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Abstract: Recently, the production environment has been rapidly changing, and accordingly, correct
mid term and short term decision-making for production is considered more important. Reliable
indicators are required for correct decision-making, and the manufacturing cycle time plays an im-
portant role in manufacturing. A method using digital twin technology is being studied to implement
accurate prediction, and an approach utilizing process discovery was recently proposed. This paper
proposes a digital twin discovery framework using process transition technology. The generated
digital twin will unearth its characteristics in the event log. The proposed method was applied to
actual manufacturing data, and the experimental results demonstrate that the proposed method is
effective at discovering digital twins.

Keywords: digital twin; manufacturing process; process mining; process prediction; GRU

1. Introduction

As the complexity of manufacturing systems increases alongside rapid changes in
recent consumption trends, forecasting to prevent future losses is becoming more important.
A lot of research is being done on this related technology, and among them, digital twins
technology is considered as an important core component of Industry 4.0. In particular,
this technology makes process predictions possible through digital data, not just physical
implementations [1]. The output of these digital twins can provide important indicators for
long term and short term decision-making in the manufacturing process.

A lot of research on digital twins is being conducted, and recently, approaches using
process mining have become popular. However, there are more specialized studies for
business processes than manufacturing technology, and research using process mining
technology to create a digital twin of the manufacturing industry is insufficient. It is
necessary to be able to create digital twins using event log data to make appropriate
decisions for manufacturing operations using the vast amounts of data generated in the
manufacturing process. In this paper, we propose a digital twin discovery model that
can predict the remaining cycle time, which is an important indicator in manufacturing
environments, using event log data.

Process characteristics are extracted through embeddings based on transition technol-
ogy of event log data with activity and Class Id. Extracted data are used to uncover digital
twin models that predict the manufacturing remaining cycle times. In this way, this study
solves the problem of determining the time required to terminate the remaining processes
based on the execution log data of the previously completed processes. We intend to solve
this problem using the GRU(Gated Recurrent Unit) artificial intelligence model.

In this paper, we devised a digital twin model that predicts the remaining cycle time
of a manufacturing system using event log data, and propose a cloud type architecture
using this setup. There are three main contributions of our study.
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(1) Transition system based embedding technology to easily extract process characteristics
from event logs is proposed, and this technology can help interpret numerous log
data accumulated by manufacturing companies.

(2) Creating a digital twin model requires a lot of technology and is costly, and in most
cases additional professional manpower and costs are required to reflect real data in
the created twin. In this paper, we tried to implement this process through artificial
intelligence learning, and it can satisfy the need for cost reduction.

(3) By providing a cloud computing style digital twin architecture, our setup can help
small companies with insufficient technical skills to realize digital twin methods.

The rest of this thesis is structured as follows. Section 2 describes digital twins and
introduces research that links process mining to digital twins. Section 3 provides a descrip-
tion of the components of the proposed approach and the main idea of this study, as well
as describes the transition embedding digital twin model proposed in this paper. Section 4
describes the experimental environment, the structure of the data set, and the experimental
results. Section 5 concludes the paper with a summary of the paper, evaluation results, and
future research directions.

2. Related Work
2.1. Digital Twin Overview

With the transition to Industry 4.0, technologies such as data collection, storage, and
communication have developed rapidly, and these developments have made it possible
to check the field conditions through data [2]. This means that a digital twin using data
from the manufacturing system can be linked with the real environment in real time [3].
Digital twin models created using these data can help solve traditional elusive problems by
mirroring manufacturing environments. With the development of cloud computing, IoT
technology, and manufacturing systems, a new paradigm for making decisions based on
big data has emerged [4].

Recently, there is a growing trend of research on the implementation of digital twins
for physical assets of smart factories, and Industry 4.0 aims to develop a smart factory that
can meet the rapidly changing needs of customers at a lower cost [5]. In this environment,
digital twins provide better decision-making and prediction in manufacturing, as well as
meaningful insights into decision-making in the manufacturing process [6]. Digital twin
technology can also reduce the potential risks associated with planning manufacturing
processes without physical awareness. Digital twin related researchers predict that, after
reducing these risk factors, many of the major industry players will utilize digital twin
technology to increase manufacturing efficiencies by 10.

