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Abstract: A star-identification algorithm aimed at identifying imaged stars in a “lost in space” scene,
named the global multi-triangle voting algorithm (GMTV), is presented in this paper. There are two
core parts included in the proposed algorithm: in the initial match part, triangle feature units are
treated as vote units to find the initial match relationship via matching vote units and counting the
vote number of each catalog star. During this step, the principal component analysis (PCA) method
is implemented to reduce feature dimensions, and a two-dimension lookup table and fuzzy match
strategy are utilized to promote database searching efficiency and noise tolerance. After acquiring the
initial match results, a verification part is implemented to filter potential errors from initial candidates
by the largest cluster method and output the final identification results. The proposed algorithm
achieves a 98.6% identification rate with 2.0 pixels position noise and exhibits more robustness to
position noise, magnitude noise, and false stars of different levels than the two reference algorithms
used in simulations. In addition, our algorithm’s real-time performance is better than reference
algorithms, but it requires a larger database.

Keywords: star identification; feature unit voting; two-dimension lookup table; principal component
analysis (PCA); largest cluster method

1. Introduction

Attitude measurement devices are key for modern deep space tasks. Generally, star
sensors supply arc-second attitude data, whose precise level is much higher than sun
sensors, gyroscopes, or magnetometers [1,2], and are now widely utilized in orbiting
satellites and interplanetary spacecraft [3,4].

During data processing in star sensors, the star-identification technique plays a de-
cisive role in determining attitude when utilizing detected stars in an image. There are
two working modes for star sensors: lost-in-space (LIS) and tracking [5]. When we turn
on star sensors or miss attitude data, the working mode of sensor stars will be in LIS, in
which prior attitude data are absent, so an autonomous algorithm designed for whole sky
identification is running to establish attitude data. Sky region information is acquired after
determining the initial attitude in LIS mode, and then the star sensors switch to tracking
mode and need to implement star identification in a very small sky region. Therefore,
algorithm research about star identification in LIS is important for star sensors.

Star-identification methods for working in LIS mode can be divided into three classes [6]:
pattern recognition, artificial intelligence, and subgraph isomorphism.

In the pattern recognition methods, each guide star is assigned a unique signature
or pattern that describes the geometric distribution feature of neighboring stars, and then
identification is implemented by searching for a guide star in the catalog whose pattern is
the most similar to a star pattern built from the captured star image. The grid algorithm [7] is
the most typical pattern-based approach utilizing a grid pattern vector, but its performance
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in the identification rate is sensitive to noise due to the low probability of selecting the
correct subaltern star. Although some optimal schemes are introduced in [8–10], the key
drawback in the grid algorithm has not been resolved. Zhang et al. [11] present a pattern
recognition method utilizing radial and cyclic pattern features by adding a cyclic feature
to filter error candidates. Unfortunately, the cyclic pattern is also not reliable enough. By
optimizing the generation steps of a cyclic pattern, star identification based on radial and
dynamic cyclic patterns is proposed in [12], where the maximum cumulate method is
utilized to measure the similarity between cyclic patterns. However, the star-identification
rate is prone to be low when there is magnitude noise. There are also other pattern-based
algorithms proposed to improve robustness, such as the recommended radial pattern [13],
log-polar transform [14], redundant-coded pattern [15], label code [16], and triangle map
matrix methods [17], but their performance is still poor when there is magnitude noise.

Recently, artificial intelligence algorithms, especially those utilizing deep learning
methods have been proposed for solving the LIS problem for star sensors. These include
the Spider-CNN algorithm [18], RPNet algorithm [19], and 1D-CNN algorithm [20]. These
algorithms have the parallel ability to process information and robustness to different types
of errors, but considering the database size, the complexity of the model, and training time,
these factors limit the application of deep learning methods in actual projects.

