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Abstract: In this work, the extraction and separation of bovine serum albumin (BSA) from its original
matrix, i.e., bovine serum, was performed using a novel ionic-liquid-based aqueous biphasic system
(IL-based ABS). To this end, imidazolium-, phosphonium-, and ammonium-based ILs, combined with
the anions’ acetate, arginate and derived from Good Buffers, were synthesized, characterized, and
applied in the development of ABS with K2HPO4/KH2PO4 buffer aqueous solutions at pH 7. Initial
studies with commercial BSA revealed a preferential migration of the protein to the IL-rich phase,
with extraction efficiencies of 100% obtained in a single-step. BSA recovery yields ranging between
64.0% and 84.9% were achieved, with the system comprising the IL tetrabutylammonium acetate
leading to the maximum recovery yield. With this IL, BSA was directly extracted and separated
from bovine serum using the respective ABS. Different serum dilutions were further investigated
to improve the separation performance. Under the best identified conditions, BSA can be extracted
from bovine serum with a recovery yield of 85.6% and a purity of 61.2%. Moreover, it is shown that
the BSA secondary structure is maintained in the extraction process, i.e., after being extracted to the
IL-rich phase. Overall, the new ABS herein proposed may be used as an alternative platform for the
purification of BSA from serum samples and can be applied to other added-value proteins.

Keywords: aqueous biphasic systems; ionic liquids; proteins; purification; bovine serum; bovine
serum albumin

1. Introduction

Proteins play a fundamental role in biological processes and have high value in differ-
ent industrial applications, e.g., in the food, biopharmaceutical or cosmetic industries [1].
Conventional techniques for proteins separation and purification include chromatography,
electrophoresis, precipitation, and filtration-related techniques, among others [2]. However,
there is a need of finding more cost-effective techniques to efficiently separate and purify
proteins, while being capable of maintaining their native structure and function/activity [3].
Aqueous biphasic systems (ABS) have been proposed as an alternative technique to sep-
arate and purify proteins, mainly due to their versatility and biocompatible character if
properly designed [4].

ABS are formed by the dissolution of at least two water-soluble solutes (typically
two polymers, a polymer and a salt, or two salts) in aqueous media [5], above which,
in certain concentrations, there is phase separation. Conventional polymer-based ABS
have been applied in the extraction and purification of several biological compounds and
materials, such as cells [6], nucleic acids [7], amino acids [8], proteins, antibodies [9], and
enzymes [10–12]. However, the coexisting phases in typical polymer-based ABS present
a limited polarity difference, preventing high extraction efficiencies and selectivities to
be achieved in a single-step [13]. Ionic-liquid-based (IL-based) ABS were later proposed
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as an alternative to polymer-based ABS, with numerous advantages [14]. These ABS are
less viscous, show faster phase separation rates, and generally lead to higher extraction
efficiencies. ILs are salts with lower melting temperatures than conventional salts, being
constituted by an organic cation and an organic or inorganic anion [15]. Most ILs present
a negligible volatility at atmospheric conditions, high thermal and chemical stabilities, a
strong solvation capability for a large variety of compounds, and present the ability to
conjugate ions according to the intended application, being usually described as “designer
solvents” [16].

To improve the biocompatible character of ILs to be applied in ABS, the IL anion
can be selected according to the desired application. IL anions derived from biological
buffers (Good-Buffer’s (GB)-ILs) [17–19], amino acids [20], and carboxylic acids [21] have
been applied in the extraction and separation of amino acids and proteins. However,
most ILs reported in the literature were combined with imidazolium cations [22,23], which
may compromise their biocompatibility. On the other hand, the use of ammonium- and
phosphonium-based ILs have been reported for the extraction of some proteins, such as
ovalbumin and lysozyme [24]. Aiming at identifying the best cation–anion combinations
of ILs to form ABS, in this work, ILs combining the imidazolium-, phosphonium-, and
tetraalkylammonium cations, and the acetate, arginate, and Good-Buffer-based anions,
were synthesized, characterized, and used in the creation of IL-based ABS. These systems
were then studied as separation platforms of bovine serum albumin (BSA). BSA was studied
as the target protein due to its relevance in pharmaceutical studies [25] and due to their
presence in bovine serum as a biological and complex medium from which it needs to
be isolated.

