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Abstract: The degrading of input images due to the engineering environment decreases the perfor-
mance of helmet detection models so as to prevent their application in practice. To overcome this
problem, we propose an end-to-end helmet monitoring system, which implements a super-resolution
(SR) reconstruction driven helmet detection workflow to detect helmets for monitoring tasks. The
monitoring system consists of two modules, the super-resolution reconstruction module and the
detection module. The former implements the SR algorithm to produce high-resolution images, the
latter performs the helmet detection. Validations are performed on both a public dataset as well as the
realistic dataset obtained from a practical construction site. The results show that the proposed system
achieves a promising performance and surpasses the competing methods. It will be a promising tool
for construction monitoring and is easy to be extended to corresponding tasks.

Keywords: helmet detection; super-resolution reconstruction; you only look once v5 (YOLOv5)

1. Introduction

Given the continued rapid growth of modern society worldwide, the construction
industry has developed increasingly fast. However, as well as the traditional hot issues
such as design and construction technology, the safety of construction sites is becoming
one of the hottest topics in the current construction industry. The construction industry
is one of the most prone to safety accidents among all industries. Over the past 20 years,
the construction industry has experienced a decline in accident rates, but the industry’s
accident rate is still about three times that of all industries [1]. Therefore, it is of great
practical significance to study the safety guarantee in the construction industry.

Among the safety accidents in the construction industry, the level of disability caused
by head injury is the highest, thus, reducing head injuries is obviously the primary objective
to ensure the safety of personnel [2]. Currently, the helmet is the most effective way to
reduce head injuries because the impact resistance of the helmet can disperse the impact
of weights when an accident occurs, so as to greatly reduce the head and neck injuries
caused by impact. In order to protect the life safety of employees, the common rule is to
force people to wear helmets before entering the construction area and starting working.
Practically, it is difficult to implement this requirement since the workload of maintaining
supervision is tedious and labor-consuming. Consequently, several kinds of monitoring
systems have been developed including fixed camera-based systems and moving camera-
based processes. These systems work in a closed loop, which captures information through
cameras and performs analysis manually or automatically to produce alarms or any other
control signals. It is obvious that moving cameras are more flexible and able to cover wider
regions so these have attracted a larger amount of attention from users and researchers.
Nonetheless, moving cameras, either cameras on-board an unmanned aerial vehicle (UAV)
or web cameras, normally suffer from the problem of data transmission, according to
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the fact that monitoring image or video files always have a large size and ask for a wide
bandwidth, which is a precious resource in wireless communication. To overcome this
problem, compressing files by decreasing the resolution can be performed, but this often
degrades the image quality, which is hard to be avoided during the trans

Mission, as shown in Figure 1. This ongoing chain reaction means that the difficulties
of monitoring and analyzing images or videos are significantly increasing. In all honesty,
this is not a big issue for manual analysis since human brains can adapt to this degrading
in most cases, but it really affects the performance of most automatic analyzing methods.
Taking into consideration the fact that automatic methods surpass manual approaches
due to their advantages of being more effective and less labor-consuming, there is an
urgent need for the improvement of automatic helmet detection performance based on
low-resolution image or video files, which is the motivation of this paper.
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low-resolution images obtained from the wireless channel due to the constraint of the available
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In recent years, there have been a large number of achievements focused on the
automatic detection of helmets. Based on the employed research ideas, these methods
can be divided into two kinds. Some of them use traditional solutions of object detection
tasks, which consist of handcraft feature designing and machine learning models such as
a support vector machine. The predesigned features are usually from general computer
vision tasks, such as Haar-like features from face detection [3], and the deformable parts
model (DPM), which could cascade different single features [4]. However, choosing or
designing features is complicated, easy to be prone to poor accuracy and difficult to be
extended from one scenario to another. The other methods use deep learning to solve object
detection. The region-based convolutional neural network (RCNN) combines the selective
search algorithm and convolutional neural network to detect targets, which makes for great
improvements in accuracy and speed compared with traditional methods [5]. An RCNN is
a two-stage detection network, the speed of which is difficult to meet in real construction
engineering. The you only look once model (YOLO) realizes faster detection based on the
improvement of the feature extractor backbone. Due to their significant improvement of
detection performance, they replace traditional methods in a short time. Actually, most
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modern object detection architectures are developed and validated on prepared datasets,
which consist of high-quality images. Although they achieve good accuracy on those well-
captured images, their performance still decreases quickly as the input quality decreases.
In other words, the design of detection architectures assumes that the input image quality
meets the demand. However, in our application scenario, when these models are applied
on detecting helmets from images obtained through moving cameras, which are degraded
in quality, it is hard to prevent the performance crashing.