In subgraph-isomorphism-based methods, stars in the captured image and the angular
distances between them are regarded as graph vertices and graph sides, respectively. Then,
a feature subgraph unit for the matching process is built to search for similar subgraphs
stored in the database, including entire sky graphs. The triangle algorithm [21–23], pyramid
algorithm [24], and geometric voting algorithm [25] are typical star-identification methods
based on subgraph isomorphism, in which polygons, pyramids, and star pairs are used as
feature subgraph units. The triangle algorithm usually selects at least three true stars to
generate some triangles and uses the angular distance or intersection angle of the graph
sides as match elements. However, redundant or error matches of feature units in these
methods often appear especially with noise, and their database size is also large. Several
optimization strategies are presented to refine triangle algorithms in three terms: (1) the
unit construction scheme, such as DUDE and the Delaunay principle introduced in [26]
and [27]; (2) searching efficiency, for example, K–L transform [28] and hash map [29]
methods proposed by Zhao and Wang to reduce the search dimension; and (3) verification
reliability, such as the reference map verification method by Zhang presented in [21] to
eliminate the error identification result. However, substantive defects of triangle algorithms
are still not corrected due to the low dimension of the feature unit. By adding an extra star in
the feature unit of a triangle, the pyramid algorithm utilized four stars to build a geometric
polygon, named the pyramid feature unit, with six angular distances. Moreover, the k-
vector approach is adopted to accelerate the matching efficiency of the high-dimensional
feature unit, and it is proven to be robust to false stars. However, the pyramid algorithm
becomes time-consuming when false stars are used to generate a feature unit. Kolomenkin
et al. [25] presented a geometric voting technique by counting angular distance votes to
determine the match relationship between image stars and guide stars. The real-time
performance of this algorithm is acceptable when a few false stars exist but severely
degrades with more spikes or false stars.

To improve the performance of the star-identification algorithm in LIS mode, a novel
star-identification method utilizing a global multi-triangle voting (GMTV) scheme is pro-
posed in this paper. Several triangle units are built by sensor stars as feature match units
to determine the initial match relationship by matching these vote units and counting the
number of votes of catalog stars, and then the initial results are filtered by a verification
step based on the largest cluster method to remove errors and retain correct identification
results as the final output. In addition, the principal component analysis (PCA) method
is implemented to reduce feature dimension, and a 2D lookup table is also designed to
accelerate searching efficiency in the initial match. The algorithm performs much better
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than the geometric voting algorithm and the grid algorithm in the presence of star position
noise, magnitude noise, and false stars.

The rest of this paper is divided into the following sections: in Section 2, details of
algorithm steps, including the initial match part and verification part, are presented. In
Section 3, simulations are carried out to test the proposed algorithm’s performance in terms
of the identification rate and efficiency and show the comparison results with two typical
reference algorithms. In Section 4, key conclusions are given.

2. Algorithm Description

In this section, we describe the GMTV in detail. The triangle unit built by stars sharing
the same field of view (FOV) is first introduced, and then the calculation of feature values
representing the triangle unit is given. After, we construct the onboard database for the
GMTV algorithm. Finally, the steps of the algorithm are described to illustrate the working
principle of the GMTV algorithm.

2.1. Triangle Unit and Feature Extraction

The GMTV algorithm utilizes triangle units built by several bright stars in FOV as the
basic match element and then extracts their feature values using the PCA method, which is
the foundation of searching for the matching unit and implements a voting scheme. Hence,
the triangle unit building and feature values calculation are briefly described as follows.

As shown in Figure 1, any three stars sharing the same FOV can be selected to build a
triangle unit, such as unit k, which consists of Star-a, Star-b, and Star-c. By calculating the
angular star distances between Star-a, Star-b, and Star-c, the triangle edge vector F of unit
K can be obtained as Equation (1)

F =
[
adab adac adbc

]
(1)

where adab, adac, and adbc are star angular distances between Star-a and Star-b, Star-a and
Star-c, Star-b and Star-c, and adab < adac < adbc. The PCA method is then utilized to calculate
feature values of triangle edge vector F to reduce feature dimension while retaining the
main distinguishing features, as described in Equation (2).

