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Abstract: With the proliferation of the Internet of Things, a large amount of data is generated
constantly by industrial systems, corresponding in many cases to critical tasks. It is particularly
important to detect abnormal data to ensure the accuracy of data. Aiming at the problem that the
training data are contaminated with anomalies in autoencoder-based anomaly detection, which
makes it difficult to distinguish abnormal data from normal data, this paper proposes a data anomaly
detection method that combines an isolated forest (iForest) and autoencoder algorithm. In this
method (iForest-AE), the iForest algorithm was used to calculate the anomaly score of energy data,
and the data with a lower anomaly score were selected for model training. After the test data passed
through the autoencoder trained by normal data, the data whose reconstruction error was larger than
the threshold were determined as an anomaly. Experiment results on the electricity consumption
dataset showed that the iForest-AE method achieved an F1 score of 0.981, which outperformed other
detection methods, and a significant advantage in anomaly detection.

Keywords: metallurgical energy data; data anomaly detection; iForest algorithm; autoencoder algorithm

1. Introduction

The metallurgical industry is an essential component of the manufacturing industry
and an essential support for maintaining world economic growth [1]. However, since
almost all equipment in metallurgical enterprises usually lie in harsh environments [2], data
collection is susceptible to external interference [3]. Sensor failures, network interruptions,
and electromagnetic interference can also cause abnormalities in the collected data, thus
affecting the modeling and analysis of the data. This also leads to incorrect decisions
and guidance for the field dispatchers of metallurgical enterprises, causing serious safety
accidents and irreparable economic losses.

Data anomaly detection plays a pivotal role in data management. The detection and
diagnosis of key energy data in metallurgical enterprises are necessary for the enterprise’s
safe production and scientific dispatch. Therefore, developing a set of anomaly detection
algorithms for data collected by a metallurgical enterprise information system is of great
significance in ensuring the safe production of metallurgical enterprises and improving the
economic benefits of enterprises.

As one of the important research directions of machine learning [4], anomaly detection
has become a hotspot and been applied in many important areas. According to the different
ideas of anomaly detection, it can be broadly categorized into: statistical-based [5], nearest
neighbor-based [6], clustering-based [7], and iForest-based [8] methods. Wang [9] proposed
an improved KNN algorithm for log data anomaly detection. He used an existing mean-
shift clustering algorithm to select a training set from log data, and assigned various weights
to samples with various distances, which lessened the negative effect of an imbalanced
distribution of the log samples. Vanem [10] came up with a clustering-based anomaly
detection method. The idea of the method was to identify clusters in sensor data under
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normal operating situations and determine if new observations belong to any of these
clusters. Experimental results showed that cluster-based methods performed better than
other methods. LI [11] developed an GA-iForest method for numerical data anomaly
detection. This method improved the accuracy of anomaly detection by removing some
duplicate, similar, and poor detection isolation trees. Experimental results indicated that
the proposed method could not only increase the accuracy of anomaly detection, but also
decrease the number of isolation trees. However, the above methods have randomness
and a lack of robustness, and it is easy to cause a dimensional disaster in high-dimensional
data space.

In recent years, with the wide application of machine learning in speech recogni-
tion [12], machine translation [13], and data analysis [14], some machine learning mod-
els have also been gradually applied to the research of data anomaly detection [15].
Among various anomaly detection models based on machine learning, the autoencoder
shows excellent performance due to its strong generalization and no dimensional disaster.
Borghesi et al. [16] proposed an autoencoder-based approach for high performance comput-
ing systems anomaly detection and it can be used to distinguish abnormal conditions from
normal conditions by learning the normal state of the supercomputer nodes. Chen et al. [17]
built a model that projects the training data into a lower-dimensional subspace during
the training phase, then optimized weights to minimize reconstruction error. It also used
the reconstruction error of test data to determine whether the wireless transmission of
data is abnormal. Although many attempts have been made, the performance of anomaly
detection remains low, especially when the training data are contaminated with anomalies.
It is difficult to distinguish abnormal data from normal data because the reconstruction
error between the two is not very large.

To solve this problem, a data anomaly detection method by combining the iForest
and autoencoder algorithm is proposed in this paper. This model uses the actual energy
data of a copper smelting enterprise in southwest China to verify the effectiveness and
competitiveness of this method.

2. Related Work

An autoencoder algorithm is one of the most effective algorithms for anomaly detection
at present, but it is affected by the training set. If the training set is contaminated with
anomalies, the detection effect will be poor, while the iForest algorithm can roughly screen
out normal data to train the autoencoder model to solve this problem.

