounded by linear constraints


  G  x k  = g  



(24)




where G is a known   R  d × n    matrix while g is a known   R  d × 1    vector with   d < n  . It is also assumed that G has full rank. Next, we introduce two methods to encapsulate the PL-MMSE with linear state constraints.



3.1. Mean Square Method


The idea of the mean square method is to obtain the state estimation   x ˜   of the moving target with linear constraints by minimizing the conditional mean square error. Let


    x ˜  k  =  min   x ˜  k   E  (    x k  −   x ˜  k   2  |  Z k  )   s . t .  G   x ˜  k  = g  



(25)




where


     E (   x −  x ˜   2  | Z )     = ∫   ( x −  x ˜  )  T   ( x −  x ˜  )  P  ( x | Z )  d x          = ∫  x T  x P  ( x | Z )  d x − 2   x ˜  T  ∫ x P  ( x | Z )  d x +   x ˜  T   x ˜  .     



(26)







A Lagrangian function is constructed to solve the constrained problem as


    J    = E  (   x −  x ˜   2  | Z )  + 2   λ  T   ( G  x ˜  − g )           = ∫  x T  x P  ( x | Z )  d x − 2   x ˜  T  ∫ x P  ( x | Z )  d x           +   x ˜  T   x ˜  + 2   λ  T   ( G  x ˜  − g )  .     



(27)







The conditional mean of x is


   x ^  = ∫ x P  ( x | Z )  d x .  



(28)







After substituting (28) into (27), taking the partial derivatives of   x ˜   and  λ , respectively, leads to


      ∂ J   ∂  x ˜       = − 2  x ^  + 2  x ˜  + 2  G T  λ          = 0 ,     



(29)






      ∂ J   ∂ λ      = G  x ˜  − g          = 0 .     



(30)







Solving (29) and (30) gives


     x ˜     =  x ^  −  G T    ( G  G T  )   − 1    ( G  x ^  − g )  ,     



(31)






    λ    =   ( G  G T  )   − 1    ( G  x ^  − g )  .     



(32)







From (31), the constrained estimate of motion state is the unconstrained estimate minus the correction term.




3.2. Estimation Projection Method


As a standard method to deal with constraints, the estimation projection method obtains the constrained estimate   x ˜   by projecting the unconstrained estimate   x ^   onto the constrained surface. Define


   x ˜  = a r g  min x    ( x −  x ^  )  T  W  ( x −  x ^  )   s . t .  G x = g  



(33)




where W is a positive definite weighting matrix. The Lagrangian function used to solve this problem is


  J =   ( x −  x ^  )  T  W  ( x −  x ^  )  + 2  λ T   ( G x − g )  .  



(34)







The necessary conditions for the local minimum are given by


    ∂ J   ∂ x   = 0 ,  



(35)






    ∂ J   ∂ λ   = 0 .  



(36)







Solving (35) and (36) gives


     x ˜     =  x ^  −  W  − 1    G T    ( G  W  − 1    G T  )   − 1    ( G  x ^  − g )  ,     



(37)






    λ    =   ( G  W  − 1    G T  )   − 1    ( G  x ^  − g )  .     



(38)







It is worthwhile to point out that the result given by the estimation projection is equal to the mean square method when   W = I  . Hereby, Table 2 summarizes the steps of the PL-MMSE with linear constraints by the estimation projection method.





4. PL-MMSE Kalman Filter with Nonlinear State Constraints


Consider the nonlinear constraint on the system state is as


  h ( x ) = q  



(39)




where   h ( · )   is a nonlinear function. q is a scalar. Next, we address the nonlinear constraint using the linear approximation method and second-order approximation, respectively.



4.1. Linear Approximation


Use the Taylor series to expand (39) at   x ^   as


     h ( x ) − q     = h  (  x ^  )  +  h   ′     (  x ^  )  T   ( x −   x ^  +  1  2 !     ( x −  x ^  )  T   h    ″     (  x ^  )   ( x −  x ^  )  + ⋯ − q          = 0     



(40)




where    h   ′    ( · )    denotes the Jacobian matrix of   h ( · )   and    h    ″     ( · )    is the Hessian matrix of   h ( · )  . Using only the first-order term to approximate the nonlinear state constraint leads to


   h   ′     (  x ^  )  T  x ≈ q − h  (  x ^  )  +  h   ′     (  x ^  )  T   x ^  .  



(41)







Through observation, (41) has a similar structure with (24) where G of (24) is replaced with    h   ′     (  x ^  )  T    in (41) and g with   g − h  (  x ^  )  +  h   ′     (  x ^  )  T   x ^   . After applying the estimation projection method, the constrained estimator for the linear approximation method becomes


    x ˜  k  =   x ^   k | k   −   (  h ′   (   x ^   k | k   )  )  T    (  h ′   (   x ^   k | k   )    (  h ′   (   x ^   k | k   )  )  T  )   − 1    ( h  (   x ^   k | k   )  − g )  .  



(42)








4.2. Second-Order Approximation


When the first and second-order terms are both kept, (40) can be rewritten into


     f ( x )     =      x T    1         M   m      m T     m 0          x     1              =  x T  M x + 2  m T  x +  m 0           = 0 .     



(43)







Here


    M    =  1 2   h  ″    (   x ^   k | k   )  ,     



(44)






    m    =   (  h ′   (   x ^   k | k   )  −   x ^   k | k  T   h  ″    (   x ^   k | k   )  )  T  / 2 ,     



(45)






     m 0     = h  (   x ^   k | k   )  −  h ′   (   x ^   k | k   )    x ^   k | k   +   (   x ^   k | k   )  T  M   x ^   k | k   − q .     