To solve this problem, we propose a super-resolution reconstruction driven helmet
detection workflow to improve detection accuracy under poor image quality. The main
contributions of the paper are as follows.

(1) We propose an end-to-end helmet monitoring system, which implements a super-
resolution reconstruction driven helmet detection workflow. It works well with poor
input image quality and is easy to collaborate with any kinds of image acquisition
device, including a wireless web camera or UAV.

(2) We propose to train a super-resolution model with combination loss of l1 and contex-
tual loss, which enhance its accuracy. We train the super-resolution reconstruction
model and the detection model iteratively from scratch to achieve final results.

(3) Validations are performed on both a public dataset as well as the realistic dataset
obtained from a practical construction site. The results show the proposed workflow
achieves a promising performance and surpasses the competing methods.

2. Related Work
2.1. Object Detection

As one of the fast-developing fields in recent years, deep learning-based object detec-
tion algorithms are becoming the leading methods to solve object detection tasks. Most
successful methods can be divided into two main categories, two-stage detection and
one-stage detection. The most representative methods following two-stage detection in-
cluding the RCNN, Fast regions with convolutional neural networks (Fast-RCNN) and
their variants [6,7]. The common idea of these methods is first to obtain region proposals,
which might contain the objects, then change the task into a classification to attach each
anchor box a label. It is almost the standard solution for long periods of time due to its
relatively high accuracy. However, it has proven to be of less help in practical scenarios that
ask for real-time monitoring because of their low detection speed. In contrast, one-stage
detection methods try to solve the problem through regression. This first employs a feature
extracting backbone, usually a convolutional neural network (CNN)-based one, to produce
feature maps, then predicts the position, class and confidence of objects at the same time.
Based on the improvement of the feature extractor backbone, YOLO evolves from YOLOv1
to YOLOv3 to achieve better accuracy and speed [8–10]. Adopting a cross stage partial
network (CSP)-based darknet-53 as the backbone network and replacing feature pyramid
networks (FPN) with a path aggregation network (PANet), YOLOv4 improves the detection
accuracy of the model in advance [11]. Recently, the YOLOv5 network model has added a
focus structure to the backbone network on the base of YOLOv4, and balanced the detection
speed and accuracy. Currently, one-stage detection methods are widely used in engineering
practice due to the good time efficiency. Nevertheless, in most cases, the accuracy of YOLO
and its variants is not as high as that of two-stage methods, especially for small targets and
the low-resolution input.

2.2. Super-Resolution Reconstruction

There have been a large number of attempts to improve the performance of super-
resolution reconstruction as it is really a long story in the development of computer vision.
The most widely used approaches are kinds of interpolation-based methods, such as bilinear
interpolation or nearest-neighboring interpolation [12]. Since the process of interpolation
always follows a fixed pattern to calculate the new-generated pixel values from existing
ones in a low-resolution image, it is hard to adapt to an unknown image degrading protocol.
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Another traditional idea is to treat the SR problem as image reconstruction [13,14]. Inspired
by the learning method, recent super-resolution approaches directly learn the nonlinear
relationship from the low–high-resolution images. Based on the learning process, it could be
divided into supervised SR and unsupervised SR. The supervised SR requires aligned high-
and low–high-resolution image pairs to train the CNN models to fit the mapping between
images with different resolutions. Dong et al. propose the super-resolution convolutional
neural networks (SRCNN), which effectively improves the effect and speed of image
SR reconstruction compared with the traditional image SR algorithms [15]. Kim et al.
propose a VDSR network, which increases the number of layers of CNN to 20 [16]. The
algorithm combines residual structure and CNN with image SR reconstruction, and the
image reconstruction effect has been significantly improved. Li et al. propose a multi-scale
residual network (MSRN), which applies image multi-scale features to the residual structure
to further improve the image reconstruction effect [17]. Zhang et al. propose a residual
channel attention network RCAN, which applies a channel attention mechanism to the
image super-resolution problem and achieves a better reconstruction effect than previous
algorithms [18]. To apply these methods successfully, we need to prepare a large number
of strictly aligned image pairs, which is not a simple task in practice. Thus, currently,
simulated image pairs are used in research so as not to decrease its performance in real
world applications. Unsupervised SR methods employ the GAN model and its variants to
generate high-resolution images with the low-resolution input [19–21]. However, without
paired training data, its accuracy is not as good as that of supervised methods.