2.1. iForest Algorithm

The iForest algorithm is an anomaly detection algorithm proposed by Mr. Zhou in
2008 [18]. The algorithm first uses a random hyperplane to cut the data space, and each time
it is cut, two subspaces are generated. The subspace is repeatedly cut using the random
hyperplane until there is only one data point remaining in each subspace. Since a data set
with high density requires numerous cuts to stop, the point with a low density will stay in
a subspace very early after cutting [19], so the low density point is the abnormal point.

There are multiple trees in the iForest and the tree in the algorithm is called isolated
tree(iTree) [20]. The following is the process of establishing the iTree.

1. Randomly select sub samples from training data as root nodes in trees.
2. Arbitrarily select a dimension to generate a cut point p in the current node data.
3. The cut point p separates the current node data space into two subspaces. The data

that are less than the cut point are placed in the left subtree of the current node, and
the data greater than or equal to the cut point are placed in the right subtree of the
current node.

4. Perform steps 2 and 3 continuously to generate new sub nodes until the iTree reaches
a finite height or there is only one data on the child node.
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Then, the training data are detected by the generated iForest. h(x) is the number of
edges that the sample point x traverses from the root node of the iTree to the leaf nodes.
Given a dataset with n samples, the tree’s average path length is:

c(n) = 2H(n− 1)− 2(n− 1)/n (1)

H(i) is the harmonic function and it can be estimated by In(i) + 0.5772. c(n) is the
average of the path lengths for a given number of samples n, used to normalize the path
length h(x). The anomaly score of the sample x is calculated as:

s(x, n) = 2
E(h(x))

c(n) (2)

E(h(x)) is the mathematical expectation of the path length of the sample x in a batch
of iTree, from which the following inferences can be drawn:

When E(h(x))→0, s→1, the probability of x being an outlier is high.
When E(h(x))→ c(n) , s→0.5, whether x is an outlier is uncertain.
When E(h(x))→n − 1, s→0, the probability of x being normal is high.

2.2. Autoencoder Algorithm

Autoencoder is a neural network whose training goal is to minimize the reconstruction
error between the output and input [21]. It is frequently utilized in feature extraction [22],
image classification [23], and noise reduction [24]. Autoencoder is also commonly used in
data compression. It is made up of two components: encoder network and decoder network.
An autoencoder can encode data X into a low-dimensional hidden vector Z, and a decoder
can reconstruct the hidden vector into data X′. The following is its mathematical formula.

Z = σe(WX + b) (3)

X′ = σd
(
W ′Z + b′

)
(4)

σe and σd are the activation functions for the encoder and decoder. W and b are
respectively the weight and bias.

Since the autoencoder is trained on several normal data, its aim is to minimize the
reconstruction error [25], so the trained autoencoder has a good ability to reconstruct
normal data, but insufficient ability for anomalous data because it has not been trained.
Considering that the reconstruction error of normal data will be smaller while those
of anomaly data will be relatively larger [26], the reconstruction error can be used to
distinguish whether it is an abnormality. The calculation formula of the reconstruction
error is shown in Formula 5 below.

e = X− X′ (5)

2.3. Anomaly Detection Process Based on the iForest-AE Method

The anomaly detection process based on the AE-iForest is shown in Figure 1, which is
separated into two phases: model training and model detection.

The data collected by the metallurgical information collection system are divided into
two parts: training data and test data. In order to speed up the convergence of the model,
the two parts of data are normalized by the following equation [27].

x′ =
x− xmin

xmax − xmin
(6)

x′ is the normalized data, x is the input data, xmax and xmin are the maximum and
minimum values of the input data.
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2.3.1. Model Training

The model training phase is separated into two parts: calculating the data anomaly
score and training the autoencoder. Firstly, iTree is constructed according to the above
rules; then, iForest is constructed by the iTree. For each training data, the anomaly score is
calculated by Formula (2), and the data with a lower anomaly score are selected for model
training to avoid the training data being anomaly-contaminated.

The training performance of the model is evaluated by root mean square error (RMSE).
The smaller its value, the closer the reconstructed data are to the original data, and the
better the training effect of the model. It is calculated as.

RMSE =

√√√√ 1
N

N

∑
k=1

(
Xk − X′k

)2 (7)

In the training phase, the model is only trained using normal data. Additionally, the
autoencoder iteratively updates the weight and bias parameters of each hidden layer by
minimizing the reconstruction error. As a result, by several trainings, the model can capture
the normal pattern of the data [28].

