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Abstract: A new approach to synthesize a robust controller for the angular motion of the Earth lander
by decomposition method of output modal control is proposed. A universal analytical solution for
the problem of stabilizing the angular position of the lander is obtained. A comparative analysis
of the presented algorithm with the currently used onboard algorithm for descent control of the
manned spacecraft Soyuz is carried out. The advantages of the new algorithm relative to the existing
algorithm are presented, both in terms of stabilization accuracy and the consumption of the working
fluid of the control motors.

Keywords: spacecraft; lander; optimal control; onboard algorithm; modal control; robust output
controller; angular stabilization

1. Introduction

The descent and landing of spacecraft are one of the most important and crucial stages
of their flight [1,2]. The control methods at these stages of flight are significantly different
due to the design of the spacecraft [3–5]. The control methods of the shuttle-type spacecraft
reentry into the atmosphere are based on well-developed algorithms for aerospaceplane.
Control methods for capsule-type spacecraft have been begun to be developed in Soviet
Union era, and are continue to be actively improved (transport manned spacecraft “Soyuz”),
to which this article is devoted.

The works consider both uncontrolled movements (disturbed rotations in rarefied
atmosphere [6], the search for stability conditions [6], predict resonance [7]), and trajectory
following [8] and orientation of suborbital ships [9,10], reusable launch vehicles [11], Earth
landers [12,13], Martian scientific laboratories [14,15]. The applied management methods
differ significantly from each other. These are pulse modulation [11], and sliding mode
control [12], and control with forward and feedback [15,16].

The problem of increasing the landing accuracy requires research to improve the on-
board lander algorithms. One of the ways to improve the accuracy of landing on the Earth
is the development of new control algorithms for the stabilization of the angular position
of the spacecraft when moving in the atmosphere, which should have advantages over
existing algorithms that have actually found application at present [15], both in accuracy
and in fuel consumption for control [17–20]. This article is devoted to such research.

It should be noted that the standard control of the capsule-type spacecraft orientation
in the atmosphere [12,13] is aimed at damping the angular velocities and tracking the
programmed roll angle. In this case, the balancing position of the spacecraft at the other two
angles (attack and glide) is maintained only due to the static stability of the spacecraft—the
accuracy of such stabilization is low. It is required to improve accuracy without increasing
fuel consumption.
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The disturbing forces and moments during the motion of the spacecraft in the atmo-
sphere are stochastic. They largely depend on the shape and configuration of the spacecraft
and are difficult to define. Therefore, if the control law depends on constantly changing
aerodynamic parameters, the fuel consumption for maintaining a given orientation of the
spacecraft will increase significantly. The aim of this work is to synthesize a universal
(suitable for any type of spacecraft) controller that would ensure the fulfillment of higher
requirements for stability and stabilization accuracy without increasing control costs, and
at the same time would be robust, i.e., would not depend on the aerodynamic parameters
of the spacecraft.

We propose an approach to the synthesis of a controller based on the J.W. Van der
Woude’s modal output control method, modified for dynamic systems with multiple
inputs and outputs [21]. The novelty of the approach lies in the fact that due to the
parameterization of the matrices with the desired spectra and the proper choice of the
assigned poles, it is possible to achieve independence of the control channels for pitch, roll
and yaw, both from each other and from the aerodynamic parameters of the spacecraft.

2. Statement of the Research Problem

The orientation of the capsule-type lander and the associated velocity coordinate
system (CS) Ev = oxvyvzv. (rotated relative to the associated geometric CS E = oxyz
around the axis z by the calculated “balancing” angle of attack α∗bal) relative to the reference
velocity CS Qv = oXvYvZv during landing from the near-earth orbit is considered [9,14,15].

For the study, a section of the trajectory is selected, on which the values of the atmo-
sphere density ρ and the linear velocity v of the lander contribute to the most effective
control of the lander motion. Such a section approximately corresponds to heights h ≤ 80
and Mach numbers [22] M ≥ 6, and the average time of movement along it is T = 280. In
this section, the aerodynamic coefficients of the SA are practically independent of the Mach
number and altitude, and the balancing position, characterized by the balancing angles of
attack αbal and side slip βbal [23], can be considered constant.