[pv1, pv2, pv3] = PCA(F) (2)
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Feature values extracted by PCA are invariant to rotation and robust to noise. In this
paper, we select pv1 and pv2 with larger values to keep unit geometric feature informa-
tion. By utilizing the PCA method, a 1×3 triangle edge vector F is transformed into two
feature values p pv1 and pv2. After obtaining pv1 and pv2, we then discretize them in
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Equation (3), and the discretized feature values p̂v1 and p̂v2 are employed as the index to
obtain candidates stored in the lookup table in the initial match step of GMTV.{

pv1 = f ix(pv1/u1)
pv2 = f ix(pv2/u2)

(3)

where fix(x) returns the nearest integer value, which is no more than x, and u1 and u2 are
discretized units of pv1 and pv2, respectively.

2.2. Onboard Database Generation

Figure 2 shows the database structure in GMTV, which consists of two parts, namely,
the reference catalog and the triangle unit database, including the unit index table and
lookup table, and occupies a 1.5 MB memory size.
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In this paper, the SAO J2000 catalog is selected as a basic catalog to build a database
for the algorithm. After discarding the variable stars and binary stars from catalog stars
whose magnitude value is down to 5.5 Mv, the reference catalog and unit index table of the
database are first generated, and then feature values of each unit are calculated and stored
in the corresponding index position of the lookup table. Considering the memory size
and redundant matching probability, we only choose some triangle units as vote units in
the GMTV database. Detailed steps about building the reference catalog and lookup table
are described as follows: the whole celestial sphere is scanned uniformly with 0.5

◦
steps,

namely, the right ascension angle of FOV is varied from 0◦ to 360◦ in steps of 0.5 degrees,
and the declination angle of the FOV from −90◦ to +90◦ in steps of 0.5 degrees, and for
each FOV at a different orientation, the brightest α detected stars in the FOV are selected as
guide stars and added to the reference catalog (α = 8 in this paper). After determining the
guide stars in an FOV, we build triangle units by choosing any three stars from α guide
stars, so there are C3

N triangle units. During the above process, the indexes of the three
stars in the SAO for each triangle unit are stored as a group in the unit index table, and the
feature values of the unit are stored in the 2D lookup table; the process above, for example,
is illustrated in Figure 3.

In Figure 3, a triangle unit whose unit index is K consists of three catalog stars, whose
star index is Star-1, Star-2, and Star-3 in the SAO catalog, and its feature value is pca1

k and
pca2

k . Thus, Star-1, Star-2, and Star-3 are stored in the Kth row of the unit index table, and
unit index K is stored in the position of the lookup table where the row index is pca1

k and
the column index is pca2

k .
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2.3. Global Multi-Triangle Voting Algorithm

After extracting the stars in the observed image, the information data about the
subpixel coordinates and gray values of the stars in the image plane are acquired and
inputted to the GMTV algorithm. Then, the GMTV obtains some candidates of these
captured stars by matching the triangle units and voting for the catalog stars. The catalog
stars whose counter values are larger than the threshold are chosen as candidates for
the detected stars. The correct catalog star is always included in the candidate set, but
unfortunately, sometimes, there are errors because of noise. Therefore, we must design
a filter process to select the correct catalog from the candidate set and remove incorrect
matching results. The GMTV algorithm includes two steps: the initial match step using
the voting global multiple triangle units and the verification step searching for the largest
cluster. In the initial match step, feature values are calculated and then candidates are
acquired by voting units. In the verification step, the largest cluster is searched to determine
the final identification results as the output of the GMTV, as shown in Figure 4.
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2.3.1. Initial Match

At the beginning of the initial match step, we select the eight brightest detected stars
in the captured image as sensor stars to be identified according to their gray values, then a
counter group (CTi

1,CTi
2 . . . CTi

Nc
) including Nc counters, is assigned for every sensor star,

in which each counter is responding to each guide star in the reference catalog, and Nc is
the guide star number in the catalog. We can build triangle units from these bright sensor
stars by selecting any three stars among them. As a result, there are C3

8 units involved in
the initial match. For each triangle unit, p̂v1 and p̂v2 values are acquired by the feature
extraction process described in Section 2.1. Here, an example is given to illustrate the
GMTV algorithm work process in this step.