Early models of digital twins were used for the manufacture and repair of aircraft with
numerous parts. Digital twins were also a technology that could predict the lifespan of an
aircraft, which directly affects many people by maintaining the integrity of the product. A
conceptual model that can predict the lifespan of aircraft structures has additionally been
presented [7]. Since then, research to use digital twins in the manufacturing field has been
continually conducted, including on digital twin configurations using physical workspaces,
virtual workspaces, and data [8]. In addition, Luo showed that there is an advantage
to creating digital twins through real time data collection and applying decisions made
based on this approach to actual SMEs [9]. In the manufacturing process, digital twins can
directly run and review things that cannot be executed at the actual manufacturing site
through the virtual manufacturing process. Additionally, they help with operation during
the manufacturing process through various insights gained experimentally.

Figure 1 is a visual representation of the digital twin framework. Real-time data
created during the manufacturing processes of smart factories implemented in the real
world are collected through multiple sensors, and interpretation of these data is used to
make decisions by considering big data. Using big data, the machine learning process is
carried out, and the digital twin model created through this process is used to implement
scenarios that cannot be applied in the real world due to excessive costs. As shown in the
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figure, the results of the scenario are transmitted to the decision maker for the smart factory
manufacturing process for decision-making, and the decision maker can use the indicator
to provide more appropriate and efficient instructions.

Figure 1. Digital twin framework.

Physical asset information can be collected in real time with the development of IoT
technology, and this information is shared in a cloud computing environment, leading to a
digital transformation that can improve flexibility in product creation. To enable real time
interworking of such information, some degree of abstraction is required to calculate the
actual phenomenon [10]. In addition, stable data processing and transmission speeds are
required to provide advice and insight into decision-making through the mirror model,
where this technology can bridge the physical and digital worlds [11]. Research on an
environment that can handle digital twins is needed such as cloud computing [12].

Cloud computing refers to Internet based computing where programs are placed on
virtualized servers on the Internet and used whenever necessary. Cloud computing can
help focus on manufacturing operations because you can use servers that are already in
place without considering the costs of location infrastructure for storing servers [13]. In
addition, since the customer pays only for the amount of data used in the cloud service,
it can provide high efficiency for service operation. Partners have the advantage of being
able to create new services through the cloud even without technical skills and use high
efficiency technology for investments through high quality servers. During the process
of creating a digital twin environment for a smart factory, if the cloud is used as shown
in the figure, there is no current technology to directly and properly implement a digital
twin. Even if there is appropriate technology, hiring an employee who can continually
manage the infrastructure of small and medium sized enterprises (SMEs) costly, making
the implementation of digital twins in the cloud space difficult.

This method implements new scenarios in manufacturing processes at a low cost by
building a digital twin via the cloud for small and medium sized enterprises (SMEs) that
lack staff to manage costs or infrastructure. Additionally, this approach obtains information
for medium and short term operation in the real world. It provides a new option for
obtaining meaningful indicators that can be used for decision-making.

2.2. Log Data Analysis

Real time prediction in digital twins helps with making appropriate decisions in short
and medium term scenarios based on the current state of the process, and uses digital
systems in a virtual space rather than manufacturing systems in a real space [14]. In
such a smart factory, process prediction technology can be used to analyze and evaluate
the production line before implementing the process offline. It can also be used as a
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proactive model to prevent risk factors that may occur in the process. By using these
two methods, managers who set the plant’s operation plan can make more efficient and
reliable decisions, and it is possible to prevent plans from being negatively affected by
unexpected external factors. In recent years, the demand for customized products has
increased significantly in the market, and accordingly, the manufacturing process is also
changing at a rapid pace. The existing approaches to digital twins are based on a model
structure manufactured by company or consulting experts. However, recent research has
focused on data driven technologies such as event log data rather than expert consulting,
which requires a relatively long time and a large cost to respond to the rapidly changing
consumption structure and system characteristics. Research using the process mining
method to track and determine various characteristics is becoming more popular [15].
Process mining techniques can estimate the relationship between the change in outcome
according to the state or parameters that implement the state. Therefore, process mining
can be used to estimate the outcome or cause of a process in manufacturing scenarios [16].
Ref. [17] tried to determine why delays occurred by analyzing the event log data and using
decision trees to find the cause of bottlenecks in the process. Ref. [18] tried to predict
the next process based on events that occurred previously in a business process using a
natural language processing model. Through this, the author tried to adjust the factors
that hinder the operation of the process based on the process mining technique. Ref. [19]
proposed a method for automatically discovering manufacturing systems and creating
digital twins based on process mining. The author applied the proposed method to the
actual manufacturing line and proved that the results were effective. The author of [20] tried
to implement a digital twin using the process mining technique in building manufacturing,
and through this, he tried to predict the factors that could fail in the current process. This
enables tactical decision-making by preventing factors that disrupt the entire process in
advance. Ref. [21] tried to implement a manufacturing digital twin based on process mining
technology. In addition, the author tried to efficiently control the assets of the facility by
combining RTLS (Realtime Locating System) with the digital twin. This led to optimization
of the process operation and was intended to reduce the waste factor of operation.