The task for the study consists in high-precision stabilization of the lander in the
programmed balancing position (with tracking the programmed roll angle γpr), i.e., in
maintaining the state vector of angular motion.

xatt =

[
θE÷Qv

ωEv
Ev

]
(θE÷Qv =

[
γ β α

]T , ωEv
Ev

=
[
ωEv

xv ωEv
yv ωEv

zv

]T
),

where γ – speed roll angle, β – angles of side slip, α – angles of attack (GOST 20058-80),
near its programmed value

xatt,pr =

[
θE÷Qv

pr

ωEv
Ev,pr

]
(θE÷Qv

pr =
[
γpr βbal αbal

]T , ωEv
Ev,pr

=
[
ωQv

xv ωQv
yv ωQv

zv

]T
) (1)

with the help of reaction engines of the system of executive organs of landing of constant
thrust with variable pulse durations according to information from the gyroscopic angle
measurement system (GAMS) (inertial roll angle) and angular velocity sensor (vector of
angular velocity ωEv

Ev
) about the observation vector

yatt =

[
γ̃

ωEv
Ev

]
. (2)

Hereinafter, the subscript with the name of the CS or its axes denotes the mappings
of vectors (matrix columns) and matrices (tensors of inertia, kinematic equations) to the
corresponding bases or projections of vectors on the indicated axes. The superscript
indicates the basis, the absolute movement of which characterizes the given vector. If
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relative movement is considered, the symbol “÷” is added in the superscript followed by
the designation of the basis relative to which the movement occurs.

It is required, using analytical methods of modal control, to increase, as far as pos-
sible, the accuracy of stabilization of the lander without increasing fuel consumption in
comparison with the standard algorithm.

3. Mathematical Model

In the modeling, we will consider the lander as an absolutely rigid body, symmetric
about the longitudinal axis, the center of mass (CM) does not displace along the transverse
axis [24]. We introduce the generalized state vector

xT =
[
t xT

trj xT
att

]
,

where t – time from the moment of powering on the GAMS; xtrj – the state vector during
the movement of the CM (three coordinates of position and velocity).

The model of motion of the CM of the lander [25] has the general form

ẋtrj = f trj
(
xtrj, FQv

(
xtrj, xatt

))
, (3)

where FQv – resultant of aerodynamic, gravitational and inertial forces. The model of the
angular motion of the lander [9,10] (between the CS Ev and Qv) consists of the kinematic
and dynamic equations [26–28], as well as the measurement model:

ẋatt = f att

(
xtrj, xatt, Mctr

Ev

)
=

 GEv÷Qv
Ev

(
θE÷Qv

)(
ωEv

Ev
−ωQv

Ev

(
xtrj, θE÷Qv

))
J−1

Ev

(
Maer

Ev

(
xtrj, θE÷Qv

)
+ Mgyr

Ev

(
ωEv

Ev

)
+ Mdst

Ev
+ Mctr

Ev

),

yatt = gatt
(
t, xtrj, xatt

)
=

[
γ̃
(

t, xtrj, θE÷Qv
)

ωEv
Ev

]
,

(4)

here GEv÷Qv
Ev

– the matrix of the kinematic equations of motion of the CS Ev relative to the
CS Qv in the Krylov angles; JEv – tensor of inertia of lander relative to CM in basis Ev; Maer

Ev
,

Mgyr
Ev

, Mdst
Ev

and Mctr
Ev

– respectively, aerodynamic, gyroscopic, disturbing unbalanced and
control moments relative to the CM of lander.

4. Standard Algorithm and Conditions for Its Comparison with the New Algorithm

The standard motion control of a capsule-type lander from a constant thrust provided
by reaction engine is formed in two stages. First, the vector of control signals is found

u = u0 − F∆yatt, (5)

where u0 – feedforward control to control, F – output regulator matrix, ∆yatt = yatt− yatt,pr,
and yatt,pr – the programmed value of the output vector (2), consisting of the programmed
values of the inertial roll angle γ̃pr and the vector of the angular velocity of the associated
CS ωEv

Ev ,pr. Then the signals (5) are converted into the control torque of constant thrust
of reaction engine (the duration of switching on the reaction engine) according to the
piecewise linear law with a dead zone and saturation.