2. Materials and Methods
2.1. Chemicals and Reagents

Several ILs were synthesized by us, namely tetrabutylphosphonium arginate
([P4444][Arg]), tetrabutylammonium arginate ([N4444][Arg]), tetrabutylphosphonium 2-
(N-morpholino)ethanesulfonate ([P4444][MES]), tetrabutylammonium 2-(N-morpholino)
ethanesulfonate ([N4444][MES]), 1-butyl-3-methylimidazolium 2-(N-morpholino)ethanesulfonate
([C4mim][MES]), tetrabutylphosphonium acetate ([P4444][Ac]), and tetrabutylammonium
acetate ([N4444][Ac]), according to previously reported protocols [17,19,26,27]. Details
on the ILs synthesis are given in the Supporting Information (SI). The purity of all ILs
were checked by 1H and 13C nuclear magnetic resonance (NMR), being >95%. The ILs
synthesized are solid at room temperature and completely water-soluble. The IL 1-butyl-
3-methylimidazolium acetate ([C4mim][Ac], 97% purity, was acquired from Iolitec. The
chemical structures of the studied ILs are presented in Figure 1.

The salts used for the buffer solution preparation were potassium phosphate dibasic
trihydrate (K2HPO4·3H2O, extra-pure) from Panreac, and potassium phosphate monobasic
(KH2PO4, extra-pure) acquired from Fisher Chemical. Phosphate Buffered Saline (PBS)
pellets (pH = 7.4) were acquired from Sigma.

BSA (purity ≥ 96%), IgG (purity ≥ 98%) and bovine serum were acquired from
Fischer Scientific, Innovative Research and Merck, respectively. All aqueous solutions were
prepared with distilled water.
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2.2. Determination of ABS Phase Diagrams

The ABS phase diagrams for the systems composed of each IL and K2HPO4/KH2PO4
buffer at pH 7 were determined at 25 (±1) ◦C and atmospheric pressure, allowing to define
the conditions under which it is possible to obtain a two-phase system to be applied in
the extraction process. The binodal curves were determined using the cloud point titra-
tion method [28]. IL aqueous solutions with concentrations ranging from 40 to 60 wt%
were prepared. To these solutions, an aqueous solution of 40 wt% K2HPO4/KH2PO4
buffer at pH 7 was added, allowing the identification of a cloud point corresponding to
the biphasic regime, followed by the addition of water until the identification of clear
solutions, corresponding to the monophasic regime. Further details on the ABS determina-
tion/characterization can be found elsewhere [29].

The experimental binodal curves were adjusted by the equation proposed by Merchuk et al. [30]:

[IL] = A.eB.[salt]0.5−C.[salt]3 (1)

where (IL) and (salt) correspond to the IL and salt weight fraction percentages, respectively,
and the coefficients A, B, and C are fitting parameters determined by the regression of
the experimental data. The composition of each phase at given mixture compositions, i.e.,
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the respective tie-lengths (TLs), as well as the corresponding tie-line lengths (TLLs), were
additionally determined. Details for their determination are provided in the Supporting
Information (Tables S1–S5).

2.3. Extraction and Purification of BSA

Initial studies were carried out with the pure protein (BSA). ABS were prepared with
35 wt% of each IL, 20 wt% of K2HPO4/KH2PO4 buffer at pH 7, and 45 wt% of BSA aqueous
solution at 2 g·L−1 in deionized water. This mixture point was selected according to
the phase diagrams determination, fitting within the biphasic region of all studied ABSs.
The obtained mixtures were stirred and centrifuged for 10 min at 10,000 rpm, and left to
equilibrate for 15 min at 25 (±1) ◦C. The two phases were carefully separated and used in
several analysis to evaluate the ABS performance on the BSA extraction and separation
from the serum samples. For the purification studies of BSA from bovine serum, dilutions
of 1:25, 1:20, 1:15, and 1:10 (v:v) of bovine serum in distilled water were prepared and added
to the ABS preparations (45 wt%). For all systems, the IL-rich phase corresponds to the top
phase, while the salt-rich phase corresponds to the bottom phase.