We assume that unit k, including sensor star a, star b, and star c, is built, and its feature
values p̂vk1 and p̂vk2 are also obtained. For database units whose feature value p̂vc1, (c = 1,
2, 3, . . . , N − 1, N, and N is the total number of triangle units) is close to the corresponding
p̂vk1, p̂vk2, respectively, which can be described in Equation (4), these units in the database
are considered as candidates of sensor unit k.{

abs( p̂vk1 − p̂vc1) ≤ Thf
abs( p̂vk2 − p̂vc2) ≤ Thf

(4)

where Th f is the threshold for the feature value match. The above candidates searching
process can be implemented by looking for an element where the row index is p̂vk1 and
the column index is p̂vk2 in the lookup table, which greatly improves the efficiency of the
GMTV algorithm in searching for matches in the database. In the real star image, some
measurement errors will cause feature values to deviate from their true value, so the fuzzy
search strategy is adopted in our algorithm to increase robustness; as shown in Figure 5, all
elements in the shaded areas whose position index is close to p̂vk1 and p̂vk2, namely, where
the row index is between p̂vk1 − 1 and p̂vk1 + 1 and the column index is between p̂vk2 − 1
and p̂vk2 + 1 simultaneously, are regarded as candidates of the sensor unit.
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Figure 5. Fuzzy search strategy.

A unit in the lookup table constructed by catalog stars whose index number is C1, C2,
and C3 in the SAO catalog is a candidate for sensor unit k (built by sensor star a, star b
and star c). Then, the counter group belonging to the sensor star is selected, and the value
of counters in (CTi

1, CTi
2 . . . CTi

Nc
) corresponding to C1, C2, and C3 add one; as shown in

Figure 6, Ctssa
C is a counter assigned for guide star C in the counter group belonging to

sensor star a (ssa), the same meaning of Ctssb
C and Ctssc

C . The same operation is completed
for the other two counter groups belonging to sensor star b (ssb) and sensor star c (ssc),
respectively. The above process is a vote of sensor unit k. We can repeat this voting process
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until all sensor units are traversed. For each sensor star, the counters’ values in the group
are compared with the threshold Thc, and the catalog stars associated with counters whose
values are larger than Thc are considered as the candidates for this sensor star.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 15 
 

 

Figure 5. Fuzzy search strategy. 

A unit in the lookup table constructed by catalog stars whose index number is C1, C2, 

and C3 in the SAO catalog is a candidate for sensor unit k (built by sensor star a, star b and 

star c). Then, the counter group belonging to the sensor star is selected, and the value of 

counters in (CT1
i, CT2

i…CTNc

i ) corresponding to C1, C2, and C3 add one; as shown in Figure 

6, 𝐶𝑡𝐶
𝑠𝑠𝑎 is a counter assigned for guide star C in the counter group belonging to sensor 

star a (ssa), the same meaning of 𝐶𝑡𝐶
𝑠𝑠𝑏 and 𝐶𝑡𝐶

𝑠𝑠𝑐. The same operation is completed for 

the other two counter groups belonging to sensor star b (ssb) and sensor star c (ssc), re-

spectively. The above process is a vote of sensor unit k. We can repeat this voting process 

until all sensor units are traversed. For each sensor star, the counters’ values in the group 

are compared with the threshold Thc, and the catalog stars associated with counters whose 

values are larger than Thc are considered as the candidates for this sensor star. 

 

Figure 6. Vote process in the initial match step. 