The standard stabilization algorithm is empirical. In it, control (5) turns out to be
autonomous in the roll (γ, ωEv

xv ), yaw (β, ωEv
yv ) and pitch (α, ωEv

zv ) channels. In the
atmospheric section, it is aimed at damping the angular velocities ωEv

Ev
and tracking the

programmed roll angle (γ→ γpr). The balancing position (α→ αbal , β→ βbal) is main-
tained due to the static stability of the lander [23].

In the simplest version of law (5)

u0 = ωEv
Ev ,pr = 03×1, γ̃pr = γpr.
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Hereinafter, 0n×m is the zero matrix of dimension n×m. To improve the orientation
accuracy and create the same conditions when comparing the standard and new algorithms
(according to the influence of the regulator matrices), it is advisable to use the conversion
of the speed roll angle into the inertial roll angle

γ̃pr = γ̃
(

t, xtrj, θE÷Qv
pr

)
and taking into account the angular velocity of the reference CS Qv

ωEv
Ev ,pr = ωQv

Ev

(
xtrj, θE÷Qv

pr

)
.

Since in model (4) in the balancing position

Maer
Ev

(
xtrj, θE÷Qv

pr

)
≡ 03×1,

the feedforward control without taking into account the current kinematics of the lander
motion is

u
−0

= −Mgyr
Ev

(
ωEv

Ev ,pr

)
. (6)

In real time, the angular velocity ωQv
Ev

, which depends, in particular, on the aero-
dynamic force (a strongly varying stochastic vector), is difficult to calculate. But as the
programmed angular velocity with some approximation, you can use its part

ωEv
Ev ,pr = ω

Qgrn
Ev

(
xtrj, θE÷Qv

pr

)
, (7)

i.e., take into account only the angular velocity of the Earth’s rotation around its axis.

5. Linearization of Angular Motion Model of the Lander

We linearize the system of Equations (4) at each computational step of the on-board
computer by expanding the right-hand sides into a Taylor series in terms of the coordinates
of the vector xatt near their programmed values

xatt,pr =

[
θE÷Qv

pr

ω
Qgrn
Ev

(
xtrj, θE÷Qv

pr

)],

which are constant per cycle and written taking into account equalities (1) and (7) at the
current values of time t and coordinates of the CM xtrj from model (3). This linearization is
possible because in the considered range of heights (above 40 km), the parameters of the
CM motion of the lander change more slowly than the parameters of the angular motion.

After linearization, a system of approximate equations is formed

ẋatt = f att
(

xtrj, xatt, 03×1
)︸ ︷︷ ︸

ξ

+ f ′xatt
att
(

xtrj, xatt, 03×1
)︸ ︷︷ ︸

A

(
xatt − xatt,pr

)︸ ︷︷ ︸
∆xatt

+

[
03×3
J−1

Ev

]
︸ ︷︷ ︸

B

u,

yatt = gatt
(
t, xtrj, xatt,pr

)︸ ︷︷ ︸
yatt,pr=yatt−∆yatt

+ g′xatt
att
(
t, xtrj, xatt,pr

)︸ ︷︷ ︸
C

(
xatt − xatt,pr

)︸ ︷︷ ︸
∆xatt

.
(8)

In deviations from the programmed values, this system takes the classical form with a
perturbation {

∆ẋatt = ξ + A∆xatt + Bu,

∆yatt = C∆xatt,
(9)
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where ξ – vector of disturbances, A, B and C – the matrices of state, control and observation,
respectively.

According to the theory presented in [29], the control for such a model that ensures
the fulfillment of the condition

eig(A− BFC) = Λ∗ (10)

for the desired spectrum

Λ∗ =
{

φ1, φ2, φ3, φ4, φ5, φ6
}

has the form (5). The static addition caused by the presence of a perturbation (zero Taylor
term) with the matrix of controlled parameters

N =
[
I3 03×3

]
(the angular position θE÷Qv is regulated) is equal to

u0 = −
[
FC I3

][A B
N 03×3

]−1[ I6
03×6

]
ξ, (11)

here and below, In is the identity matrix of order n.
Thus, the control problem is reduced to finding the output controller matrix F for a

triple of matrices A(t), B, and C(t) (matrices A and C, due to linearization (8), change from
cycle to cycle), written in block form