2.3. Helmet Detection

Automatic helmet detection is urgently needed in construction engineering and safety
driving monitoring. The traditional helmet detection methods focus on the design of the
artificial features to lead the classification towards appropriately discriminating helmet
from non-helmet targets. The well-known image descriptors such as the local binary pattern
(LBP), local variance (LV) and histogram of oriented gradient (HOG) are used to enhance
the feature extraction step, and they achieve promising accuracy through a supporting vec-
tor machine [22]. The circular Hough transform (CHT) accompanied with HOG descriptor
are applied to extract the helmet attributes, and the multilayer perceptron (MLP) classifier
is used to perform the final helmet classification [23]. The method combining multi-feature
fusion and a support vector machine (SVM) is used to detect and track the helmet in a
factory environment to keep an eye on safety production [24]. However, the choosing of
manual features is labor-consuming and poor in generalization, which prevents their appli-
cation. Nowadays, thanks to the development of deep learning and CNN, a large number
of modern helmet detection approaches have been proposed. The CNN-based multi-task
learning model has been designed for tracking individual motorcycles through identifying
helmets [25]. The faster region-based convolutional neural network (Faster RCNN) is
utilized to detect both motorcyclists and helmets [26]. The faster RCNN equipped with the
multi-scale training and increasing anchors strategies has proved to be capable of detecting
helmets on different scales [27]. Taking the processing speed into consideration, YOLO
is even more popular. An improved YOLOv3 model has been applied to detect helmets
and successfully increased the average accuracy [28]. Replacing the traditional YOLOv3
backbone of darknet-53 with a deep separable convolution structure, the performance of
helmet detection has been further improved [29]. Nevertheless, all these models ask for
quality stable input images, which is reachable in training set acquisition but difficult to
reach in practical terms. In other words, if there is no assurance about input quality, the
detection performance will decrease quickly. To the best of our knowledge, few methods
have focused on solving the helmet detection problem with poor quality input images.

3. Method

We propose an end-to-end helmet monitoring system, which implements a super-
resolution reconstruction driven helmet detection workflow as shown in Figure 2. There
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are two main modules in the workflow, the super-resolution reconstruction module and
the detection module. The former implements the SR algorithm to produce high-resolution
images, while the detection model performs the helmet detection. Based on the helmet
detection results, we can perform semantic analysis of counting or wearing detection based
on the specific monitoring task.
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3.1. SR Module

We take the dual regression network as our backbone architecture for super-resolution
reconstruction [30]. The main idea is to add a dual regression task (from high-resolution
image to low-resolution image) alongside the primal regression task (from low-resolution
image to high-resolution image). Through the constraint of the reversible reconstruction,
the mapping space between the low–high-resolution images is compressed and it is easier
to fit to the real degrading relationship. The details of the SR model are shown in Figure 3.
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We employ a simple U shape symmetric architecture to produce the primal task. The
input low-resolution images are fed into feature extractor consisting of stacked convolution
layers. Then, the abstracted features are mapped onto the target image space through
trans-convolution. Alongside the easy-to-understand primal architecture, we attach a one-
way path to map the resolution of image from high to low. Through improving the deep
supervision of the mapping loop, we can achieve the advanced reconstruction performance.

Normally, the two regression tasks in SR are optimized following the classic l1 loss, that
is to say, the mean absolute error (MAE). However, taking into consideration that the main
purpose of our SR module is to perform the preparation for the following object detection
module, when comparing with pixel-wise similarity, we should pay more attention to the
sematic information. Therefore, we employ a combination of l1 loss and contextual loss
as follows

l =
N

∑
i=1

[l1(P(xi), yi) + αlc(P(xi), yi) + l1(D(P(xi)), xi)] (1)

where (xi, yi) is the ith low-resolution and high-resolution image pair. P(·) and D(·) are
the primal regression and dual regression, respectively. α is weighting coefficients of
the contextual loss component. l1 indicates the MAE and lc denotes the contextual loss
calculated from Equation (2).

lc(xi, yi) = − log(CX(FP(xi), FD(yi))) (2)

where FP(·) and FD(·) are the feature maps obtained from the feature extractor during
primal task and dual task, respectively. Based on our symmetric architecture shown in
Figure 3, the two feature maps always have the same size N. In order to measure how
similar the two feature maps are, we refer to the similarity in [31]. CX(FP(xi), FD(yi)) =
1
N ∑

j
max

k
CXkj, where CXkj calculates the similarity between the kth and the jth features

from FP(·) and FD(·).