2.3.2. Verification 

In this paper, a verification method based on the largest cluster is designed to elimi-

nate wrong candidates in the initial match, retain correct identification results as much as 

possible, and then output them as the final identification results of the algorithm. The 

maximum cluster verification algorithm includes three steps: calculate the connection ma-

trix, determine the core cluster, and expand the core cluster. The specific contents of the 

above three steps are as follows: 

Step 1: calculate the connection matrix 

Figure 6. Vote process in the initial match step.

2.3.2. Verification

In this paper, a verification method based on the largest cluster is designed to eliminate
wrong candidates in the initial match, retain correct identification results as much as
possible, and then output them as the final identification results of the algorithm. The
maximum cluster verification algorithm includes three steps: calculate the connection
matrix, determine the core cluster, and expand the core cluster. The specific contents of the
above three steps are as follows:

Step 1: calculate the connection matrix
Calculate the angular distance θc between the candidate stars in the celestial coordinate

system, and then compare θc with the angular distance θs of the corresponding observed
stars in the star sensor coordinate system. If the error between θc and θs is less than
a tolerance threshold τ, as described in Equation (5), the element in the corresponding
position of the connection matrix is set to 1; otherwise, it is set to 0. The connection matrix
is a square matrix of size D×D, where D is the number of candidate stars in the initial
match. For example, as shown in Figure 7, given that the angular distances between star-1
and star-2 meet the above requirement that the error between θC

12 and θS
12 is less than τ, then

the elements in the position index (1, 2) and (2, 1) of the connection matrix are set to 1. Since
the angular distances θC

14 and θS
14 between star-1 and star-4 do not meet the requirement of

Equation (5), the elements in the position index (1, 4) and (4, 1) of the connection matrix are
set to 0. It should be noted that the diagonal elements of the connection matrix are all set to 1.∣∣∣θC − θS

∣∣∣ ≤ τ (5)

Step 2: determine the core cluster
The determination of the core cluster step includes two main parts, namely, searching

the initial largest cluster and filtering the initial largest cluster elements. The specific
contents are as follows:

In the first part, the elements of the connection matrix are added in the column
direction, the column with the largest summation value is determined, and then the
candidate stars corresponding to the rows with the element value of 1 in this column are
selected to generate the initial largest cluster. For example, as shown in Figure 8, the values
after summing the elements in the column direction are 4, 5, 5, 5, 4, and 5, so the second
column is of maximum value, and because its elements in rows 1 to 5 are 1, the initial
largest clustering is {Star-1, Star-2, Star-3, Star-4, Star-5}.
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In the second part, the elements in the initial largest cluster are filtered to determine
the core cluster. As shown in Figure 9, * is the bitwise multiplication operator; we can
bitwise multiply the corresponding column vector in the connection matrix where the
initial largest cluster is located with the first column vector, and then bitwise multiply the
result of the previous step with the second column vector, then repeat the same operation
until the last column vector. Then, a column vector of size D×1, defined as the filter vector,
is obtained. Next, the candidate stars in the filter vector whose corresponding element
value is 1 are selected in the core cluster. For example, the second column vector is bitwise
multiplied by each column vector in the connection matrix, and the filter vector is [0 1 1 0
1]’, so the core cluster is {Star-2 Star-3 Star-5}.
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Step 3: extend the core cluster
After determining the core cluster, the core cluster is utilized to search for more correct

candidates not included in the core cluster due to noise to improve the attitude accuracy of
the star sensor, but at the same time, it has to be ensured that wrongly identified results
must be excluded. Based on the above principles, the candidate stars in the core cluster are
selected as references to verify the remaining candidate stars. If all elements of the column
vector of a remaining candidate star in the row position corresponding to candidates
included in the core cluster are 1, then this candidate is considered as correct and included
in the final identification result. Otherwise, it is not included. For example: star-1 and
star-4’s column vector elements in rows 2, 3, and 5 are all 1 (as shown in Figure 10), so they
are determined as correct identification results by the core cluster {Star-2 Star-3 Star-5}, so
the final output is {Star-1 Star-2 Star-3 Star- 4 Star-5}.
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3. Simulations and Results