As mentioned above, process mining technology can explain the correlation between
process results and causes by considering event log data. Log data in the manufacturing
process are accumulated in information systems at a faster and more rapid pace with the
development of IoT technology. These data are recorded and stored on the server every
day. Detailed documentation of these processes can help with predictions, but it remains
difficult to fully understand the data. The log summarizes all processes generated in the
manufacturing system as an event, and is structured in the format shown in Table 1. Activi-
ties are tracked according to a sequential order ID, which typically contains information
such as a timestamp and associated costs, including the start time and end time. There may
be multiple cases that follow the same trace, but each case is separate and considered as a
different event. In theory, all processes, including manufacturing activities, can be saved as
event log data considering the time dimension, and each activity can be tracked to describe
the properties of the event.

Table 1 contains information on the type of product that a given machine operates and
produces, including the name of the machine, the number of products, and the start and
end times according to the case ID. Process mining, as described earlier, tracks and analyzes
activities in these event log data. Process mining is currently used for many purposes,
and although it has been frequently implemented in business processes, research using
process mining technology in manufacturing processes has become more popular recently.
In [22], the author explained the relationship between each activity in the system model,
and used this to predict future activities based on previous activities by estimating the level
of detail of the system model. In general, process mining attempts to predict a process by
considering the process’s past events and the sequence of subsequent events. This paper
also proposes a digital twin model that tracks past process and predicts the remaining
process times for each state in the manufacturing process.
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Table 1. Fragment of an event.

Case ID Start Time End Time Product Machine Qtty

Case 01 3 July 2021: 13:00 3 July 2021: 13:10 A 1 10
Case 01 3 July 2021: 13:20 3 July 2021: 13:40 A 2 10
Case 01 3 July 2021: 13:55 3 July 2021: 14:10 A 3 10
Case 01 3 July 2021: 14:20 3 July 2021: 14:30 A 4 10
Case 02 3 July 2021: 15:00 3 July 2021: 15:30 B 1 20
Case 02 3 July 2021: 15:40 3 July 2021: 16:20 B 3 20
Case 02 3 July 2021: 16:30 3 July 2021: 17:10 B 2 20
Case 02 3 July 2021: 17:20 3 July 2021: 18:00 B 4 20
Case 03 3 July 2021: 04:00 3 July 2021: 04:25 A 1 5
Case 03 3 July 2021: 04:32 3 July 2021: 04:44 A 3 5
Case 03 3 July 2021: 04:55 3 July 2021: 05:20 A 2 5
Case 03 3 July 2021: 05:30 3 July 2021: 05:55 A 4 5
Case 04 3 July 2021: 07:00 3 July 2021: 07:30 B 1 10
Case 04 3 July 2021: 07:42 3 July 2021: 07:55 B 2 10
Case 04 3 July 2021: 08:05 3 July 2021: 09:45 B 3 10
Case 04 3 July 2021: 10:00 3 July 2021: 10:30 B 4 10

2.3. AI for Manufacturing

Modern digital twin models are moving away from traditional methods created by
consulting with company experts and more towards machine learning approaches created
using artificial intelligence. The data created in smart factories are vast and complicated. To
learn such data, data processing is necessary, and research on it has continually developed.
To link reality and virtual reality in real time using a digital twin, it is necessary to quickly
create a digital twin model. The existing methods using expert opinions have difficulty
quickly adapting to dynamically changing environment [23]. To solve this problem, we
need a model that can quickly process complex and massive data.