CXkj(FP(·), FD(·)) =
exp

(
1−d̃kj

h

)
∑l exp

(
1−d̃kl

h

) (3)

where d̃kj = dkj/
(

min
l

dkl + ε

)
, and dkj is the cosine distance between the kth and the jth

features from FP(·) and FD(·). The parameters h = 0.5 and ε = 10−8. Due to the setting,
the closer the two features, the smaller the dkj. Consequently, the smoothed d̃kj approaches
1 so as to produce large CXkj as well as large CX(FP(xi), FD(yi)). Because the FP(·) and
FD(·) are abstracted information obtained from backbone network, they are full of sematic
information and could help the SR module focus more on high level similarity instead of
pixel-wise alignment. This proved to be great help for our detection.

3.2. Detection Module

As one of the most advanced one-stage object detection models, YOLOv5 is chosen
as our backbone model to detect helmets. Since there is a clear evolving track for YOLO
models and the YOLOv5 is a combination of all the prior tricks and improvements, we
do not recap the entire architecture in detail. Here, we only talk about how we use the
model. Briefly, the three main components employed in YOLOv5 are backbone for feature
extracting, neck for feature fusing and head for prediction. The cross stage partial network
combined Darknet is used as backbone, which could abstract abundant information and
the path aggregation network is utilized as neck to generate the feature pyramid so that it
can enhance the capability of multi-scale detection. The head part follows the traditional
YOLO head used in the prior version to obtain the prior box and classification result. In
this paper, the detection module containing YOLOv5 model follows the SR module directly
to implement the helmet detection. The loss function follows reference [8].
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3.3. Dataset

We employ both public dataset as well as the realistic dataset to train our model. For
SR task, the public data include the DIV2K and the Flickr2K, which contain 3550 paired
images of high resolution, 2× and 4× low resolution [32,33]. There is no requirement
with regard to the image content. The realistic dataset includes 5457 images randomly
downloaded from the Internet. The chosen standard is that each image contains as least
one person wearing helmet. We downsample these images through bicubic algorithm to
generate 2× and 4× low-resolution images. All these paired images, 9007 in total, construct
our training dataset. We obtain an individual test set, which includes 270 images via
the same grabbing way of training set. The testing images are downsampled through
randomly chosen methods available in the skimage toolbox of python. For helmet detection
task, the aforementioned data excluding DIV2K and the Flickr2K are used as training and
testing, respectively.

3.4. Metrics

The quantitative metrics employed in this paper are shown in Table 1. For SR task,
we use the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) values to
measure the reconstructed image quality. The higher the value of PSNR is the better. The
value of SSIM varies between 0 (worst) and 1 (best). For detection task, the precision, recall
and average precision (AP) are calculated. Precision measures the capability that the model
finds out targets which are real targets. Recall measures the capability that the model finds
out real targets without missing. AP is calculated from the area under the precision–recall
curve and values approaching 1 are the best.

Table 1. The definition of utilized quantitative metrics.

Task Metrics Definition

SR

PSNR
PSNR = 10 log10

255
1
3 ∑c={R,G,B}(MSE)c

where MSE indicates

the mean square error of the image.

SSIM

SSIM(I0, I) = (2µI0 µI+c1)(2σI0 I+c2)(
µ2

I0
+µ2

I+c1

)(
σ2

I0
+σ2

I +c2

) where I0 and I are

the original and the reconstructed high-resolution images.
µ and σ indicate mean and variance, respectively, and

c1, c2 are constants

Detection

Precision Precision = TP
TP+FP where TP, FP and FN indicate true

positives, false positives and false negatives, respectively.

Recall Recall = TP
TP+FN

AP Area under the precision–recall curve

3.5. Training

The entire method is implemented on the workstation equipped with two NVIDIA
RTX3090 GPU and Intel i9 CPU. All coding work is based on Python 3.7 and PyTorch 1.8.
The SR module and detection module are first trained separately from scratch. Then the
two modules are finetuned together, alternately. Specifically, in each iteration, one module
will be frozen while the other one is updating, then vice versa. The initial learning rate of
the SR and detection are 0.0001 and 0.01, respectively. The Adam optimizer is applied with
the momentum 0.9 and the batch size is 2.

4. Results
4.1. Performance of the Proposed SR Module

We compare the super-resolution reconstruction results of the proposed SR module
with those of the other popular SR methods. According to the fact that our main purpose
of this paper is helmet detection instead of pure super-resolution reconstruction, we choose



Appl. Sci. 2022, 12, 545 8 of 12

the widely used interpolation methods for comparison since they are often utilized to
adjust the network input resolution in object detection tasks. Our method starts from the
DRN-S model designed for SR tasks so that it is necessary to compare our improvements
with the original DRN-S model [30]. The achieved results are shown in Table 2. There is
a gap between the PSNR values of SR-based methods and those of interpolation-based
methods. Our SR module achieves a higher PSNR value while keeping its SSIM value
consistent with that of DRN-S. This means that we can achieve better image quality so as to
improve the accuracy of the coming detection module.