Simulation experiments including different levels of position noise, magnitude noise, and
different numbers of false stars have been completed to test the proposed star-identification
algorithm. In this paper, the following two judgment conditions need to be met simultane-
ously for a successfully identified star image: (1) neither true stars are identified incorrectly,
nor false stars are identified as a guide star. (2) more than two true stars are correctly
matched in the identification result. Moreover, two classic star-identification algorithms
belonging to different types were selected as comparison algorithms, namely, the geometric
voting algorithm and the grid algorithm, because they have been proven to be excellent
in several space missions, and we validated the proposed algorithm by comparing the
identification rate, run time, and database size with these methods. In simulations, the key
parameters of the star sensor are given in Table 1, and 9040 stars brighter than 6.5 Mv in the
SAO J2000 star catalog were chosen to generate simulated star images. In addition, all the
algorithms in this section were written in MATLAB R2021 and implemented on a personal
computer with a Core 3.4 GHz.

Table 1. Key parameters of sensor star.

Field of View 25◦ × 25◦

Resolution 1024 × 1024
Pixel size 15 µm

Focal Length 34.64 mm
Minimum Sensitivity 5.5 Mv

3.1. Parameter Selection

Two discretizing parameters, ∆p1 and ∆p2, have a significant impact on the identifi-
cation rate, especially for star images with position noise. When there are position errors
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with a large deviation in an image, it is reasonable to set ∆p1 and ∆p2 to bigger values for
more tolerance for noise. However, too many redundant guide stars may be matched as
candidates to severely decrease the effectiveness of the voting process. However, when
∆p1 and ∆p2 are set to small values, there is a greater possibility that the correct candidates
of the voting unit are eliminated.

The relationship between pv1 and pv2 and the identification rate as the standard
deviation of position noise increasing from 0 to 2.0 pixels is illustrated in Figure 11, while
the standard deviation of the magnitude noise remains at 0.3 Mv. It can be seen that
when position errors increase by more than 1.0 pixel, the algorithm performance degrades
differently for different parameters groups, particularly for parameter group 1 and group 3,
in which ∆p1 and ∆p2 are set to 0.05 and 0.05 and 0.015 and 0.015, respectively.
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It is important to note that the algorithm achieves a higher identification rate of more
than 97% with 2.0 pixels of noise in parameter group 2, where ∆p1 = 0.025, ∆p2 = 0.025.
Furthermore, the average run times are 16.24 ms, 18.36 ms, and 21.87 ms for parameter
group 1, group 2, and group 3, respectively. Considering both the robustness to position
noise and run-time performance of the algorithm, we selected parameter group 2 as the
discretizing unit parameters in the paper.

3.2. Comparison and Analysis

The influence of the three different types of noise (position noise, magnitude noise,
and false stars) on the identification rate of the proposed algorithm, geometric voting
algorithm, and grid algorithm is shown in this section. The position noise added to the
observed star makes the corresponding projected centroids deviate from their theoretical
location coordination. Compared with the star magnitude data listed in SAO, there are
some errors in the star brightness for images captured by the star sensor, which leads to
some brighter stars, whose magnitude value in the star catalog is less than 5.5 Mv, being
lost in star images, while dimmer stars, whose magnitude value in the star catalog is more
than 5.5 Mv, are captured by the star sensor and appear in the image. Besides the above
two measurement noise sources, false stars may appear in the captured image because
planets, observed spacecraft, radiation, space fragments, and hot spots may also appear in
the captured image, and these are mistakenly regarded as true stars. In our experiment
part, all parameters of the algorithm are fixed, and one noise source increases linearly, while
the others are maintained at a typical level. In total, 5000 star images are generated and
identified by the three algorithms to evaluate their identification rates with different noise
conditions through the Monte-Carlo method.
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(1). Robustness toward star positional noise: Figure 12 illustrates the identification
rates of star images for three algorithms when the star position noise increases linearly
from a 0.0 to 2.0 pixels with a 0.5-pixel step, while the magnitude noise is kept at 0.3 Mv.
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As shown in Figure 12, the identification rate of the proposed algorithm remains
at more than 97.0% when the standard deviation of the position noise added to the star
image is 2.0 pixels. As for the grid algorithm, its identification rate decreases quickly from
99.32% to 83.5% as the position noise increases, while the identification performance of
the geometric voting is much poorer with large noise, whose identification rate drops
significantly from 97.82% to 61.08%, which drops more than 36.74%.