(46)







Construct an optimization problem by projecting an unconstrained state estimation onto a nonlinear constrained surface, i.e.,


   x ˜  = a r g  min x    ( z − H x )  T   ( z − H x )   s . t .  f  ( x )  = 0  



(47)







The Lagrangian function is formed with the multiplier  λ  as


  J =   ( z − H x )  T   ( z − H x )  + λ f  ( x )  .  



(48)







The optimal solution can be found by solving


      ∂ J   ∂ x      = −  H T  z + λ m +  (  H T  H + λ M )  x          = 0 ,     



(49)






      ∂ J   ∂ λ      =  x T  M x +  m T  x +  x T  m +  m 0           = 0 .     



(50)







Assume the matrix    H T  H + λ M   is invertible. The constrained solution   x ˜   can be expressed by


   x ˜  =   (  H T  H + λ M )   − 1    (  H T  z − λ m )   



(51)




which is the unconstrained solution when   λ = 0  .



Applying the Cholesky factorization to M and   S =  H T  H   gives


    M    =  L T  L ,     



(52)






    S    =  E T  E     



(53)




where E is an upper right diagonal matrix. We can apply singular value decomposition (SVD) to the matrix   L  E  − 1     as


  L  E  − 1   = U Σ  V T   



(54)




where U and V are orthonormal matrices, and  Σ  is a diagonal matrix with its diagonal elements denoted by   p i  . In order to simplify (51), two additional vectors are defined as


     e ( λ )     =   [ ⋯   e i   ( λ )   ⋯ ]  T           =  V T    (  E T  )   − 1    (  H T  z − λ m )  ,     



(55)






    t    =   [ ⋯   t i   ⋯ ]  T           =  V T    (  E T  )   − 1   m .     



(56)







With these new matrices and vector notations, (51) can be expressed as


   x ˜  =  E  − 1   V   ( I + λ  Σ T  Σ )   − 1   e  ( λ )  .  



(57)







With (55), (56) and (57),


       x ˜  T  M  x ˜      = e   ( λ )  T    ( I + λ  Σ T  Σ )   − T    Σ T  Σ   ( I + λ  Σ T  Σ )   − 1   e  ( λ )      










        =  ∑ i     e i 2   ( λ )   p i 2     ( 1 + λ  p i 2  )  2   ,        m T   x ˜      =  t T    ( I + λ  Σ T  Σ )   − 1   e  ( λ )      



(58)






        =  ∑ i     e i   ( λ )   t i    1 + λ  p i 2    ,     



(59)







After plugging in (58) and (59),   f ( x )   transforms into


     f ( λ )     = e   ( λ )  T    ( I + λ  Σ T  Σ )   − T    Σ T  Σ   ( I + λ  Σ T  Σ )   − 1   e  ( λ )            +  t T    ( I + λ  Σ T  Σ )   − 1   e  ( λ )            + e   ( λ )  T    ( I + λ  Σ T  Σ )   − 1   t +  m 0           =  ∑ i     e i 2   ( λ )   p i 2     ( 1 + λ  p i 2  )  2   + 2  ∑ i     e i   ( λ )   t i    1 + λ  p i 2    +  m 0      



(60)







Since (60) is a nonlinear equation of  λ , it is difficult to obtain a closed-form solution. Numerical root-finding algorithms are used such as Newton method [40] to solve (60). The derivatives of   f ( λ )   and   e ( λ )   are


      f ˙   ( λ )      = 2  ∑ i     e i   ( λ )    e ˙  i   ( 1 + λ  p i 2  )   p i 2  −  e i 2   ( λ )   p i 4     ( 1 + λ  p i 2  )  3       










         + 2  ∑ i      e ˙  i   t i   ( 1 + λ  p i 2  )  −  e i   ( λ )   t i   σ i 2     ( 1 + λ  p i 2  )  2   ,     



(61)






     e ˙     =   [ ⋯   e ˙  i  ⋯ ]  T         = −  V T    (  G T  )   − 1   m .     



(62)




with respect to  λ . Then, the iterative solution of  λ  with Newton method can be given by


   λ  k + 1   =  λ k  −   f (  λ k  )    f ˙   (  λ k  )    .  



(63)







(63) starts with    λ 0  = 0  . If    |   λ  k + 1   −  λ k   | < τ    where  τ  is the tolerance, or the number of iterations reaches a preset value, the iteration stops. Then, we can obtain the constrained state estimate of the moving target by substituting the solution of  λ  into (57). Table 3 shows the steps of the PL-MMSE with nonlinear constraints by second-order approximation.



Remark 1.

The algorithm presented in Table 1 have many potential applications, which use the model shown in (9) and (10). For example, in the ocean environment, a self-moving ship monitors noisy sonar bearings to an acoustic target ship and then pours the measurements into the filters to estimate and predict the source position and velocity [19]. If the waterway of the target is known in advance, the constraint can be brought into the methods in Table 2 and Table 3 to further raise the estimate accuracy.







5. Simulation


This section simulates examples and compares the performance of PL-MMSE, PLKF, BC-PLKF, IVKF and the corresponding algorithms with state constraints for moving targets under linear or nonlinear constraints with Gaussian mixture noise. To clarify, the combination algorithm of PL-MMSE and the mean square method is defined as PL-MMSE-C   ( W = I )  . Similarly, PL-MMSE combined with the estimation projection method is set to PL-MMSE-C   ( W =  P  − 1   )  . PL-MMSE incorporated with the linear approximation and second-order approximation methods are defined as PL-MMSE-L and PL-MMSE-S, respectively. Other constrained algorithms are named in the same way as above. Each simulation result is generated in    M 0  = 1000   Monte Carlo experiments with   N = 200   sampling time scans for each run.