Table 2. The results achieved by different methods.

Interpolation
DRN-S Our Method

Nearest Neighbor Bilinear Bicubic

PSNR 23.716 25.277 25.343 27.964 27.991

SSIM 0.737 0.782 0.784 0.850 0.850

From Figure 4, we can review the super-resolution reconstructed images directly.
Since our real targets are helmets, we focus on them more instead of on the background
information. All helmet regions are zoomed in to visualize their details. It can be found
that the helmets obtained from super-resolution reconstructed-based methods are clearer
than those achieved by the interpolation-based method. To be specific, our SR module
produces images that are less blurry but not so piecewise smooth to be able to obtain more
median-frequency information.

Based on Table 2, there is a significant improvement using our method compared
with the original DRN-S. To evaluate the effort of our newly added contextual loss, we
compared the performance of the SR module with different weight α, as shown in Figure 5.
DRN-S refers to the original DRN-S model. C-0.001 refers to the SR model trained under
the combined loss described in Equation (1) with α = 0.001. C-0.0005 and C-0.0001 indicate
α = 0.0005 and α = 0.0001, respectively.

4.2. Performance of the Proposed Helmet Detection Method

We show the detection results produced by different end-to-end workflows in Table 3.
Each workflow employs the same YOLOv5 architecture but different input. The Interpo-
lation+YOLOv5 workflow is exactly the same as with normal YOLOv5 since it uses pure
interpolation to resize the input images to the standard resolution. The DRN+YOLOv5
workflow is also super-resolution reconstruction driven detection, which consists of the
DRN model and YOLOv5. The proposed SR module+YOLOv5 indicates the workflow
described in this paper. From Table 3, the combination of the proposed SR module and
YOLOv5 achieves the best precision, which means that 88.4% predicted helmets are real
helmets. Compared with the other two results, it has the fewest false predictions. How-
ever, since precision is normally in contradiction with recall, the recall of the proposed SR
module+YOLOv5 lags a little behind that of the DRN+YOLOv5. The AP of the proposed
SR module+YOLOv5 is the highest, which indicates it has the best overall performance.
It can be seen that the input images produced by the SR module will improve all metrics
due to the improvement in image quality. The proposed workflow surpasses the original
DRN+YOLOv5 workflow on precision and AP.

Table 3. Detection performance of different workflows.

Interpolation+YOLOv5 DRN+YOLOv5 Proposed SR Module+YOLOv5

Precision 0.853 0.878 0.884
Recall 0.632 0.716 0.715
AP (%) 0.435 0.500 0.501
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5. Discussion and Conclusions

We propose an end-to-end helmet monitoring system, which implements a super-
resolution reconstruction driven helmet detection workflow. It is designed for the scenario
where the input image quality is limited, which is easily faced in engineering practice. For
example, input images are acquired from a moving camera and transmitted through a
bandwidth-limited wireless channel. Because of the limited bandwidth, images are always
compressed and so have poor resolution and quality. The degrading of the input images
will consequently decrease the helmet detection precision. To overcome this problem, the
proposed SR driven helmet detection workflow consists of two sequential steps in the
entire workflow. First, we use a super-resolution reconstruction module to improve the
image resolution and quality instead of direct interpolation. Then, the processed images
are fed into the detection module consisting of YOLOv5 to perform helmet detection.
The two modules are trained separately from scratch and finetuned together, alternately.
This is a typical multi-task learning strategy to help increase task specific accuracy by
utilizing other tasks as constraints. Validation shows the effectiveness of our workflow.
The comparison of the performance of different SR reconstruction methods shows that the
proposed SR module could increase the PSNR value while maintaining a consistent SSIM
value. The comparison of the performance of different detection workflows shows that the
proposed SR module is effective at guiding the YOLOv5 and detection precision and AP
are both increased. Generally speaking, based on current results, this will be a promising
tool for helmet detection, which can be easily used in construction monitoring or traffic
safety monitoring. Moreover, SR driven detection is a general workflow that is easy to
be extended to other similar object detection tasks to solve the problem of performance
degrading caused by poor inference input quality when the training input quality is good.
Currently, our main idea is to use the individual model on specific tasks and combine tasks
together. The model will be redundant if there are a large number of tasks. In the future, we
will keep working on identifying a semantic subspace to attempt to remove the influence
of image quality on detection performance.
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