It is obvious that the positional noise deviation increase has little effect on the identifi-
cation performance of the proposed algorithm compared with the two reference algorithms.
When the position noise is 2.0 pixels, the identification rate of the algorithm is 35.92%
higher than the geometric voting algorithm and 13.50% higher than the grid algorithm.

However, the position noise causes the wrong closest neighbor star to be selected as
the orientation star, and the incorrect grid pattern is built. For the geometric algorithm,
the basic vote unit is star pairs, which is a low-dimension feature and always receives
numerous candidate votes due to position error. While the vote unit is undirected and of a
higher feature dimension, it is more robust to position noise in the voting process.

(2). Robustness toward star magnitude noise: Figure 13 illustrates the identification
rates of star images for three algorithms when the star magnitude noise increases linearly
from 0.1 to 0.5 Mv with a 0.1 Mv step while the position noise is kept at 1.0 pixels.

As shown in Figure 13, the proposed algorithm identification rate drops slightly from
99.9% to 97.14% when the standard deviation of magnitude noise gradually grows from
0.1 to 0.5 Mv. In contrast, the other two reference algorithms obtain a lower identification
rate with larger noise; the grid algorithm identification rate decreases to 90.22% while
the geometric voting algorithm drops sharply to 89.28% with 0.5 Mv magnitude noise,
respectively.

We can see that the magnitude noise deviation increase has less of an effect on the
identification performance of the proposed algorithm compared with the two reference
algorithms. When the magnitude noise is 0.5 Mv, the identification rate of our algorithm is
6.92% higher than the grid algorithm and 7.86% higher than the geometric voting algorithm.
The reasons for this are as follows: some dimmer stars’ appearance and some brighter stars’
disappearance due to magnitude noise cause the wrong closest neighbor star selection
and the building of an incorrect grid pattern. For the geometric algorithm, the wrong
brighter stars are chosen and receive false votes in the identification process. However, the
dimension in the algorithm of the vote unit feature is higher, and it needs fewer correct
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brighter stars to generate vote units to obtain reliable identification results, so it is more
robust to magnitude noise.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 15 
 

 

Figure 12. Identification rate versus positional noise. 

As shown in Figure 12, the identification rate of the proposed algorithm remains at 

more than 97.0% when the standard deviation of the position noise added to the star im-

age is 2.0 pixels. As for the grid algorithm, its identification rate decreases quickly from 

99.32% to 83.5% as the position noise increases, while the identification performance of 

the geometric voting is much poorer with large noise, whose identification rate drops sig-

nificantly from 97.82% to 61.08%, which drops more than 36.74%. 

It is obvious that the positional noise deviation increase has little effect on the identi-

fication performance of the proposed algorithm compared with the two reference algo-

rithms. When the position noise is 2.0 pixels, the identification rate of the algorithm is 

35.92% higher than the geometric voting algorithm and 13.50% higher than the grid algo-

rithm. 

However, the position noise causes the wrong closest neighbor star to be selected as 

the orientation star, and the incorrect grid pattern is built. For the geometric algorithm, 

the basic vote unit is star pairs, which is a low-dimension feature and always receives 

numerous candidate votes due to position error. While the vote unit is undirected and of 

a higher feature dimension, it is more robust to position noise in the voting process. 