A(t) =
[

A[1,1](t) A[1,2](t)
A[2,1](t) A[2,2](t)

]
, B =

[
03×3
J−1

]
, C(t) =

[
cT(t) 01×3
03×3 I3

]
, (12)

where A[1,1](t), A[1,2](t), A[2,1](t), A[2,2](t) ∈ R3×3 – blocks of the state matrix (in the

general case, not zero), c(t) =
[

cγ(t) cβ(t) cα(t)
]T – vector of measured combinations

of kinematic parameters, J = JEv .
Based on the simulation results in MATLAB for the full linear model (9), the values of

the variable coefficients of the matrices A(t) and C(t) from the record (12) were estimated.
It turned out that many coefficients change insignificantly during the motion of the lander,
and are close to zero or one in magnitude. The most significant changes are the coefficients
a4,2(t), a5,2(t), and a6,3(t) of the state matrix A(t) =

[
ai,j(t)

]
.

Let us form a simplified linear model (Figure 1) by changing the record of the state and
observation matrices in comparison with the record (12) and introducing an underscore for
the simplified matrices:

A
−
(t) =

[
03×3 I3

A
− [2,1]

(t) 03×3

]
, B =

[
03×3
J−1

]
, C
−
=

[
eT

1 01×3
03×3 I3

]
, (13)

where

A
− [2,1]

(t) =

0 −a4,2(t) 0
0 −a5,2(t) 0
0 0 −a6,3(t)

 = −q̃(t)

0 ā4,2 0
0 ā5,2 0
0 0 ā6,3

;

e1 =
[
1 0 0

]T ; q̃(t) > 0 – scaled value of the velocity head; ā4,2 > 0, ā5,2 > 0, ā6,3 > 0 –
constant of linearization of the scaled aerodynamic moment.

The static addition u0 in the control law (5) for the simplified model instead of for-
mula (11), is calculated in a simplified way: u0 = u

−0
, using formulas (6) and (7).
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Figure 1. Onboard model of the spacecraft angular motion.

Since the coefficients ā4,2, ā5,2, ā6,3, and q̃(t) are stochastic and difficult to determine,
the problem arises for object (9) with matrices A = A

−
and C = C

−
to synthesize a robust

output controller (5) with a stationary matrix F independent of the matrix components A,
which nevertheless ensures that condition (10) is satisfied.

6. Robust Output Regulator

The simplified linear model described by the triple matrices (13) can be split into two
components:

• autonomous model in the Roll-Yaw channel

ARY =

[
02×2 I2

ARY[2,1] 02×2

]
, BRY =

[
02×2
J−1

RY

]
, CRY =

[
eT

R 01×2
02×2 I2

]
(14)

where

ARY[2,1] =

[
0 −a4,2
0 −a5,2

]
,

a4,2 > 0,
a5,2 > 0,

JRY =

[
Jxv −Jxvyv

−Jxvyv Jyv

]
, eR =

[
1
0

]
,

with the desired spectrum eigenvectors

ΛRY =
{

φ1, φ2, φ3, φ4
}

; (15)

• autonomous model in the Pitch channel

AP =

[
0 1
−a6,3 0

]
, BP =

[
0

J−1
zv

]
, CP =

[
0 1

]
, (16)

where a63 > 0, with the desired spectrum eigenvectors

ΛP =
{

φ5, φ6
}

. (17)

In records (14) and (16), the axial moments of inertia Jxv , Jyv , Jzv and the centrifugal
moment of inertia Jxvyv in the SC Ev were used.

Let us consider an autonomous problem of modal output control in the Roll-Yaw
channel, described by a completely controllable and completely observable (by state) triple
of matrices (14) and spectrum (15). We obtain a parameterized set of its solutions based on
a modification of the direct van der Wood approach [21,30].
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At the zero level of decomposition

ARY0 = ARY, BRY0 = BRY

the left annihilator and its pseudoinverse matrix [31] are respectively equal to

B⊥L
RY0 =

[
I2 02×2

]
, B⊥L+

RY0 = B⊥LT
RY0

(
B⊥L

RY0B⊥LT
RY0

)−1
= B⊥LT

RY0 .