Recent research on artificial intelligence has shown that it can solve these problems,
and shows promise in industrial fields. The manufacturing process in an actual factory is
very complex, and several studies have been conducted to implement digital models [24].
In particular, methods to better understand the manufacturing process have been studied.
Today’s manufacturing industry integrates sensing, communication, big data analysis, and
cloud computing technology to secure competitiveness, and this technological integra-
tion applied to manufacturing is referred to as a ‘smart industry’. In particular, smart
manufacturing is regarded as a key to competitiveness, indicating the level of a country’s
industrial manufacturing capacity [25]. The three key pillars of smart manufacturing are
hyper convergence, hyper connection, and super intelligence. Artificial intelligence cannot
be discussed without mentioning artificial intelligence while implementing a smart manu-
facturing system, that is, a smart factory, and artificial intelligence in industrial systems
plays a key role [24]. The introduction of artificial intelligence into manufacturing systems
can more efficiently analyze the big data that accumulates in the manufacturing industry,
and meaningful results from this analysis help the efficient operation of the process. It can
also provide an important indicator for introducing long term plans. This introduction of
artificial intelligence into the manufacturing industry will enable efficient and intelligent
use of manufacturing data [23]. Artificial intelligence can be broadly described as machine
learning (ML) and deep learning (DL) which is one of the parts of machine learning. The
analysis of data generated by these two sub technologies can generate useful information
for evaluating manufacturing fixation. The results of this analysis can be used to improve
the manufacturing process [26].

Along with artificial intelligence, the use of digital twins has also grown rapidly
in recent years, and are considered a key supporting factor for Industry 4.0 [27]. In the
manufacturing process, all state changes of physical objects are detected by sensors and
used to analyze the manufacturing process. Artificial intelligence analyzes these complex
and difficult data to extract usable data, and this AI technology makes it easier to project
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complex real world data into a virtual digital world. Advances in these technologies may
accelerate the implementation of digital twins. In a smart factory manufacturing site,
all equipment has up to thousands of sensors attached, leading to a lot of information
being stored in a database. It is impossible for even the most experienced engineer to
monitor and diagnose data from thousands of sensors in real time. However, by using
artificial intelligence, it is possible to identify significant patterns in a large amount of data.
For example, an AI model can help engineers by analyzing patterns and then raising an
alert when it finds outlier data. Furthermore, if more interfaces are implemented, the AI
model that generated the alarm can perform contribution analysis to self diagnose and
even self repair whose sub digital twin has the problem. By using an artificial intelligence
model, it is possible to reduce losses both in time and cost by predicting and responding
to problems that can seriously affect production in advance. More of these digital twins
can be combined to expand the scope of their use. Currently, they are being used within
manufacturing plants, but can be expanded and modeled to include material management
and shipment management [28]. There are cases of companies using AI based digital twins
to provide solutions and receive funding. These include MAYA and IMPROVE, funded
by the EU’s Horizon 2020 program, which emphasize the “smart factory of the future.”
There is also KEEN in Germany, which focuses on artificial intelligence based solutions to
complement and extend the capabilities of digital twins, as well as System X as described
in [29]. According to a Gartner report, by 2021, half of all manufacturing enterprises
will have digital twins, which will increase their effectiveness by 10% [30]. Digital twin
technology provides improvements at every stage, which can reduce solution modeling
time (up to 20%), reduce build time (up to 25%), improve document quality, and reduce the
amount of design errors (up to 20%), which in medium to long term scenarios contributes
to increasing a company’s sales and market share.

3. TED: Transition System Based Embedding for Digital Twin
3.1. System Architecture

This paper uses a cloud computing based digital twin framework to predict the
remaining manufacturing cycle time, and solves the prediction problem through machine
learning using a transition based embedding method. In addition, we propose a framework
that can solve insufficient technical problems through collaboration with other companies.

Herein, we propose a twin collaboration framework. Figure 2 illustrates a digital twin
framework based on cloud computing. In this paper, after preprocessing data by tracking
activities in the event log, machine learning is performed with a GRU based artificial
intelligence model. We consider cloud based digital twins created through learning through
the cloud, augmenting the artificial intelligence technology based on data provided by each
company, allowing for the construction of precise digital twins through improved models.