BSA and the remaining proteins present in serum bovine were quantified in each
ABS phase by size-exclusion high-performance liquid chromatography (SE-HPLC). The
samples were diluted at a 1:10 (v:v) ratio with phosphate buffer (50 mmol·L−1 phosphate
buffer pH 7.0 with NaCl 0.3 mol·L−1) used as the mobile phase for quantification. The
equipment used was a Chromaster HPLC system (VWR Hitachi) equipped with a binary
pump, column oven (40 ◦C), temperature controlled auto-sampler (10 ◦C), DAD detector
and an analytical column Shodex Protein KW- 802.5 (8 mm × 300 mm). A 50 mmol·L−1

phosphate buffer pH 7.0 with NaCl 0.3 mol·L−1 was run isocratically with a flow rate of
0.5 mL·min−1 and the injection volume was of 25 µL. The wavelength was set at 280 nm
with a total analysis time of 40 min and the retention time of BSA was found to be ca.
16.5 min. The calibration curve was established with BSA from 0.05 to 7.00 g·L−1. The
ABS performance was evaluated in terms of extraction efficiency, yield, and purity for BSA,
using three replicates.

The extraction efficiency of the studied systems for BSA, EE%, was determined accord-
ing to the following equation:

EE% =
wIL

BSA

wsalt
BSA + wIL

BSA
× 100 (2)

where wIL
BSA, wsalt

BSA represent the BSA total weight in the IL-rich and salt-rich phases, respectively.
The extraction yield of BSA (Yield%) was determined according to the following

equation:

Yield% =
wIL

BSA
wBSAinitial/Serum

× 100 (3)

where wBSAinitial/serum represents the weight of BSA added to the system and wIL
BSA the weight

of BSA in the IL-rich phase.
The purity of BSA was calculated dividing the HPLC peak area of BSA (ABSA) by the

total area of the peaks corresponding to all proteins present in the phases of the different
systems Atotalprotein, according the following equation:

Purity% =
ABSA

Atotalprotein
× 100 (4)

2.4. SDS-PAGE and Circular Dichroism

The protein profile of bovine serum and of the IL-rich phase after an ultrafiltration
(UF) step was evaluated by sodium dodecyl sulphate polyacrylamide gel electrophoresis
(SDS-PAGE) using an Amersham ECLTM Gel from GE Healthcare Life Sciences. For the
analysis of the IL-rich phase an UF step was performed to remove the IL and respective
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interferences, dissolving the retentate in PBS buffer for the analysis. Samples were mixed
with the sample buffer 1:1 (v:v), consisting of: 2.5 mL of 0.5 M Tris-HCl pH 6.8, 12.0 mL of
glycerol, 4.0 mL of 10% (w/v) SDS, 2.0 mg of bromophenol blue and 310 mg of dithiothreitol
(DTT); and heated for denaturation at (95 ± 1) ◦C for 5 min. Electrophoresis was run on
polyacrylamide gels 4–20% at 105 V for 90 min. The running buffer used was Tris-Tricine-
SDS Buffer 10×x (1.0 M Tris, 1.0 M Tricine, 10% SDS, pH 8.3). The gel was stained with
Coomassie Brilliant Blue G-250. A molecular weight full-range marker (VWR) was used as
protein standards.

To evaluate the maintenance of the BSA secondary structure after the extraction step
and UF applied to the IL-rich phase, circular dichroism (CD) was applied. The analysis of
pure BSA and of the IL-rich phase after the UF step was performed by CD spectroscopy
(JASCO-1500), with three spectra recorded consecutively with a 1 mm path length quartz
cuvette and the parameters: 100 nm per minute, at 20 ◦C cell temperature, response time
and bandwidth were 2 s and 0.2 nm, respectively. The baseline was established with a
phosphate-buffered saline (PBS) solution. The secondary structure content of BSA was
calculated using DichroWeb with the Analysis Program CDSSTR and the reference set 4
(optimized for the range 190–240 nm) [31].

3. Results and Discussion
3.1. ABS Phase Diagrams

All the ABS under study, composed of IL + K2HPO4/KH2PO4 buffer at pH 7 + water,
were characterized by obtaining their phase diagrams at 25 (±1) ◦C and atmospheric
pressure. The selection of the salt and pH was made with the goal of keeping the biological
activity and native structure of proteins [29], in this case BSA. All the ILs under study
were able to form ABS when mixed with K2HPO4/KH2PO4 buffer at pH 7, for which the
corresponding binodal curves are shown in Figure 2. The data related to the experimental
weight fraction of binodal curves are presented in the Supporting Information, Tables S1–S8,
whereas the data related to TLs, TLLs, and fitting parameters of Equation (1) are provided
in Tables S9 and S10. The results in Figure 2 are provided in weight fraction, thus not taking
into account the molecular weight of the IL, due to their relevance from a biotechnological
application perspective.