5.1. Performance Metrics


As defined in this subsection, the performance is evaluated using the root mean square errors (RMSEs) and the bias norms (BNorms). The RMSE and BNorm of the target position estimation are


     RMSE k  p o s      =    1  M 0    ∑  i = 1   M 0      ∥     x ^   k | k  i   1 : 2  −  x k i   1 : 2    ∥   2    ,     



(64)






     BNorm k  p o s       = ∥    1  M 0    ∑  i = 1   M 0      x ^   k | k  i   1 : 2  −  x k i   1 : 2     ∥      



(65)




where     x ^   k | k  i   1 : 2    is the estimated target position and    x k i   1 : 2    is the true target position at time   k T   at the ith run, respectively.



The RMSE and BNorm of the target velocity estimation are


     RMSE k  v e l      =    1  M 0    ∑  i = 1   M 0      ∥     x ^   k | k  i   3 : 4  −  x k i   3 : 4    ∥   2    ,     



(66)






     BNorm k  v e l       = ∥    1  M 0    ∑  i = 1   M 0      x ^   k | k  i   3 : 4  −  x k i   3 : 4     ∥      



(67)




where     x ^   k | k  i   3 : 4    is the estimated target velocity and    x k i   3 : 4    is the true target velocity at time   k T   at the ith run.



Similarly, the time-averaged RMSE, BNorm of the target position and velocity estimation are


     RMSE  a v g   p o s      =    1   M 0  B    ∑  i = 1   M 0     ∑  k =  L 0   N     ∥     x ^   k | k  i   1 : 2  −  x k i   1 : 2    ∥   2     ,     



(68)






     BNorm  a v g   p o s      =  1 B   ∑  k =  L 0   N    ∥    1  M 0    ∑  i = 1   M 0      x ^   k | k  i   1 : 2  −  x k i   1 : 2     ∥   ,     



(69)






     RMSE  a v g   v e l      =    1   M 0  B    ∑  i = 1   M 0     ∑  k =  L 0   N     ∥     x ^   k | k  i   3 : 4  −  x k i   3 : 4    ∥   2     ,     



(70)






     BNorm  a v g   v e l      =  1 B   ∑  k =  L 0   N    ∥    1  M 0    ∑  i = 1   M 0      x ^   k | k  i   3 : 4  −  x k i   3 : 4     ∥   .     



(71)







Here, we set   B = N −  L 0  + 1   with    L 0  = 50   where   L 0   is an offset parameter to reduce the time-averaged metrics affected by the initial tracking errors in the simulations.




5.2. Simulation Parameters


In order to objectively compare the performance of the constrained PL-MMSE with other algorithms, we adopt the same sensor moving trajectory as in [24], as shown in Figure 2. The sensor trajectory is divided into five constant velocity segments, where the end position of each segment trajectory is set as    [ 60  0 ]  T   m,    [ 0  7.5 ]  T   m,    [ 60  15 ]  T   m,    [ 0  22.5 ]  T   m,    [ 60  30 ]  T   m and    [ 0  77.5 ]  T   m. Starting from the initial position    r 0  =   [ 60  0 ]  T    m, the sensor takes the direct measurement value at every sampling interval   T = 0.1   s. The bearing noise and process noise are a Gaussian mixture noise with zero mean. The estimated initial state    x ^   1 | 1    is sampled from the true initial state   x 1   with a Gaussian mixture distribution, which has the initial covariance   P  1 | 1   .




5.3. Simulation Scenarios


Designed algorithms are tested in two scenarios in this subsection. As can be observed in Figure 3a, the target moves on a straight line in the first scenario while the target moves on an arc in the second scenario, as shown in Figure 3b with nearly constant velocity magnitude V.



Under the known angle of the vehicle, the constrained matrix G and the vector g are governed by


    G    =     1    − tan θ    0   0     0   0   1    − tan θ      ,     



(72)






    g    =   0 , 0  T  .     



(73)







The constrained estimate can be produced by setting   W = I   and   W =  P  − 1    . In the simulation, the sampling interval T is set to 0.1 s. The total time span is the 20 s. The angle  θ  is set to   π / 4  . The velocity V is set to 12 m/s. The target initial position is    0  0  T   m. The true initial state is set to    x 1  =   0  0  6  2   6  2   T   . The initial covariance matrix is    P  1 | 1   =   diag  ( [ 1  1  0.01  0.01 ] )  . In addition, the covariances of process noise   ω  k − 1    and bearing noise   e k   are given by


     ω  k − 1      = λ N  (  μ  x 1   ,  Q 1  )  +  ( 1 − λ )  N  (  μ  x 2   ,  Q 2  )  ,     



(74)






     e k     =  ρ 2   λ N  (  μ  z 1   ,  R 1  )  +  ( 1 − λ )  N  (  μ  z 2   ,  R 2  )   ,     



(75)




respectively, where    μ  x 1  T  =     0   0   0   0      ,    μ  x 2  T  =     0   0   0   0      ,    μ  z 1  T  = 0  ,    μ  z 2  T  = 0  ,    Q 1  =   diag  ( [ 0  0  0.15  0.15 ] )  ,    Q 2  =   diag  ( [ 0  0  0.23  0.23 ] )  ,    R 1  = 0.015  ,    R 2  = 0.019   and   λ = 0.4  . The variable  ρ  controls the magnitude of bearing noise   e k  . By setting  ρ  from 1 to 10 with the difference of 1, Table 4 shows the standard deviation   σ θ   of bearing noise for the corresponding  ρ .