2.3.2. Data Detection

In the detection phase, the test data are fed into the autoencoder model and the
reconstruction error of these test data is calculated. Additionally, the test data whose
reconstruction error is larger than the threshold are determined as an anomaly.

In the anomaly detection based on the autoencoder, the selection of the threshold is
extremely critical. We selected several values as thresholds, and used the F1 score to assess
the effect of anomaly detection. The threshold that corresponds to the maximum F1 score
was selected as the final threshold.

3. Experiment and Result Analysis
3.1. Experiment Environment

The experimental platform was a Windows 10 host equipped with 3.60 GHz CPU and
8.00 GB of ram. All of the iForest-AE model code was programmed in python3.6.
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3.2. Data Preparation

In this paper, we selected the power consumption data of a copper smelting enterprise
in Yunnan Province from 1 June 2021 to 25 June 2021, including 7200 data as the training
set, and finally we selected 6810 data with an abnormal score lower than 0.6 to train the
autoencoder. A total of 620 data from 24 June 2021 to 25 June 2021 were selected as the
validation set and 4900 data from 26 June 2021 to 10 July 2021 were selected as the test set.

3.3. Experimental Procedure and Result Analysis

The iForest algorithm was selected to calculate the anomaly score for 7200 metallurgical
energy data. According to the characteristics of electric energy data of 1# workshop, the best
parameters were selected by manual experience [29], and the results are shown in Table 1.

Table 1. Parameter settings for the iForest algorithm.

Parameter Value

n_estimators 100
max_features 1
contamination 0.1
max_samples auto

n_jobs None

Figure 2 shows the result of calculating the anomaly score of partial data through the
iForest algorithm. Among the 7200 training data, 684 data with an anomaly score higher
than 0.60 were uncertain data. This part of the data was excluded, and the remaining part
of the data was selected for model training.
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Figure 2. Anomaly scores of data.

The autoencoder was used to detect abnormality in metallurgical energy data. The
random search algorithm [30] was used to find the best parameters, and the group of
parameters with the minimum training error was taken as the final parameters. The results
are shown in Table 2.

Table 2. Parameter settings for the autoencoder algorithm.

Parameter Values

Batch_size 128
Epoch 80
Loss Mean square error

Optimizer Adam
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The training and validation sets were fed into the autoencoder network. Their loss
leveled off at 1.976× 10−4 and 2.684× 10−4 after 80 training iterations, as shown in Figure 3,
indicating that the trained model could effectively reconstruct normal data.
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To evaluate the effect of anomaly detection, recall, precision, accuracy, and F1 score
were used to evaluate the model. The F1 score was used for it is a comprehensive metrics.

Since the reconstruction error was used as the anomaly score, the selection of the
threshold had a great influence on the detection result, which was related to the model
detection accuracy. We selected several values as the threshold. For each value, five
experiments were carried out and the average value of the F1 score of the five experiments
was calculated. The threshold corresponding to the maximum F1 score was selected as the
final threshold. The results of the experiments are shown in Figure 4.
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It can be seen from the above experiments’ results that when the threshold was 0.01,
the F1 score obtained the maximum value of 0.981, and the anomaly detection effect was
best at this time. When the threshold was too small, the detection effect was poor. The
reason is that the threshold was too small, which caused the model to regard the normal
reconstruction error fluctuation generated by the normal energy data as abnormal, so some
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normal data were judged as abnormal data. When the threshold was too large, the detection
effect of the model also decreased. The reason is that the threshold selection was too large,
which relaxed the requirements for the reconstruction error of normal data. Therefore,
abnormal data were determined as normal data.

In the test data, the electricity consumption data of metallurgical enterprise 1# work-
shop from 26 June 2021 to 12:00 on 28 June 2021 were taken as an example. After data
normalization, the electricity consumption data were shown in Figure 5. The normal data
were screened out by the iForest algorithm for model training. The model encoded and
decoded those data by the autoencoder, and the reconstructed data are shown in Figure 6.
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Figure 6. Electricity consumption reconstruction data of 1# workshop.

Normal electricity consumption data fluctuated in a low range. However, due to
sensor failures and interruptions in field communication transmissions, the collected
data did conform to the normal data distribution pattern, and the abnormal data had
a large error after passing through the autoencoder trained by the normal data. The data
with reconstruction error exceeding the threshold are marked with red dots, representing
abnormal data. The detection results are shown in Figure 7.
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In order to test whether the training set screened by the iForest algorithm had an
impact on the autoencoder-based anomaly detection, we trained the autoencoder model
with the training set screened by the iForest algorithm and without the algorithm screening.
The detection results are shown in Table 3.