The first level of decomposition

ARY1 = B⊥L
RY0 ARY0B⊥L+

RY0 = 02×2, BRY1 = B⊥L
RY0 ARY0BRY0 = J−1

RY

is finite due to the invertibility of matrix BRY1.
The controller matrix at the first decomposition level is

KRY1 = B−1
RY1 ARY1 −ΦRY1B−1

RY1 = −ΦRY1 JRY = −JRYΦ̃RY1,

where Φ̃RY1 and ΦRY1 = JRYΦ̃RY1 J−1
RY are mutually similar matrices with the spectrum

eig Φ̃RY1 = eig ΦRY1 =
{

φ1, φ2
}

. (18)

The pseudoinverse matrix and the auxiliary matrix at the zero decomposition level
are, respectively, equal

B+
RY0 =

(
BT

RY0BRY0
)−1

BT
RY0 =

[
02×2 JRY

]
,

B−RY0 = B+
RY0 + KRY1B⊥L

RY0 = JRY
[
−Φ̃1 I2

]︸ ︷︷ ︸
B̃−RY0

,

and the controller matrix at this level is

KRY = KRY0 = B−RY0 ARY0 −ΦRY0B−RY0 =
= JRY

[
ARY[2,1] + Φ̃RY0Φ̃RY1 −Φ̃RY0 − Φ̃RY1

]
,

(19)

where Φ̃RY0 and ΦRY0 = JΦ̃RY0 J−1 are mutually similar matrices with the spectrum

eig Φ̃RY0 = eig ΦRY0 =
{

φ3, φ4
}

. (20)

Matrix (19) characterizes the modal state controller for the pair of matrices (ARY, BRY)
from the recorder (14) and the spectrum (15).

To calculate the modal output controller, we write the right annihilator of the matrix
CRY0 = CRY

C⊥R
RY0 = −

[
0 1 0 0

]T

and in the equation:
Φ̃RY0 B̃−RY0C⊥R

RY0︸ ︷︷ ︸
G̃RY0

= B̃−RY0 ARY0C⊥R
RY0︸ ︷︷ ︸

H̃RY0

, (21)

calculate the matrix coefficients

G̃RY0 = Φ̃RY1

[
0
1

]
, H̃RY0 =

[
a4,2
a5,2

]
. (22)

From equations (22) it can be seen that the right side of equation (21) is unchanged,
and the matrix coefficient for the calculated matrix Φ̃RY0 on the left side can be changed
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depending on the value of the matrix Φ̃RY1. Let us write the value of this coefficient in a
general parameterized form (µ1, µ2 ∈ C):

G̃∗RY0 =

[
µ1
µ2

]
. (23)

Let us find the matrix Φ1 with the desired spectrum (18) at the first level of decompo-
sition, at which the equality G1 = G2 is fulfilled. To do this, let us consider the expression
for the matrix G1 from the record (22) as the equation

Φ̃RY1

[
0
1

]
︸︷︷︸
G̃RY1

=

[
µ1
µ2

]
︸ ︷︷ ︸
H̃RY1

, (24)

solvable with respect to the matrix Φ̃RY1. To provide the spectrum (5.5) to the matrix Φ̃RY1,
we form a pair of state and observation matrices Φ̃RY1.

AΦ̃RY1
= H̃RY1

(
G̃T

RY1G̃RY1

)−1
G̃T

RY1︸ ︷︷ ︸
G̃+

RY1

=

[
0 µ1
0 µ2

]
, CΦ̃RY1

= G̃⊥L
RY1 =

[
1 0

]
.

(25)

For this pair, the observability matrix and its determinant are

NΦ̃RY1
=

[
CΦ̃RY1

CΦ̃RY1
AΦ̃RY1

]
=

[
1 0
0 µ1

]
, det NΦ̃RY1

= µ1,

i.e., full observability takes place if
µ1 6= 0. (26)

Taking into account the Ackerman formula [30], we calculate the state observer matrix
for a pair of matrices (25) and spectrum (18):

LΦ̃RY1
=
(

AΦ̃RY1
− φ1 I2

)(
AΦ̃RY1

− φ2 I2

)
N−1

Φ̃RY1

[
0
1

]
=

[
µ̃2
µ̃1

]
,

where
µ̃1 = (µ2−φ1)(µ2−φ2)

µ1
, µ̃2 = µ2 − φ1 − φ2.