Simulation results of the mean RMSEs and BNorms of the target position and velocity estimates against   σ θ   are presented in Figure 4.



It is noticeable that the performance metric values of all algorithms increase and finally tend to be stable with   σ θ   in Figure 4, where the performance of PL-MMSE is always better than that of PLKF, BC-PLKF, and IVKF. The   RMSE  a v g   p o s    of PL-MMSE is stable at   2.5   m at a large bearing noise level, which significantly outperforms other unconstrained algorithms. The evolution of RMSEs, BNorms of the target position and velocity estimates in time   k T   (  k = 1 , … 150  ) for    σ θ  =  7 ∘    is shown in Figure 5.



The tracking performance of all algorithms gradually deteriorates with the rising scan under a large bearing noise level. The metric values of PL-MMSE gradually approach    RMSE k  p o s   = 3.11   m,    RMSE k  v e l   = 0.147   m/s,    BNorm k  p o s   = 0.053   m, and    BNorm k  v e l   = 0.011   m/s, which are remarkably lower than other unconstrained algorithms. It can also be observed that the constrained PL-MMSE is superior to the unconstrained PL-MMSE at all bearing noise levels in Figure 4 and Figure 5, which indicates the constrained algorithm has a better robustness and tracking performance. Comparisons of four algorithms combined with the mean square method and the estimation projection method for    σ θ  =  7 ∘    are presented in Figure 6 and Figure 7, respectively, which demonstrate that PL-MMSE-C   ( W = I )   and PL-MMSE-C   ( W =  P  − 1   )   have less errors than other corresponding constrained algorithms at a large bearing noise level.



Table 5 shows the mean RMSEs and BNorms of different filters for    σ θ  =  7 ∘   .



The RMSE performance of PL-MMSE-C   ( W = I )   is    RMSE  a v g   p o s   = 1.781   m and    RMSE  a v g   v e l   = 0.103   m/s at large bearing noise level    σ θ  =  7 ∘   , which are less than other constrained algorithms. Similarly, the BNorm performance of PL-MMSE-C   ( W = I )   has    BNorm  a v g   p o s   = 0.084   m and    BNorm  a v g   v e l   = 0.001   m/s at large bearing noise level    σ θ  =  7 ∘    which are better than the others. The numerical results of PL-MMSE-C   ( W =  P  − 1   )   are similar to that of PL-MMSE-C   ( W = I )  , as observed from the table. The filters combined with constraints can achieve better performance from Figure 6 and Figure 7 and Table 5. As shown in Table 5, the constraint algorithms with   W =  P  − 1     are not necessarily better than the corresponding filters with   W = I  , where    RMSE  a v g   p o s   = 2.537   m of IVKF-C   ( W = I )   is less than    RMSE  a v g   p o s   = 2.842   m of IVKF-C   ( W =  P  − 1   )   and    RMSE  a v g   p o s   = 2.890   m of BC-PLKF-C   ( W = I )   is greater than    RMSE  a v g   p o s   = 2.883   m of BC-PLKF-C   ( W =  P  − 1   )  . This difference is caused by the discrepancy between the actual distribution characteristics of the state estimate   x ^   and P. When the distribution is close to P, the constraint algorithms with   W =  P  − 1     behave better than the corresponding constraint algorithms with   W = I  .



In the second scenario, the target moves on an arc, as shown in Figure 3b, with a nearly constant velocity magnitude V. The turning center is   (  R x  ,  R y  )   with the radius R. Hence, the constrained equation   h ( · )  , the vector g, the constrained matrix M, the vector m and the variable   m 0  , are given by


     h ( x )     =   x  1  −  R x   2  +   x  2  −  R y   2  ,     



(76)






    g    =  R 2  ,     



(77)






    M    =     1   0     0   1     ,     



(78)






    m    = −    R x    R y   T  ,     



(79)






     m 0     =  R x 2  +  R y 2  −  R 2  .     



(80)







In addition, the velocity constraint is introduced into the state estimation. The constrained velocity estimate   v ˜   is


   v ˜  =    v ^  T  μ  μ  



(81)




where the unconstrained velocity estimate   v ^   and constrained unit direction vector  μ  are


     v ^     =    x ^   ( 3 )    x ^   ( 4 )   T  ,     



(82)






    μ    =   − sin θ  cos θ  T      



(83)




with   θ =  tan  − 1    (  x ^   ( 2 )  /  x ^   ( 1 )  )   .



In the simulation, the sampling interval T is set to 0.1 s. The total time scan is the 20 s. The turning center   (  R x  ,  R y  )   is set to   100 , 0   m. The turning radius R is 100 m. The initial position for the target is    200  0  T   m. To compare the linear approximation with the second-order approximation method, two experiments are carried out, where the magnitude of V is   10  − 4    m/s and   0.2   m/s, respectively.



For   V =  10  − 4     m/s, the true initial state is    x 1  =   200  0  0   10  − 4    T   . The initial covariance matrix is    P  1 | 1   =   diag  (  [  10  − 8     10  − 8     10  − 10     10  − 10   ]  )  . The process noise   ω  k − 1    and bearing noise   e k   have the same composition as (74) and (75) where    μ  x 1  T  =     0   0   0   0      ,    μ  x 2  T  =     0   0   0   0      ,    μ  z 1   = 0  ,    μ  z 2   = 0 ,      Q 1  =   diag  [ 0  0   10  − 9     10  − 9   ]  ,    Q 2  =   diag  (  [ 0  0  2 ×  10  − 9    2 ×  10  − 9   ]  )  ,    R 1  = 1.5 ×  10  − 12    ,    R 2  = 1.909 ×  10  − 12     and   λ = 0.4  . The standard deviation   σ θ   of bearing noise for the corresponding  ρ  is set as shown in Table 6.