(2). Robustness toward star magnitude noise: Figure 13 illustrates the identification 

rates of star images for three algorithms when the star magnitude noise increases linearly 

from 0.1 to 0.5 Mv with a 0.1 Mv step while the position noise is kept at 1.0 pixels. 

 

Figure 13. Identification rate versus magnitude noise. Figure 13. Identification rate versus magnitude noise.

(3). Robustness toward false stars: Figure 14 illustrates the identification rates of star
images for the three algorithms as the false star number increases linearly from 0 to 5. In
this test, the star position noise and magnitude noise are kept at 1.0 pixels and 0.3 Mv,
respectively, while the magnitude value of false stars added to simulated star images varies
from 3.5 Mv to 5.5 Mv randomly.
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As shown in Figure 14, the proposed algorithm obtains a higher identification rate than
reference algorithms as the number of false stars increases from 1 to 5. For our algorithm,
the identification rate decreases from 99.16% to 91.02% with false stars increasing, while
the identification performance of the geometric voting becomes unsatisfactory when five
false stars are added to the image, where it drops significantly to 59.48% and decreases by
33.54% compared with only one false star. The identification rate of the grid algorithm is
similar to our algorithm with five false stars, but its identification performance is poorer
than our algorithm.

It is obvious that false stars have less influence on the identification performance of
the proposed algorithm compared with the other two algorithms. When five false stars are
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added to the star images, the identification rate of the algorithm is 31.54% higher than the
geometric voting algorithm and 0.28% higher than the grid algorithm.

In fact, false stars may be selected as the closest neighbor stars or cause main stars to be
identified, which causes the wrong grid pattern to be built, degrading the performance of
the algorithm to some extent. Likewise, incorrect vote star pairs are generated when brighter
false stars are selected and wrong candidates are obtained in the geometric algorithm. Our
algorithm can utilize fewer correct brighter stars to obtain reliable vote results in the
identification process, which makes it robust to false stars.

(4). Memory and time performance: Table 2 lists the memory size and running time of
the proposed algorithm and the other two reference algorithms, in which memory size is
defined as the memory size of the onboard database containing the guide star table and
feature table in the algorithm, and run-time is the average time spent identifying a star
image with a 1.0-pixel star position noise and 0.3 Mv magnitude noise.

Table 2. Time and memory size.

Algorithm Our Method Grid Geometric Voting

Run time 18.36 ms 72.71 ms 96.86 ms
Memory size 1.5 MB 0.5 MB 0.6 MB

In terms of the run-time performance, our algorithm is 18.36 ms, which is much faster
than the grid algorithm (72.71 ms) and geometric voting algorithm (96.86 ms) due to the
adopted PCA dimensionality reduction and two-dimension lookup table.

It should be noted that the onboard memory size was very limited in the past, so it
is important to pursue a lower database to reduce the required memory cost in algorithm
design. However, embedded systems can easily store 5 MB data, and memory size is
gradually become a less significant part of the algorithm compared with the identification
rate and run time in the star-identification technique. Considering the above factors, it
is still acceptable that the proposed algorithm occupies 1.5 MB, which is larger than the
reference algorithms.

4. Conclusions

In this paper, a novel star-identification algorithm is proposed to solve the “lost-in-
space” problem for star sensors, which utilizes several triangles as a voting unit to obtain
the candidates in the initial match, and then a follow-up filter procedure acquires the final
results. As the simulation shows, the proposed algorithm is more robust to position noise,
magnitude noise, as well as false stars compared with the geometric voting and grid algo-
rithms. Moreover, our algorithm is efficient, and its memory size is acceptable. Therefore,
the GMTV algorithm is suitable for future astronautic missions. We will focus on running
our algorithm on a hardware system of a star sensor to evaluate its on-orbit performance.
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