We provide an integrated solution to implement digital twins in the form of pictures
in smart factory manufacturing processes. A service provider receives event log data from
a customer, creates a digital twin model suitable for the process, and when the customer
wants to conduct experiments in the manufacturing process, creates a customer in the
virtual environment of the digital twin model. The results of the experiment are delivered
to the smart factory so that the customer can make a more correct mid to long term plan
and operate the manufacturing process. The generated digital twin can create a more
precise model while learning another customer’s dataset, and the customer can receive
more reliable experimental results. In fact, most SMEs are unable to implement even a basic
digital twin due to a huge lack of costs such as data analysis costs, server construction costs,
and consulting costs. Most small and medium sized enterprises (SMEs) are unable to reap
the many benefits of implementing a digital twin, and are often stuck in a low-level tech-
nology environment.Through this collaborative architecture that we propose, both service
providers and customers can benefit, and it can provide more growth opportunities for
small businesses in low-skill environments due to lack of skills to implement digital twins.
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Figure 2. Collaborative digital twin framework for smart manufacturing.

3.2. Modeling Procedures

We use event logs to model digital twins. First, the activity of the manufacturing
process is tracked in the event log, and the tracked activity is classified as a transition
system. To proceed with machine learning using the classified data, the activity is newly
mapped according to the sequence and embedding is carried out.

The name of the embedding model is TED (Transition System Based Embedding
For Digital Twin). Figure 3 is an overview of the TED model. The manufacturing event
log of the smart factory is injected into the model, and the output value is learned using
a GRU neural network, an artificial intelligence model. Through the trained model, a
digital twin that predicts the remaining cycle time in the process is created. By using the
generated model, small factories of small and medium sized enterprises can also implement
digital twins of the manufacturing process, helping bring factories closer to becoming a
smart factories.

The data generated in the industrial process are collected through IoT sensors attached
to the machine in the form of an event log including the activities and case IDs. The
collected data are classified through the transition system (TS), and the TS layer describes
all situations that can occur during the process. This transition relationship describes the
transition from one state to another. It is expressed as a tree shaped graph explaining the
direction. All transitions have start and end points, and the flow of these states can be
expressed as a diagram as shown in Figure 4. The main purpose of this classification system
is to understand the state of the process in detail and extract meaningful results that can
improve operation of the plant based on the event log data.

As described in Figure TED, this paper collects all the names of all machines operating
during product production based on the event log in the manufacturing environment and
the transition system, and then maps them in order. At this time, the mapped states are
collected and expressed as Process = <1,2,3,4>. Based on the state information collected
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in the process cases, a relationship based on a Petri net can be constructed as shown in
Figure 4.

Figure 3. Transition system based embedding for digital twin modeling.

Each node in Figure 4 represents the product creation process and status in the man-
ufacturing process. Each node is a mapping of the machine name that the product was
produced from. For example, 1,2 represents a state that went through Machine 1 and
Machine 2, while 1,3,2 represents a state for Machine 1 and Machine 2 such that Machine 3
has been passed.
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Figure 4. Petri net of event log.

To determine the remaining cycle time of the manufacturing process through the
transition system, the time remaining until the corresponding instance is terminated is
estimated based on the process information for each tracked process. For example, if one
process takes a total of 4 h, 3 h are left in the case of Machine 1, and 2 h are left in the case
of Machine 2. When Machine 3 starts, the remaining processing time is 2 h. The remaining
processing time can be calculated using the following method. The remaining process cycle
time is first mapped, then the remaining time until the final process according to each state
is predicted based on the record.

Using Table 1 as log data, we will explain this method by showing an example of
estimating the remaining cycle time in the manufacturing process. For each case ID, the
start time of the product is set to 0, and the manufacturing process time is normalized as
shown in Figure TED. After calculating the end time based on the start time, the remaining
time until the end of the process is tracked for each state.

Table 2 shows the normalized remaining cycle time in the manufacturing process
using the data tracked in Table 1. The number at the top of the trace column represents the
progress of the manufacturing process time according to the state. By designating the start
time of the first machine in the tracked state as “0” as in the following table, the start time
of all machines is normalized, and the remaining process time can be expressed. In Table 1,
the time expressed as 3 July 2021: 13:00 is considered as 0, i.e., the start time of the process,
so the start time of Machine 2, 3 July 2021: 13:20 is 0 minus the normalized start time. Here,
20 is the processing time of Machine 1. That is, the second machine started 20 min after
the first machine was operated, and the process ends at 3 July 2021: 14:30, where the end
time indicates the total processing time of the product. The end time of the first case ID in
Table 2 is 90. That is, the difference between the end time of the last machine and the start
time of the first machine is expressed in minutes (3 July 2021: 14:30–3 July 2021: 13:00) and
calculated as follows.

Table 2. Normalization of the event log.