Simulation results of the time-averaged RMSEs and BNorms of the target position and velocity estimates and the bearing noise standard deviations is shown in Figure 8 where PL-MMSE has lower errors in the RMSE performance with    RMSE  a v g   p o s   = 2.526 ×  10  − 4     m,    RMSE  a v g   v e l   = 1.783 ×  10  − 5     m/s.



The evolution of RMSEs, BNorms of the target position and velocity estimates in time   k T   for    σ θ  =  7 ∘    at   V =  10  − 4     m/s is presented in Figure 9.



It is noticeable that the curve trends in Figure 8 and Figure 9 are similar to Figure 4 and Figure 5 because of the weak model nonlinearity caused by small velocity. The performance metric values of PL-MMSE gradually approach    RMSE k  p o s   = 3.099 ×  10  − 4     m,    RMSE k  v e l   = 2.053 ×  10  − 5     m/s,    BNorm k  p o s   = 5.774 ×  10  − 5     m and    BNorm k  v e l   = 3.497 ×  10  − 6     m/s, which are superior to other unconstrained algorithms in Figure 9. It is also demonstrated that the constrained PL-MMSE is better than the unconstrained PL-MMSE and other constrained filters at all bearing noise levels under the arc section in Figure 8 and Figure 9. Performance comparisons of four algorithms combined with the linear approximation method and the second-order approximation method for    σ θ  =  7 ∘    at   V =  10  − 4     m/s are shown in Figure 10 and Figure 11, respectively, which present that PL-MMSE-L and PL-MMSE-S have fewer errors than other constrained algorithms at a large bearing noise level.



Table 7 presents the results of the time-averaged RMSEs and BNorms of different filters for    σ θ  =  7 ∘    at   V =  10  − 4     m/s. The RMSE and BNorm performance of PL-MMSE-L are    RMSE  a v g   p o s   = 1.579 ×  10  − 4     m,    RMSE  a v g   v e l   = 1.415 ×  10  − 5     m/s,    BNorm  a v g   p o s   = 1.518 ×  10  − 5     m and    BNorm  a v g   v e l   = 1.590 ×  10  − 6     m/s. The PL-MMSE algorithm combined with the linear approximation method is better than the second-order approximation method as    BNorm  a v g   v e l   = 1.708 ×  10  − 6     m/s of the PL-MMSE-S is greater than    BNorm  a v g   v e l   = 1.590 ×  10  − 6     m/s of the PL-MMSE-L in Table 7 due to the weak nonlinearity.



For   V = 0.2   m/s, we have the true initial state    x 1  =   200  0  0  0.2  T    and the initial covariance matrix    P  1 | 1   =   diag  (  [  10  − 3     10  − 3     10  − 4     10  − 4   ]  )  . The composition of the process noise   ω  k − 1   , and the bearing noise   e k   is the same as (74) and (75), where    μ  x 1  T  =     0   0   0   0      ,    μ  x 2  T  =     0   0   0   0      ,    μ  z 1   = 0  ,    μ  z 2   = 0  ,    Q 1  =   diag  ( [ 0  0  0.01  0.01 ] )  ,    Q 2  =   diag  ( [ 0  0  0.02  0.02 ] )  ,    R 1  = 1.5 ×  10  − 3    ,    R 2  = 1.909 ×  10  − 3     and   λ = 0.4  . Table 8 presents the standard deviation   σ θ   of the bearing noise for the corresponding  ρ .



Simulation results of the time-averaged RMSEs and BNorms of the target position and velocity estimates against   σ θ   are presented in Figure 12.



The performance of PL-MMSE and PL-MMSE with constraints is better than other filters, where    RMSE  a v g   p o s   = 0.3346   m of PL-MMSE and    RMSE  a v g   p o s   = 0.2954   m of PL-MMSE-S are less than other algorithms for    σ θ  =  3 ∘   . The evolution of RMSEs, BNorms of the target position and velocity estimates in time   k T   for    σ θ  =  7 ∘    at   V = 0.2   m/s is shown in Figure 13.



It is evident that the constrained PL-MMSE has more stable and accurate tracking performance at large bearing noise levels under the arc section. Comparisons of four algorithms combined with the linear approximation method and the second-order approximation method for    σ θ  =  7 ∘    at   V = 0.2   m/s are provided in Figure 14 and Figure 15, respectively. The time-averaged RMSEs and BNorms of different filters for    σ θ  =  7 ∘    are presented in Table 9. It is remarkable that the PL-MMSE with constraints has less errors than other filters, where   RMSE  a v g   p o s    of PL-MMSE-L is 0.176 m and   RMSE  a v g   p o s    of PL-MMSE-S is 0.176 m. On contrary to the first experiment with   V =  10  − 4     m/s, the algorithms combined with the second-order approximation method perform better than the algorithms combined with the linear approximation method in Table 9, where   RMSE  a v g   p o s    of PL-MMSE-S is less than   RMSE  a v g   p o s    of PL-MMSE-L for    σ θ  =  7 ∘    at the scale of   10  − 6    because of strong nonlinearity.



It is worthwhile to point out that the errors of the filters are basically unchanged and slightly decrease as the noise level rises in Figure 12 when the velocity is relatively large. The cause of this phenomenon is the error in the state update equation introduced by the linearization of the arc movement. When   V = 0.2   m/s, the error from the state update equation becomes the main source of the filter estimate error, which relatively reduces the effect of the bearing noise and breaks the average algorithm performance trend.