The larger the biphasic region, i.e., the region above each solubility curve, the higher
is the facility to form two aqueous phases. Therefore, the studied ILs can be ordered
according to their increasing order of ABS forming ability, which at 20 wt% of salt (Figure 2)
is as follows: [P4444][Ac] ≈ [N4444][MES] < [P4444][Arg] < [N4444][Ac] ≈ [N4444][Arg] <
[C4mim][MES] ≈ [P4444][MES] < [C4mim][Ac]. Although a trend is here depicted, it
should be mentioned that the phase diagrams almost totally overlap with very small
differences between them, meaning that no major differences exist in the ILs ability to create
ABS with the studied salt (K2HPO4/KH2PO4) when evaluating their ranking in weight
fraction. The ILs ranking in terms of molality units can be appraised in the Supporting
Information, Figure S15, for which the related molecular-level mechanisms have been
previously reported and discussed [32,33]. Overall, the formation of ABS composed of ILs
and salts is favored with the increase in the IL hydrophobicity or its affinity for water, so
that a stronger salting-out effect exerted by the inorganic salts occurs.
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Figure 2. Phase diagrams for the systems composed of ionic liquid + K2HPO4/KH2PO4 buffer at pH 7
+ H2O at 25 ◦C: (C4mim][MES] (•); [N4444][MES] (�); [P4444][MES] (N); [N4444][Arg] (N); [P4444][Arg]
(�); [C4mim][Ac] (�); [N4444][Ac] (�); [P4444][Ac] (•). The solid lines represent the fitting by Equation
(1). The insert graph presents a zoom-in of the phase diagrams to better allow the visualization of the
mixture point used in the extraction of BSA: 35 wt% of IL + 20 wt% K2HPO4/KH2PO4 buffer at pH 7.

3.2. Extraction and Purification of BSA

After the characterization of the investigated ABS, they were applied to extract BSA
and then to purify this protein from bovine serum. To this end, a common ABS mixture
point was used: 35 wt% of IL + 20 wt% K2HPO4/KH2PO4 buffer at pH 7 + 45 wt% aqueous
solution of BSA/bovine serum. The extraction efficiency (EE%), yield and purity of BSA
were obtained by the quantification of BSA and remaining proteins by SE-HPLC. Overall,
six out of the eight ILs investigated allowed the partition of the protein in a two-phase
system, namely, [C4mim][MES], [N4444][MES], [P4444][MES], [C4mim][Ac], [N4444][Ac],
and [P4444][Ac]. The arginate-based-ILs, namely, [N4444][Arg] and [P4444][Arg], lead to the
complete precipitation of the protein in the bottom of the system and did not allow the
formation of a liquid–liquid system when in presence of the protein solution. This result
shows that relevant interactions between the IL arginate anion and the serum constituents
occur, not allowing the creation of ABS.

In the studied systems that form an ABS in presence of BSA, the protein preferentially
partitions to the top phase (IL-rich phase), in agreement with data reported for ABS
composed of other ILs and K2HPO4/KH2PO4 buffer for other enzymes and proteins, as
well as for BSA [34–37]. This behavior is the result of the salting-out effect provided
by the phosphate buffer, thus improving the migration of the proteins to the opposite
phase, combined with favorable interactions that may be established between the IL and
BSA. These could correspond to hydrogen-bonding, or electrostatic and hydrophobic
interactions [36,38–40]. In the current work, BSA is negatively charged (isoeletric point (pI)
= 4.5–4.9) [41,42] at the pH at which ABSs were formed, and electrostatic interactions may
be established.

The extraction efficiencies and yield of the assays carried out with pure BSA are
given in Figure 3, with the detailed data provided in the Supporting Information (Table
S11). Figure 3 allows comparing the performance of the IL-based ABS under study in
terms of extraction efficiency and extractionyield of BSA, allowing the identification of
the best system to be used in the next step of the work, i.e., in the separation of BSA
from bovine serum albumin. In all ABS, the extraction efficiency of BSA to the IL-rich
phase is 100%, whereas the extraction yield values range from 43.7% to 84.9%. The system
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constituted by [C4mim][Ac] presents the lowest yield (43.7%), whereas those composed
of [N4444][Ac] and [P4444][Ac] lead to the highest yields, 84.9% and 82.9%, respectively.
This set of results show that there is a significant loss of protein stability with systems
comprising imidazolium-based ILs; although, these are still the most investigated class
of ILs in the field of separations. The denaturation of BSA by imidazolium-based ILs has
been previously reported, with loss of secondary and tertiary structure, and results from
hydrophobic and electrostatic established between BSA and the IL [43]. On the other hand,
quaternary ammonium-based ILs have been reported as protein stabilizers [44], supporting
the results here observed and reinforcing their study in protein separation studies. ABS
comprising cholinium-based ILs have been also reported for the extraction for BSA in an
attempt to use more biocompatible ILs and maintain the protein structure [45].
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Figure 3. Extraction efficiencies (EE%) (�) and yield (Yield%) (�) of bovine serum albumin in the
ionic-liquid-rich phase of the studied aqueous biphasic systems composed of 35 wt% of ionic liquid +
20 wt% K2HPO4/KH2PO4 buffer at pH 7.