The matrix with the desired spectrum at the first level of decomposition generally has
a form that is neither diagonal nor triangular:

Φ̃RY1 = AΦ̃RY1
− LΦ̃RY1

CΦ̃RY1
=

[
−µ̃2 µ1
−µ̃1 µ2

]
. (27)

Next, from equation (21), we find the matrix Φ̃RY0 with the desired spectrum (20) at
the zero level of decomposition. Let the matrix Φ̃RY1 of the form (27) be assigned at the
first level of decomposition. Then the matrix coefficients (22) are

G̃RY0 = G̃∗RY0 =

[
µ1
µ2

]
, H̃RY0 =

[
a42
a52

]
.
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Hence, when satisfying inequality (26), equation (21) is solvable with respect to the
matrix Φ̃RY0. To provide the spectrum (20) to the matrix Φ̃RY0, we form a pair of state and
observation matrices

AΦ̃RY0
= H̃RY0

(
G̃T

RY0G̃RY0

)−1
G̃T

RY0︸ ︷︷ ︸
G̃+

RY0

= 1
µ

[
a4,2µ1 a4,2µ2
a5,2µ1 a5,2µ2

]
,

CΦ̃RY0
= G̃⊥L

RY0 =
[
−µ2 µ1

]
,

(28)

where µ = µ2
1 + µ2

2. For this pair, the observability matrix and its determinant are

NΦ̃RY0
=

[
CΦ̃RY0

CΦ̃RY0
AΦ̃RY0

]
= −

[
µ2 −µ1
µ1
µ δ

µ2
µ δ

]
, det(NΦ̃RY0

) = δ,

where δ = a42µ2 − a52µ1, i.e., full observability takes place if

µ2 6=
a5,2

a4,2
µ1. (29)

By Ackerman formula [30], we calculate the state observer matrix for a pair of matrices
(28) and spectrum (20):

LΦ̃RY0
=
(

AΦ̃RY0
− φ3 I2

)(
AΦ̃RY0

− φ4 I2

)
N−1

Φ̃RY0

[
0
1

]
= − 1

µ

[
κ11µ1 + κ12µ2
κ21µ1 + κ22µ2

]
,

where

κ11 = δ−1(a4,2 − φ3µ1)(a4,2 − φ4µ1),

κ12 = δ−1(a4,2(a5,2 − φ3µ2)− φ4µ2(a4,2 − φ3µ1)),

κ21 = δ−1(a5,2(a4,2 − φ3µ1)− φ4µ1(a5,2 − φ3µ2)),

κ22 = δ−1(a5,2 − φ3µ2)(a5,2 − φ4µ2).

The matrix with the desired spectrum at the zero decomposition level will take the form

Φ̃RY0 = AΦ̃RY0
− LΦ̃RY0

CΦ̃RY0
=

[
−κ12 κ11
−κ22 κ21

]
. (30)

Next, we substitute matrices Φ̃RY0 (30) and Φ̃RY1 (27) into the calculation formula of
the state regulator matrix (19) and calculate the output regulator matrix

FRY = KRY CT
RY

(
CRYCT

RY

)−1

︸ ︷︷ ︸
C+

RY

= JRY


κ12µ̃2 − κ11µ̃1︸ ︷︷ ︸

f̃RY1,1

µ̃2 + κ12︸ ︷︷ ︸
f̃RY1,2

−µ1 − κ11︸ ︷︷ ︸
f̃RY1,3

κ22µ̃2 − κ21µ̃1︸ ︷︷ ︸
f̃RY2,1

µ̃1 + κ22︸ ︷︷ ︸
f̃RY2,2

−µ2 − κ21︸ ︷︷ ︸
f̃RY3,3

. (31)