Table 3. Comparison of test results.

Model Accuracy Precision Recall F1 Score

Autoencoder 0.989 1.000 0.799 0.888
iForest-AE 0.998 1.000 0.963 0.981

In the single autoencoder model, since the training set contains abnormal data, the
reconstruction error of the abnormal data also became smaller, which made the model
judge part of the abnormal data as normal data and fail to identify all the abnormal data.

To further analyze the effectiveness of the proposed method, iForest and SVM algo-
rithms were used to perform experiments on the same data set. The experimental results
are listed in Table 4 and illustrated in Figure 8.

Table 4. Experimental results of the three methods.

Model Accuracy Precision Recall F1 Score

iForest 0.975 0.789 0.723 0.755
SVM 0.922 1.000 0.858 0.924

iForest-AE 0.998 1.000 0.963 0.981

From Table 4 and Figure 8, it can be seen that the accuracy of this method was 2.359%
and 0.604% higher than the SVM and iForest algorithms, indicating that the proposed
algorithm had a good recognition effect for both abnormal and normal data. At the same
time, the precision of this method also reached 1, illustrating that all the detected abnormal
data were real abnormal data. The recall rate of this method reached 0.963, which was
higher than the other two algorithms, showing that most abnormal data could be detected.
Compared with the two methods, the F1 score was increased by 29.934% and 6.189%,
proving that this method had a better comprehensive effect than the other two methods. To
sum up, the proposed method had a high accuracy, precision, recall, and F1 score, and it
was generally better than other algorithms. Accordingly, it achieved the state-of-the-art
performance on metallurgical energy data anomaly detection.
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In order to solve the problem that the training data is anomaly-contaminated by
autoencoder-based anomaly detection, which makes it difficult to distinguish abnormal
data from normal data, this paper proposed an anomaly detection method for metallurgical
energy data that combined iForest and autoencoder. The electricity consumption data from
1# workshop of a copper smelting enterprise were used for verification, and the experiment
result shows that the F1 score of the proposed method was as high as 0.981, which was
29.934%, 6.189%, and 10.473% higher than the iForest, SVM, and ordinary autoencoder.

4. Discussion

Autoencoder or iForest models separately have worse performance because training
data are anomaly-contaminated. For the autoencoder-based anomaly detection model, since
the training data are contaminated with anomalies, it also performs well in reconstructing
anomalous data. Additionally, it is difficult to distinguish abnormal data from normal
data because the reconstruction error between the two is not large. For the iForest-based
anomaly detection model, the data were recursively divided, and the length of the path
from data to the root node is chosen as the anomaly score. Since metallurgical energy data
have a high proportion of abnormal data, the length of the path from abnormal data to
the root node is similar to the normal ones, which will lead to a poor anomaly detection
performance. The SVM-based anomaly detection algorithm is a supervised algorithm that
needs to be carried out with a large amount of labeled data. It can behave well in detecting
abnormal data that have been trained, while failing to do so with abnormal data that the
model has not encountered.

The proposed algorithm first used the iForest algorithm to calculate the anomaly score
of the data, and then selected the data with a lower anomaly score to train the autoencoder
model, which avoided the worse detection effect caused by the abnormal data in the
training set. The reconstruction error of normal data and abnormal data became larger, so
it was easy to distinguish normal data from abnormal data.

5. Conclusions

In this paper, an anomaly detection method based on iForest-AE was proposed. The
normal data were selected by the iForest algorithm to train the autoencoder model to
improve the detection effect. It was applied in the data collection system of copper smelting
enterprises in Yunnan Province because of its high detection accuracy and convenience.
Due to the strong robustness and generalization of the proposed algorithm, it can also be
applied to the data collection system of other enterprises such as mechanical manufacturing
and chemical production to ensure the accuracy of the collected data.
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In the research method of this paper, the parameters of the iForest and the autoencoder
algorithm were selected through multiple experiments to achieve the best results. Future
research is required to use some group optimization algorithms to find the best parameters
to improve the model performance.

With the advent of the era of big data, the amount of data is increasing, and the deep
iForest is often used to solve the corresponding problems. In order to reduce the time cost
of the deep iForest algorithm, we need to make changes in the form of the isolated forest in
the future.
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