Extraction efficiencies up to 100% for pure BSA with IL-based ABS have been described
with systems constituted by cholinium-based ILs + polymer (PPG 400) and phosphonium-
and ammonium-based ILs + potassium citrate/citric acid at pH 7, being the reported re-
sults [18,46] similar to those obtained in this work. On the other hand, ABS with cholinium-
based ILs combined with amino acids and polymers (polyethylene glycol di-methyl ether
250 and/or PPG, respectively) lead to lower extraction efficiencies, namely, 82.75%, 91.6%,
and 85.91% under the best conditions [45,47,48], reinforcing the relevance of employing
inorganic salts when high extraction efficiencies in IL-based ABS are aimed. Additionally,
imidazolium-based systems combined with K2HPO4 led to BSA extraction efficiencies of
82.7–100.7%, but with no extraction yields reported [49].

Regarding the different anions effect it is shown that ABS with the ILs based on
the acetate anion lead to the maximum and minimum extraction yields, with the ABS
comprising [N4444]Ac and [P4444][Ac] presenting the maximum values, and that constituted
by [C4mim][Ac] to the minimum extraction yield. Although no differences are shown
in the extraction efficiencies, these results clearly show that the cation effect has a higher
impact in the BSA extraction yield, which may be related to the fact of having BSA as a
negatively charged protein at the studied pH. Furthermore, these results seem to indicate
that IL cations are the species that position themselves closer to the proteins, which is
explained by the preferential hydrogen-bonded network established between the IL anions
and water in the bulk phase [50]. These results, showing a higher effect of the IL cation,
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are in agreement with the literature, where it has been shown that the concentration of
IL cations is higher than that of anions at the protein surface, regardless of the protein
charge [51–53]. Overall, these results reinforce the need of further investigating new ABS
with quaternary ammonium- and phosphonium-based ILs, while also reducing their cost
and toxicity when compared to imidazolium-based ILs [54–56].

Due to its higher extraction yield, thus corresponding to lower losses of BSA, the ABS
composed of the IL [N4444][Ac] was chosen to extract BSA from the real sample, i.e., bovine
serum. Using the same mixture point (35 wt% of IL + 20 wt% K2HPO4/KH2PO4 buffer at
pH 7 + 45 wt% bovine serum), four dilutions (1:25,1:20,1:15,1:10 v:v) of bovine serum were
tested, whose results are given in Figure 4. These experiments are relevant to appraise the
protein saturation and possible proteins aggregation/precipitation phenomena. The higher
the dilution of serum, the higher is the BSA extraction yield, ranging from 61.0 to 100.0%,
thus reflecting the relevance of the IL-rich phase saturation. Detailed results are provided
in the Supporting Information, Table S12. On the other hand, an opposite, yet slight, trend
is observed when addressing the BSA purity. In this case, values between 51.9% and 61.2%
are achieved, with the highest value found for the serum dilution corresponding to 1:15
(v:v). These results indicate that there is a competition for the proteins dissolution in the
IL-rich phase and respective phase saturation, while considering that immunoglobulin G
(IgG) is the second highest abundant protein in bovine serum, which should partition to
the opposite phase, or be precipitated to allow higher purity levels of BSA. In summary, the
best results were obtained with the ABS composed of [N4444][Ac], with a serum dilution of
1:15 (v:v), in which an extraction yield of BSA of 85.6% and purity of 61.2% were achieved
in one step.
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Figure 4. Extraction yield (Yield%) (�) and purity (Purity%) (�) of bovine serum albumin in the
ionic-liquid-rich phase extracted from bovine serum with the aqueous biphasic systems comprising
[N4444][Ac] as function of the bovine serum dilution.