Case Id Trace Product Qtty End Time

Case 01 < 10, 220, 355, 480 > A 10 90
Case 02 < 10, 340, 290, 4140 > B 20 180
Case 03 < 10, 332, 255, 490 > A 5 115
Case 04 < 10, 242, 365, 4210 > B 10 190
Case05 < 10, 235, ??, ?? > B 10 ??
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This paper creates a digital twin via artificial intelligence based on a data set classified
using the transition system shown in Figure 3. For machine learning, the normalized data
are tracked in the database according to the machine operation process situation, and the
newly tracked data are output in a vector format. Each element of the vector is an integer
indicating the operation of the machine, and the O1 Case ID in Table 2 is coded as in
Table 3 below.

Table 3. Transformation of Database.

Product 1 2 3 4 5 Remaining Time

A 0 0 0 0 0 9.00
A 1 0 0 0 0 7.00
A 1 1 0 0 0 3.50
A 1 1 1 0 0 1.00

The columns in Table 3 represent the number of each machine for production, and
each machine number is assigned 0 or 1 based on whether the machine is operated or not.
To calculate the remaining time for each product to be produced, the progress time for each
state calculated in the previous table is subtracted from the end time and divided by the
number of products. The formula for this calculation is as follows:

Remaining Time
(

S, Pproduct

)
=

SEnd time − SMachine start time
Pproduct

(1)

Remaining Time (< 1 >, 10) =
90− 0

10
= 9.0

Remaining Time (< 1, 2 >, 10) =
90− 20

10
= 7.0

Remaining Time (< 1, 2, 3 >, 10) =
90− 55

10
= 3.5

Remaining Time (< 1, 2, 3, 4 >, 10) =
90− 80

10
= 1.0

(2)

Using the method explained through the following execution example, vectorization
of all states of the event log is carried out to make a data set that can train an artificial
intelligence neural network, embedding and retaining time as a Y vector in deep learning
learning. Using the vectorized matrix according to tracking as an X vector, learning is
carried out with the GRU artificial intelligence layer as shown in the TED picture. The next
section describes the AI model used for learning in this paper.

3.3. Training Procedures

Since the model proposed in this paper is a digital twin based on regression analysis,
we used the MAE (mean absolute error) as a performance indicator of the learning model
and used a GRU model suitable for training ordered data. The TED model presented in this
paper uses event log data, as shown in Figure TED, which is input into a transition system
based embedding process and is trained on the GRU neural network layer. The residual
cycle value of the manufacturing process according to the subsequent state is predicted
using the GRU neural network training model proposed in [31].

The GRU model in Figure 5 is a type of RNN(Recurrent Neural Network). It is very
similar to LSTM (long short term memory), a model that can effectively learn sequential
data, but has a relatively simpler structure than LSTM.
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Figure 5. Reset gate.

As Figure 6 shows, the purpose of the Reset Gate is to properly remove past informa-
tion. Multiplying the previous hidden layer by a value between 0 and 1, the output value
of the sigmoid function is used to create the next layer:

r(t) = σ
(

Wrh(t−1) + Urx(t)
)

(3)

Figure 6. GRU model flow chart.

As Figure 7 shows, the update gate is a combination of a forget gate and input gate
of LSTM. In the update gate, the resulting output of the sigmoid function determines the
amount of information at the present time, and the value subtracted from 1 is multiplied
by this information in the hidden layer of the previous layer. Each layer is similar to the
input gate and forget gate of LSTM.
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u(t) = σ
(

Wuh(t−1) + Uux(t)
)

(4)

Figure 7. Update gate.

The candidate step shown in Figure 8 calculates the information candidates at the
present time. The key is not to use information from previous hidden layers as it is, but to
first multiply and use the results of the reset gate:

h̄(t) = τ
(

Wh(t−1) ∗ r(t) + Ux(t)
)

(5)

Here, τ is a tangent hyperbolic and ∗ is a pointwise operation.

Figure 8. Candidate step.
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Finally, by synthesizing the update gate result and the candidate results, the hidden
layer at the current time is calculated as described in Figure 9. As mentioned earlier, the
result of the sigmoid function determines the amount of information at the present time,
and the result of unity minus this sigmoid function determines the amount of information
in the past:

h(t) =
(

1− u(t)
)
∗ h(t−1) + u(t) ∗ h̄(t) (6)

Figure 9. Hidden layer calculation step.