Remark 2.

It is noticeable that the magnitudes of the velocity in the second scenario are both small. There are two reasons for such a setting. Firstly, the PL-MMSE is still a linear Kalman filter under linear and nonlinear constraints. There is discrepancy between the TMA result from the linear motion model (9) and the actual arc trajectory in the circular section. The faster the target moves in an interval, the greater the discrepancy will be. Secondly, the sampling frequency of the sensor in reality is much higher than that in our experiment. For example, the sampling frequency of the radar is generally between 1 and 15 GHz. When the sampling frequency increases, the relative speed of the target also rises up proportionally to maintain the same traveling distance. Hence, if we set the sampling time   T =  10  − 5     s rather than   0.1   s as in the simulation, the relative speed of the target becomes   V = 1   m/s and 2000 m/s, respectively, which are quite common in practice. The transformation of the sampling frequency and target velocity corresponding to a real radar demonstrates that the setting is meaningful.



Since the distance the target moves in an interval is small, the corresponding RMSEs are low. Nevertheless, simulation results show that the RMSEs of our constrained algorithms are much smaller than those of other filters.







6. Conclusions and Future Works


In this paper, we propose a new pseudolinear Kalman filtering method based on TMA with available state constraints by combining the PL-MMSE and state constraints. The mean square and estimation projection methods are enveloped with PL-MMSE to address the linear constrained state estimation problem. The linear approximation and second-order approximation methods are used to refine PL-MMSE estimates under nonlinear constraints. The merged algorithms can effectively solve the bearings-only TMA problem under Gaussian mixture noise. Simulations show that the constrained PL-MMSE has better performance than other filters. In particular, when the target velocity is small, the algorithms combined with the linear approximation method perform better than those combined with the second-order approximation method under the circular road. It turns out just the opposite when the velocity is large.



Analyzing the statistical properties of the PL-MMSE with state constraints will be one topic of our future research. Applying the designed algorithms in actual engineering practice is the other direction we endeavor to study for the next step.




7. Patents


Yiqun Zou, Shuang Zou. A target tracking and positioning method, system, device and readable storage medium: ZL202110038824.8[P].2021.1.12.
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	Target motion analysis
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	Pseudolinear Kalman filter



	PL-MMSE
	Pseudolinear Kalman filter under the minimum mean square error framework



	AOA
	Angle of arrival



	BC-PLKF
	Bias-compensated PLKF



	IVKF
	IV Kalman filter



	SAM-IVKF
	IVKF based on selective-angle-measurement



	2D
	Two-dimensional
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	Root mean square errors
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Figure 1. Schematic diagram of 2D bearing-only TMA. 
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Figure 2. Sensor trajectory with five constant velocity segments and the initial position marked by a star. 
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Figure 3. (a) target travels in a straight line along the direction  θ ; (b) target travels along the circular road with the turning center   (  R x  ,  R y  )   and the radius R. 
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Figure 4. Time-averaged RMSEs, BNorms and bearing noise standard deviation for the PL-MMSE, PLKF, BC-PLKF and IVKF algorithms, as well as, the PL-MMSE algorithm with linear constraints proposed in the paper. 
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Figure 5. RMSEs, BNorms at different time scan for    σ θ  =  7 ∘    for the PL-MMSE, PLKF, BC-PLKF and IVKF algorithms, as well as, the proposed PL-MMSE algorithm with linear constraints in the paper. 
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Figure 6. Time-averaged RMSEs, BNorms and bearing noise standard deviation for the four algorithms combined with the mean square method. 
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Figure 7. Time-averaged RMSEs, BNorms and bearing noise standard deviation for the four algorithms combined with the estimation projection method. 






Figure 7. Time-averaged RMSEs, BNorms and bearing noise standard deviation for the four algorithms combined with the estimation projection method.
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Figure 8. Time-averaged RMSEs, BNorms and bearing noise standard deviation at   V =  10  − 4     m/s for the PL-MMSE, PLKF, BC-PLKF and IVKF algorithms, as well as, the PL-MMSE algorithm with nonlinear constraints proposed in the paper. 






Figure 8. Time-averaged RMSEs, BNorms and bearing noise standard deviation at   V =  10  − 4     m/s for the PL-MMSE, PLKF, BC-PLKF and IVKF algorithms, as well as, the PL-MMSE algorithm with nonlinear constraints proposed in the paper.
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Figure 9. RMSEs, BNorms and time   k T   for    σ θ  =  7 ∘    at   V =  10  − 4     m/s for the PL-MMSE, PLKF, BC-PLKF and IVKF algorithms, as well as, the proposed PL-MMSE algorithm with nonlinear constraints in the paper. 






Figure 9. RMSEs, BNorms and time   k T   for    σ θ  =  7 ∘    at   V =  10  − 4     m/s for the PL-MMSE, PLKF, BC-PLKF and IVKF algorithms, as well as, the proposed PL-MMSE algorithm with nonlinear constraints in the paper.
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Figure 10. Time-averaged RMSEs, BNorms and bearing noise standard deviation at   V =  10  − 4     m/s for the four algorithms combined with the linear approximation method. 
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Figure 11. Time-averaged RMSEs, BNorms and bearing noise standard deviation at   V =  10  − 4     m/s for the four algorithms combined with the second-order approximation method. 
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[image: Applsci 12 09975 g011]







[image: Applsci 12 09975 g012 550] 





Figure 12. Time-averaged RMSEs, BNorms and bearing noise standard deviation at   V = 0.2   m/s for the PL-MMSE, PLKF, BC-PLKF and IVKF algorithms, as well as, the PL-MMSE algorithm with nonlinear constraints proposed in the paper. 
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Figure 13. RMSEs, BNorms and time   k T   for    σ θ  =  7 ∘    at   V = 0.2   m/s for the PL-MMSE, PLKF, BC-PLKF and IVKF algorithms, as well as, the proposed PL-MMSE algorithm with nonlinear constraints in the paper. 