The first large-scale technique for separating blood components was developed in
the 1940–1950s by Cohn and co-workers, corresponding to Fractional Extraction [57,58].
Up to date, several methods have been developed combining this method resorting to
fractionation with ethyl alcohol and other techniques, such as ionic exchange and affinity
chromatography. This fractionation step coupled to chromatography allows BSA with a
purity of 99% to be obtained [59–61]. In addition to these methods, other combinations,
such as precipitation with ammonium sulfate combined with liquid chromatography [62],
and the use of ion exchange [63], affinity [64,65], and simulated moving bed (SMB) [66]
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chromatography without previous precipitation/fractionation steps, have been reported,
resulting in BSA with a purity higher than 90%. In addition to these well-developed
techniques, steric exclusion chromatography with a cryogel column has been more recently
reported, with purity values of 26.9% in the elution fraction and 103% in the breakthrough
fraction [67]. Although our IL-based ABSs do not allow purification levels higher than
90% as the ones here described, it should be remarked that the purity of 61.2% of BSA was
achieved in a single-step, i.e., directly from bovine serum without previous fractionation
steps. On the other hand, no chromatographic steps are applied. If higher purification
levels are required, IL-based ABSs need to be further optimized, in terms of composition,
or applied under continuous mode to allow several stages of equilibrium [68]. These could
also be combined with other strategies such as chromatography, ultrafiltration, or induced
precipitation [69].

SE-HPLC was used to quantify BSA; however, this technique also permits obtaining
information about the occurrence of protein aggregates or proteins fragmentation, thus
allowing the confirmation that BSA stability is maintained throughout the extraction
process in the IL-rich phase (an example of a SE-HPLC chromatogram is provided in Figure
S16 in the Supporting Information). The protein profile of the IL-rich phase of the ABS
comprising [N4444][Ac was evaluated by SDS-PAGE, being given in Figure 5A. Results
show that bovine serum is mainly composed of IgG and BSA. After the extraction with ABS,
a decrease in the IgG content is visible (as appraised by the intensity of the respective heavy
and light chain bands), thus leading to an increase in the purity of BSA in the IL-rich phase.
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Figure 5. (A)—SDS-Page gel analysis of (a) Molecular weight marker, (b) Bovine serum albumin, (c) Im-
munoglobulin G, (d) Bovine Serum diluted at 1:100 (v:v), (e) Ionic-liquid-rich phase of the [N4444][Ac]
system after an ultrafiltration step, with Bovine serum albumin and Immunoglobulin G chains identified;
(B)—Circular dichroism analysis to evaluate the Bovine serum albumin secondary structure stability in
the ionic-liquid-rich phase (—-) and pure Bovine serum albumin at 0.25 mg.mL−1 (—-).

Finally, and to ensure the protein stability after the extraction step and in the IL-
rich phase, CD spectroscopy was applied, whose spectra are depicted in Figure 5B. CD
spectra allow the secondary structure of proteins to be assessed and their conformation
in α-helix, β-sheet, β-turn, and random coils to be analyzed [70]. Below 240 nm peptide
bonds can be observed, while aromatic amino acid side chains and disulfide bonds can
be analyzed in the range 260–320 nm and close to 260 nm, respectively. In the case of
pure BSA, a protein profile with a rich α-helix structure is presented, with two minimums
occurring at approximately 209 nm and 222 nm and with a maximum between 190 and
195 nm [70,71]. When comparing the spectra of pure BSA and of BSA after the extraction
step to the IL-rich phase, the shape of the two spectra is highly similar, suggesting the
maintenance of the secondary structure of BSA in the IL-rich phase after the extraction
step. The composition of the BSA secondary structure is mostly α-helix (62%), with a
lower content in β-sheets (7%), turns (12%), and random coils (19%) [72,73]. The values
obtained in this work for BSA in PBS aqueous solutions are very similar for the α-helix
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content (64%), with a slight increase in the percentage of β-sheets (13%). After the IL-based
extraction step there is a similar value of α-helix (58%) content and a small increase in
β-sheets (23%). β-Sheets are formed when several β-strands self-assemble, being stabilized
by interstrand hydrogen bonding, and leading to the formation of extended amphipathic
sheets in which hydrophobic side-chains point in one direction and polar side-chains in
the other [74]. Accordingly, the application of IL-based ABSs seems to improve the self-
assembling of β-strands and establishment of hydrogen-bonding interactions. Despite
these small differences, which are inherently related to the media in which the protein is
dissolved and interactions they face, we can conclude that the overall BSA conformation is
mostly maintained, reinforcing the possibility of using appropriate IL-based ABSs for its
extraction and purification from the original biological medium.