The clear advantage of GRU compared to LSTM is that it uses an update gate that
combines the forget gate and input gate of the LSTM, so that the learning weight is relatively
small compared to the LSTM [31].

4. Experiments and Results
4.1. Experiment Environment

For configuration of the model proposed in this paper, an experiment was conducted
using an Intel core i7, 64 GB RAM, and GeForce 1660TI environment. In addition, to create
a deep learning network model, the Keras Python library was used for implementation.

Table 4 expresses the configuration parameters of the GRU neural network, and the
experiment was conducted with epochs of 1000 and a batch size 40. AdaGrad was used
as an optimization function for optimization, and a GRU neural network of 128 units was
trained on the real world dataset.

Table 4. Description of Parameters.

Parameter Value

epochs 1000

batch size 40

optimizer AdaGrad

GRU units 128
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4.2. Real World Dataset

This paper used event log data from real world process data. The datasets of the
factory that the paper is analyzing can be accessed at [32]. This real world factory produces
metal parts such as ball nuts and wheel shafts. With this production process, we have
28 machines for milling, wire cutting, laser marking, round grinding, flat grinding, turning,
turning and milling, and lapping. Table 5 shows some of the event logs.

Table 5. Industrial event log of Case 106.

Case ID ActivityMachine Start Time Complete Time Qtty

Case 106 Turning/Milling–Machine 8 15 March 2012: 10:14 15 March 2012: 15:44 39
Case 106 Turning/Milling–Machine 8 15 March 2012: 16:55 15 March 2012: 20:38 39
Case 106 Turning/Milling Q.C. 19 March 2012: 7:00 19 March 2012: 7:28 39
Case 106 Laser Marking–Machine 7 19 March 2012: 9:38 19 March 2012: 10:51 39
Case 106 Flat Grinding–Machine 11 19 March 2012: 14:42 19 March 2012: 15:20 39
Case 106 Final Inspection Q.C. 21 March 2012: 15:27 21 March 2012: 17:57 39
Case 106 Packing 22 March 2012: 0:00 22 March 2012: 1:00 39
Case 106 Final Inspection Q.C. 22 March 2012: 11:50 22 March 2012: 13:05 39

Table 5 shows 106 sets of cases from the data sets. The activity name in the table
simply expresses the name of the actual process included in the log data [32]. Each case
includes the type of machine used, the start and end times of activities, and the number of
manufactured products. The quantity of products to be manufactured is also used as an
important factor, and this variable distinguishes cases where the same product is produced
by the same set of machines but with a different number of productions. In the absence of
these data, bias may occur. These data describe the process of producing 31 products. We
use the transition based embedding method proposed earlier to map the event log data
into a vector format, and then proceed with modeling through artificial intelligence. After
manufacturing residual cycle prediction modeling is completed, the model of the training
dataset and the model of the testing dataset are compared to demonstrate the model being
appropriate, where we implemented the MAE:

MAE =
1
n

n

∑
t=1
|At − Ft| (7)

Figure 10 visually expresses the flow of the process at the manufacturing site, as well
as how the activities in Table 5 proceed. This figure visually expresses the trace of case 106
described in the previous table, where this process starts from Machine 8 and proceeds
along the blue dotted line. Each process is finally terminated with QC2. The following
process is a relatively simple process, but since a smart factory process is very complex,
it may be difficult to train an artificial intelligence neural network [19]. This is because it
can interfere with the creation of a valid digital twin with repeated activities that interfere,
making it difficult to understand. In this paper, to create a more meaningful digital twin
model, in the case of a repeated process, the process was abstracted and considered as
one activity.
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Figure 10. Manufacturing process overview.

4.3. Model EvaluationResults

This section shows that the approach proposed in this paper can produce meaningful
results. This paper used three AI algorithms for AI learning. The most basic models of MLP
(multi layer perceptron), LSTM, and GRU were used, and learning was carried out with a
hyper parameter with a batch size of 40, number of epochs of 1000, and learning rate of
0.001. As an evaluation index, an evaluation was conducted based on the aforementioned
MAE. As a result, when comparing the training data model and the testing data model
for all three models, we found that the MAE change in value according to the increase in
epochs is similar, which shows that it is an accurate model that it is not overfitted to one
side. In addition, all three models showed convergence close to 0.1 (hours).