Figure 13. RMSEs, BNorms and time   k T   for    σ θ  =  7 ∘    at   V = 0.2   m/s for the PL-MMSE, PLKF, BC-PLKF and IVKF algorithms, as well as, the proposed PL-MMSE algorithm with nonlinear constraints in the paper.
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Figure 14. Time-averaged RMSEs, BNorms and bearing noise standard deviation at   V = 0.2   m/s for the four algorithms combined with the linear approximation method. 
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Figure 15. Time-averaged RMSEs, BNorms and bearing noise standard deviation at   V = 0.2   m/s for the four algorithms combined with the second-order approximation method. 
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Table 1. PL-MMSE under Gaussian mixture noise.






Table 1. PL-MMSE under Gaussian mixture noise.





	1. Initialization



	     x ^  0  =   x ¯  0    



	    P 0  = E   (  x 0  −   x ¯  0  )    (  x 0  −   x ¯  0  )  T     



	2. State Prediction



	     x ^   k | k − 1   =  F  k − 1     x ^   k − 1     



	3. Covariance Prediction



	    P  k | k − 1   =  F  k − 1    P  k − 1 | k − 1    F  k − 1  T  + D  Q k   D T    



	4. Filter Gain



	    K 1  =  ∑  j = 1  n    λ j   e   −  σ i 2   2     P  k | k − 1      H k 1   T    



	    K 2  =  H k   P  k | k − 1    H k T  +  ∑  i = 1  n    ρ i   e   e  − 2  ξ  i − 1  2    2     [  P  k | k − 1    ( 1 , 1 )  +  P  k | k − 1    ( 2 , 2 )  ]  +  R k    



	    K k  =  K 1   K 2  − 1     



	5. State Update



	     x ^  k  =   x ^   k | k − 1   +  K k   (  z k  −  H k    x ^   k | k − 1   )    



	6. Covariance Update



	    P  k | k   =  P  k | k − 1   −  K k   K 1 T    



	7.   k = k + 1  , go to 2.
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Table 2. PL-MMSE with Linear Constraints Algorithm.






Table 2. PL-MMSE with Linear Constraints Algorithm.





	1. Initialization



	     x ^  0  =   x ¯  0    



	    P 0  = E   (  x 0  −   x ¯  0  )    (  x 0  −   x ¯  0  )  T     



	2. Predict



	     x ^   k | k − 1   =  F  k − 1     x ^   k − 1     



	    P  k | k − 1   =  F  k − 1    P  k − 1 | k − 1    F  k − 1  T  + D  Q k   D T    



	3. Filter Gain



	    K 1  =  ∑  j = 1  n    λ j   e   −  σ i 2   2     P  k | k − 1      H k 1   T    



	    K 2  =  H k   P  k | k − 1    H k T  +  ∑  i = 1  n    ρ i   e   e  − 2  ξ  i − 1  2    2     [  P  k | k − 1    ( 1 , 1 )  +  P  k | k − 1    ( 2 , 2 )  ]  +  R k    



	    K k  =  K 1   K 2  − 1     



	4. Update



	     x ^  k  =   x ^   k | k − 1   +  K k   (  z k  −  H k    x ^   k | k − 1   )    



	    P  k | k   =  P  k | k − 1   −  K k   K 1 T    



	5. When the linear constraint is   G  x k  = g  ,



	     x ˜  k  =   x ^   k | k   −  W  − 1    G T    ( G  W  − 1    G T  )   − 1    ( G   x ^   k | k   − g )    



	6.   k = k + 1  , go to 2.
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Table 3. PL-MMSE with Nonlinear Constraints Algorithm.






Table 3. PL-MMSE with Nonlinear Constraints Algorithm.





	1. Initialization





	     x ^  0  =   x ¯  0    



	    P 0  = E   (  x 0  −   x ¯  0  )    (  x 0  −   x ¯  0  )  T     



	2. Predict



	     x ^   k | k − 1   =  F  k − 1     x ^   k − 1     



	    P  k | k − 1   =  F  k − 1    P  k − 1 | k − 1    F  k − 1  T  + D  Q k   D T    



	3. Filter Gain



	    K 1  =  ∑  j = 1  n    λ j   e   −  σ i 2   2     P  k | k − 1      H k 1   T    



	    K 2  =  H k   P  k | k − 1    H k T  +  ∑  i = 1  n    ρ i   e   e  − 2  ξ  i − 1  2    2     [  P  k | k − 1    ( 1 , 1 )  +  P  k | k − 1    ( 2 , 2 )  ]  +  R k    



	    K k  =  K 1   K 2  − 1     



	4. Update



	     x ^  k  =   x ^   k | k − 1   +  K k   (  z k  −  H k    x ^   k | k − 1   )    



	    P  k | k   =  P  k | k − 1   −  K k   K 1 T    



	5. When the nonlinear constraint is    x k T  M  x k  +  m T   x k  +  x k T  m +  m 0  = 0  



	Use the iterative method to find  λ 



	Then     x ˜  k  =  G  − 1   V   ( I +  λ k   Σ T  Σ )   − 1   e  (  λ k  )   



	6.   k = k + 1  , go to 2.
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Table 4. Standard deviation   σ θ   against  ρ  in the first scenario.
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	   ρ   
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10



	    σ θ     ( ∘  )    
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
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Table 5.    RMSE  a v g   p o s   ,  RMSE  a v g   v e l   ,  BNorm  a v g   p o s     and   BNorm  a v g   v e l    of different filters for    σ θ  =  7 ∘    at   V = 12   m/s on the straight line.