4. Conclusions

The aim of this work was the development of novel IL-based ABS as appropriate
protein separation platforms and to provide a better understanding of the conditions
required to apply these ABS without leading to the protein’s loss of stability. The phase
diagrams of all ABS investigated, composed of IL + K2HPO4/KH2PO4 buffer pH 7 + H2O,
were firstly determined at 25◦C and atmospheric pressure. Then, the extraction efficiency
and yield of pure BSA were evaluated for each system under study. It was found that the
best ABS is constituted by [N4444][Ac], allowing for extraction efficiencies and recovery
yields of 100% and 84.9%, respectively. The performance of this ABS was then evaluated
using real bovine serum samples, allowing for the separation of the BSA, with 85.6% of
extraction yield and 61.2% of purity when a bovine serum 1:15 (v:v) dilution was applied.
Finally, the purity increase of BSA was proved by SDS-PAGE, and its stability by circular
dichroism. Overall, it is here shown that ABS composed of properly designed quaternary
ammonium-based ILs should be more deeply investigated in the field of proteins separation
since they provide a biocompatible environment and present a lower cost when compared
with the widely studied imidazolium-based counterparts.

Supplementary Materials: The following material are available online at https://www.mdpi.com/
article/10.3390/app12020707/s1, Figure S1: 1-butyl-3-methylimidazolium 2-(N-morpholino)
ethanesulfonate, [C4mim][MES], 1H NMR (D2O, 300 MHz, [ppm]): 7.49 (1H,d, J = 2.0 Hz); 7.39
(1H,d, J = 2.0 Hz); 4.16 (2H,t, J = 7.1 Hz); 3.86 (3H, s); 3,73 (4H, m); 3.10 (2H, m); 2.80 (2H, m); 2.57
(4H, m); 1.82 (2H, m); 1.29 (2H, m); 0.89 (3H, t, J = 7.4Hz), Figure S2: 1-butyl-3-methylimidazolium
2-(N-morpholino)ethanesulfonate, [C4mim][MES], 13C NMR (D2O, 75.47 MHz, [ppm]): 123.33;
122.08; 66.09; 52.51; 52.19; 49.16; 47.25; 35.48; 31.17; 18.79; 12.64, Figure S3: Tetrabutylammonium
2-(N-morpholino)ethanesulfonate, [N4444][MES], 1H NMR (D2O, 300 MHz, [ppm]): 3.77 (m, 4H);
3.178 (m, 10H); 2.843 (m, 2H); 2.61 (t, 4H); 1.66 (m, 8H); 1.38 (m, 8H); 0.96 (t, 12H). Figure S4:
Tetrabutylammonium 2-(N-morpholino)ethanesulfonate, [N4444][MES], 13C NMR (D2O, 75.47 MHz,
[ppm]): 66.02; 58.02; 52.51; 52.19; 47.25; 23.07; 19.11; 12.77. Figure S5: Tetrabutylphosphonium
2-(N-morpholino)ethanesulfonate, [P4444][MES], 1H NMR (D2O, 300 MHz, [ppm]): 3.77 (m, 4H); 3.12
(m, 2H); 2.83 (m, 2H); 2.61 (t, 4H); 2.18 (m, 8H); 1.54 (m, 16H); 0.93 (t, 12H). Figure S6: Tetrabutylphos-
phonium 2-(N-morpholino)ethanesulfonate, [P4444][MES], 13C NMR (D2O, 75.47 MHz, [ppm]): 66.09;
52.51; 52.19; 47.24; 23.35; 22.62; 17.90; 12.49. Figure S7: Tetrabutylammonium arginate, [N4444][Arg],
1H NMR (D2O, 300 MHz, [ppm]): 3.21 (m, 10H); 1.68 (m, 10H); 1.36 (m, 11H); 0.96 (t, 12H). Figure
S8: Tetrabutylammonium arginate, [N4444][Arg], 13C NMR (D2O, 75.47 MHz, [ppm]): 180.81; 58.07;
55.51; 40.91; 31.60; 24.46; 23.05; 19.08; 12.77. Figure S9: Tetrabutylphosphonium arginate, [P4444][Arg],
1H NMR (D2O, 300 MHz, [ppm]): 3.24 (m, 3H); 2.17 (t, 8H); 1.59 (m, 20H); 0.93 (t, 12H). Figure S10:
Tetrabutylphosphonium arginate, [P4444][Arg], 13C NMR (D2O, 75.47 MHz, [ppm]): 183.17; 55.51;
40.99; 31.63; 24.50; 23.13; 17.87; 12.48. Figure S11: Tetrabutylammonium acetate, [N4444][Ac], 1H
NMR (D2O, 300 MHz, [ppm]): 3.21 (t, 8H); 1.91 (s, 3H); 1.67 (m, 8H); 1.38 (m, 8H); 0.95 (t, 12H).
Figure S12: Tetrabutylammonium acetate, [N4444][Ac], 13C NMR (D2O, 75.47 MHz, [ppm]): 181.07;
57.99; 23.33; 23.05; 19.09; 12.82. Figure S13: Tetrabutylphosphonium acetate, [P4444][Ac], 1H NMR
(D2O, 300 MHz, [ppm]): 1H NMR (D2O, 300 MHz, [ppm]): 2.17 (m, 8H); 1.91 (s, 3H); 1.50 (m, 16H);
0.93 (t, 12H). Figure S14: Tetrabutylphosphonium acetate, [P4444][Ac], 13C NMR (D2O, 75.47 MHz,
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[ppm]): 180.83; 23.15; 22.63; 17.90; 17.26; 12.522. Table S1: Experimental weight fraction data for the
binodal curves of the ABS formed by [C4mim][MES] (1) + K2HPO4/KH2PO4 (2) + H2O (3) at (25 ± 1)
◦C and pH 7. Table S2: Experimental weight fraction data for the binodal curves of the ABS formed by
[N4444][MES] (1) + K2HPO4/KH2PO4 (2) + H2O (3) at (25 ± 1) ◦C and pH 7. Table S3: Experimental
weight fraction for the binodal curves of the ABS formed by [P4444][MES] (1) + K2HPO4/KH2PO4
(2) + H2O (3) at (25 ± 1) ◦C and pH 7. Table S4: Experimental weight fraction for the binodal curves
of the ABS formed by [N4444][Arg] (1) + K2HPO4/KH2PO4 (2) + H2O (3) at (25 ± 1) ◦C and pH 7.
Table S5: Experimental weight fraction for the binodal curves of the ABS formed by [P4444][Arg]
(1) + K2HPO4/KH2PO4 (2) + H2O (3) at (25 ± 1) ◦C and pH 7. Table S6. Experimental weight
fraction for the binodal curves of the ABS formed by [C4mim][Ac] (1) + K2HPO4/KH2PO4 (2) +
H2O (3) at (25 ± 1) ◦C and pH 7. Table S7. Experimental weight fraction for the binodal curves
of the ABS formed by [N4444][Ac] (1) + K2HPO4/KH2PO4 (2) + H2O (3) at (25 ± 1) ◦C and pH 7.
Table S8: Experimental weight fraction for the binodal curves of the ABS formed by [P4444][Ac] (1)
+ K2HPO4/KH2PO4 (2) + H2O (3) at (25 ± 1) ◦C and pH 7. Table S9: Correlation parameters of
Equations (1) and (2) used to describe the experimental binodal curve of the system. Table S10: Data
of TLs and TLLs for the systems composed of IL + K2HPO4/KH2PO4 buffer at pH 7 + H2O. [IL] and
[salt] represents the compositions of IL and salt, respectively and content of water corresponds to the
amount required to reach 100 wt%. Figure S15: Phase diagrams for the systems composed of IL +
K2HPO4/KH2PO4 buffer at pH 7 + H2O at 25 ◦C: [C4mim][MES] (•); [N4444][MES] (�); [P4444][MES]
(N); [N4444][Arg] (N); [P4444][Arg] (�); [C4mim][Ac] (�); [N4444][Ac] (�); [P4444][Ac] (•). Table S11:
Extraction efficiencies (EE%) and yield of ABS composed of IL + K2HPO4/KH2PO4 pH 7 + H2O for
pure BSA. Table S12: Yield and purity of BSA from bovine serum by ABS composed of [N4444][Ac] +
K2HPO4/KH2PO4 pH 7 + H2O. Figure S16. SE-HPLC Chromatogram with bovine serum dilution
1:15 (v:v) (—-)), pure BSA 0.8 g·L−1 (—-) and top-phase of the system [N4444][Ac] + K2HPO4/KH2PO4
buffer at pH 7 + bovine serum 1:15 (v:v) (—-).
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