Figure 11 shows the progression of training data used to predict the remaining cycle
time of the manufacturing process using the MLP algorithm. The left side is a graph of
the results after training using the training data, and the right side is a graph where the
MAE is extracted by inputting the test data into the MLP model trained using the testing
data. Both the left and right graphs show a relatively similar downward trend, and the fact
that the model is not overfitted is confirmed by the shape of both graphs, indicating that
the data are not too biased to one side. This graph using the MLP algorithm shows mild
convergence after 400 epochs. As a result, it can be confirmed that the best MAE value is
close to 0.14 (hours).

Figure 12 shows the progression of training data used to predict the remaining cycle
time of the manufacturing process using the LSTM algorithm. As in Figure 11, the left side
is after training using the training data, and the right side considers the MAE extracted by
inputting the test data into the LSTM model trained using the testing data. These models
also have a downward trend to some extent, similar for both the left and right graphs. Thus,
it can be seen that it is a valid model by noting it is not overfitted to one side. In the case of
the LSTM learning model, it can be seen that the MAE rapidly decelerates after 100 epochs.
It can be seen from the testing graph on the right that the best MAE value converges to
0.12 (hours).
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Figure 11. Comparison between train data and test data of the model using the MLP algorithm.

Figure 12. Comparison between train data and test data of the model using the LSTM algorithm.

Figure 13 shows the results of training to predict the remaining cycle time of the
manufacturing process using the GRU algorithm. As in Figures 11 and 12, the left side
is after training using the training data, and the right side is obtained by extracting the
MAE by inputting the test data into the GRU model trained using the testing data. The
model also has a downward trend in both left and right graphs, demonstrating that the
learning results are valid by noting there is no overfitting to one side too much. In the case
of the GRU learning model, it can be seen that the MAE rapidly decelerates after 50 epochs,
showing the best results among the three models. It can be seen from Figure 13 that the
MAE value of the GRU learning model converges to 0.1 (hours).
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Figure 13. Comparison between train data and test data of the model using the GRU algorithm.

4.4. Model Comparison

In this experiment using real world data, a comparative experiment was conducted
considering three different artificial intelligence algorithms, MLP, LSTM, and GRU. The
training was conducted in a GeForce 1660TI environment, and Figure 14 shows the results
of comparing the models according to these three algorithms. With a batch size of 40,
the execution time for each epoch is less than 9 s on average. For accurate comparison
of the three models, the early stop function was not used, and all models were run with
1000 epochs.

Figure 14. Comparing training models.

As shown in Figure 14, as a result of model evaluation with the test data, the model
with the fastest converging MAE values among the three AI algorithms was the GRU,
which also had the lowest error value. The learning results of GRU are comparatively better
starting from 100 epochs. This value is six times faster than for the MLP model, which
produces the best results only after reaching 600 epochs, and four times faster than the
LSTM, which exhibits meaningful results only after reaching 400 epochs. The difference in
MAE between the GRU model and the LSTM model shows that the difference between the
GRU model and the LSTM model is small, while the experimental results demonstrate that
the GRU model is superior to LSTM in terms of the learning speed.
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Although the difference in MAE between the three models is not large, it can be
seen from the following graph that GRU is the most effective in predicting the number of
remaining cycles in the manufacturing industry.

5. Conclusions

In this paper, to create a digital twin model to predict the remaining cycle time in
manufacturing processes, the GRU model using transition based embedding was validated.
Research on predicting processes using event log data are a common research topic recently,
but as far as we know, this is the first time that event log data have been used for digital
twin modeling alongside transition based embedding. The proposed method shows good
results, and we conducted experiments using various AI approaches for comparison. The
results of the experiments performed in this paper show the possibility of using event log
data and transition based embedding methods for constructing digital twin models.

In keeping with the rapidly changing environment of the manufacturing industry,
the need for predicting industrial processes is increasing, and interest in digital twins is
also increasing accordingly. However, in the case of small and medium sized enterprises
(SMEs), which typically exhibit a shortage of data sets as well as insufficient manpower
and consulting costs, there are many factors to consider. The digital twin model using the
transition based embedding method proposed in this paper can help more users cooperate
via digital twin technology. In addition, partners using the technology proposed in this
paper can test manufacturing environments at a lower cost, use more data, and test various
situations, leading to more meaningful results.

In this paper, the GRU algorithm is used for digital twin modeling. As a future study,
we plan to upgrade this model to produce more precise results, increase their reliability,
and apply the model to other industrial domains.
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