Table 5.    RMSE  a v g   p o s   ,  RMSE  a v g   v e l   ,  BNorm  a v g   p o s     and   BNorm  a v g   v e l    of different filters for    σ θ  =  7 ∘    at   V = 12   m/s on the straight line.





	Filter
	    RMSE  a v g   p o s     
	    RMSE  a v g   v e l     
	    BNorm  a v g   p o s     
	    BNorm  a v g   v e l     





	PL-MMSE
	2.294
	0.140
	0.139
	0.011



	PLKF
	27.068
	2.069
	22.202
	1.791



	BC-PLKF
	3.714
	0.273
	0.270
	0.010



	IVKF
	3.648
	0.299
	0.219
	0.021



	PL-MMSE-C   ( W = I )  
	1.781
	0.103
	0.084
	0.001



	PL-MMSE-C   ( W =  P  − 1   )  
	1.781
	0.103
	0.084
	0.001



	PLKF-C   ( W = I )  
	24.350
	1.907
	18.847
	1.557



	PLKF-C   ( W =  P  − 1   )  
	23.027
	1.804
	17.739
	1.458



	BC-PLKF-C   ( W = I )  
	2.890
	0.207
	0.234
	0.008



	BC-PLKF-C   ( W =  P  − 1   )  
	2.883
	0.207
	0.267
	0.008



	IVKF-C   ( W = I )  
	2.537
	0.198
	0.104
	0.013



	IVKF-C   ( W =  P  − 1   )  
	2.842
	0.204
	0.097
	0.016
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Table 6. Standard deviation   σ θ   against  ρ  at   V =  10  − 4     m/s.
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	   ρ   
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10



	    σ θ   ( ×   10  − 5          ∘   )    
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10










[image: Table] 





Table 7.    RMSE  a v g   p o s     ( ×   10  − 4     m),    RMSE  a v g   v e l     ( ×   10  − 5     m),    BNorm  a v g   p o s     ( ×   10  − 5     m) and    BNorm  a v g   v e l     ( ×   10  − 6     m) of different filters for    σ θ  =  7 ∘    at   V =  10  − 4     m/s on the arc section.






Table 7.    RMSE  a v g   p o s     ( ×   10  − 4     m),    RMSE  a v g   v e l     ( ×   10  − 5     m),    BNorm  a v g   p o s     ( ×   10  − 5     m) and    BNorm  a v g   v e l     ( ×   10  − 6     m) of different filters for    σ θ  =  7 ∘    at   V =  10  − 4     m/s on the arc section.





	Filter
	    RMSE  a v g   p o s     
	    RMSE  a v g   v e l     
	    BNorm  a v g   p o s     
	    BNorm  a v g   v e l     





	PL-MMSE
	2.263
	1.726
	3.528
	3.344



	PLKF
	2.346
	1.949
	3.673
	3.541



	BC-PLKF
	2.345
	1.949
	3.667
	3.537



	IVKF
	2.345
	1.949
	3.667
	3.537



	PL-MMSE-L
	1.579
	1.415
	1.518
	1.590



	PL-MMSE-S
	1.579
	1.408
	1.518
	1.708



	PLKF-L
	1.677
	1.650
	1.716
	1.994



	PLKF-S
	1.677
	1.650
	1.716
	1.994



	BC-PLKF-L
	1.677
	1.672
	1.716
	1.794



	BC-PLKF-S
	1.677
	1.650
	1.716
	1.993



	IVKF-L
	1.677
	1.672
	1.716
	1.794



	IVKF-S
	1.677
	1.650
	1.716
	1.993
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Table 8. Standard deviation   σ θ   against  ρ  at   V = 0.2   m/s.
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	   ρ   
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10



	  σ θ  (  /  10      ∘  )
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
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Table 9.    RMSE  a v g   p o s   ,  RMSE  a v g   v e l   ,  BNorm  a v g   p o s     and   BNorm  a v g   v e l    of different filters for    σ θ  =  7 ∘    at   V = 0.2   m/s on the arc section.






Table 9.    RMSE  a v g   p o s   ,  RMSE  a v g   v e l   ,  BNorm  a v g   p o s     and   BNorm  a v g   v e l    of different filters for    σ θ  =  7 ∘    at   V = 0.2   m/s on the arc section.





	Filter
	    RMSE  a v g   p o s     
	    RMSE  a v g   v e l     
	    BNorm  a v g   p o s     
	    BNorm  a v g   v e l     





	PL-MMSE
	0.224
	0.017
	0.025
	0.004



	PLKF
	0.789
	0.058
	0.499
	0.039



	BC-PLKF
	0.321
	0.025
	0.034
	0.005



	IVKF
	0.326
	0.025
	0.028
	0.004



	PL-MMSE-L
	0.176
	0.013
	0.011
	0.001



	PL-MMSE-S
	0.176
	0.013
	0.011
	0.001



	PLKF-L
	0.310
	0.024
	0.095
	0.008



	PLKF-S
	0.310
	0.024
	0.095
	0.008



	BC-PLKF-L
	0.271
	0.021
	0.016
	0.001



	BC-PLKF-S
	0.271
	0.021
	0.016
	0.001



	IVKF-L
	0.294
	0.023
	0.017
	0.001



	IVKF-S
	0.294
	0.023
	0.017
	0.001
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