This matrix describes the set of solutions to the modal output control problem (14), (15),
characterized by the parameters µ1, µ2 and the poles f1, f2, f3, f4. Symbolic calculations
in MATLAB confirm the validity of the equation

eig(ARY − BRY FRYCRY) = ΛRY

written on the basis of expressions (14), (15) and (31).
In order to reduce the mutual influence of control channels, let us set the problem

of zeroing the cross coefficients f̃RY1,3, f̃RY2,1 and f̃RY2,2 between the “Roll” and “Yaw”
channels from the record (31), having at our disposal the parameters µ1, µ2 obeying
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conditions (26) and (29), as well as any ratios of the poles φ1, φ2, φ3, φ4, that do not violate
the location of these poles in the left complex half-plane. This problem is described by the
following system of equations and inequalities:

f̃RY1,3 = 0 ⇔ κ11 + µ1 = 0,

f̃RY2,1 = 0
∣∣

f̃RY2,2=0 ⇔
[

µ̃1 = 0,

κ21 + µ̃2 = 0,
f̃RY2,2 = 0 ⇔ κ22 + µ̃1 = 0,

∣∣∣∣∣∣∣∣∣
µ1 6= 0,

µ2 6=
a5,2

a4,2
µ1,

Re φ1 < 0,
Re φ2 < 0,
Re φ3 < 0,
Re φ4 < 0.

(32)

Since a52 > 0, the solution to problem (32) is one of the systems

[
µ2 = φ1,

µ2 = φ2,


µ2 /∈

{
φ4, φ4 − φ3

}
,

µ1 =
a4,2

φ4 − µ2
,

µ2φ3 = a5,2,
µ2 /∈

{
φ3, φ3 − φ4

}
,

µ1 =
a4,2

φ3 − µ2
,

µ2φ4 = a5,2,



(φ1 + φ2) /∈
{

φ3, φ4, φ3 + φ4
}

,

µ1 = − a4,2

φ1 + φ2 − φ3 − φ4
,

µ2 =
φ3φ4 − a5,2

φ1 + φ2 − φ3 − φ4
+ φ1 + φ2,

φ1φ2 = a5,2.

(33)

Here the first system corresponds to the first equation µ̃1 = 0 in the set from the record
(32), and the second system corresponds to the second equation κ21 + µ̃2 = 0 in the same
set. Thus, system (32) has five qualitatively different solutions.

The first solution

φ1 /∈
{

φ4, φ4 − φ3
}

, φ1φ3 = a5,2, µ1 =
a4,2

φ4−φ1
, µ2 = φ1

corresponds to matrices (30) and (27) with spectra (20) and (18) in the form

Φ̃RY0
∣∣
φ1 6=φ4

=

[
φ4 − a4,2

φ4−φ1

0 φ3

]
, Φ̃RY1

∣∣
φ1 6=φ4

=

[
φ2

a4,2
φ4−φ1

0 φ1

]
(34)

and the output regulator matrix (31) equal to

FRY|φ1φ3=a5,2
= JRY

[
φ2φ4 −φ2 − φ4 0

0 0 −φ1 − φ3

]
.

The second solution

φ1 /∈
{

φ3, φ3 − φ4
}

, φ1φ4 = a5,2, µ1 =
a4,2

φ3−φ1
, µ2 = φ1

corresponds to matrices (30) and (27) with spectra (20) and (18) in the form

Φ̃RY0
∣∣
φ1 6=φ3

=

[
φ3 − a4,2

φ3−φ1

0 φ4

]
, Φ̃RY1

∣∣
φ1 6=φ3

=

[
φ2

a4,2
φ3−φ1

0 φ1

]
(35)

and the output regulator matrix (31) equal to

FRY|φ1φ4=a5,2
= JRY

[
φ2φ3 −φ2 − φ3 0

0 0 −φ1 − φ4

]
.



Appl. Sci. 2022, 12, 731 11 of 19

The third solution

φ2 /∈
{

φ4, φ4 − φ3
}

, φ2φ3 = a5,2, µ1 =
a4,2

φ4−φ2
, µ2 = φ2

corresponds to matrices (30) and (27) with spectra (20) and (18) in the form

Φ̃RY0
∣∣
φ2 6=φ4

=

[
φ4 − a42

φ4−φ2

0 φ3

]
, Φ̃RY1

∣∣
φ2 6=φ4

=

[
φ1

a42
φ4−φ2

0 φ2

]
(36)

and the output regulator matrix (31) equal to

FRY|φ2φ3=a5,2
= JRY

[
φ1φ4 −φ1 − φ4 0

0 0 −φ2 − φ3

]
.

The forth solution

φ2 /∈
{

φ3, φ3 − φ4
}

, φ2φ4 = a5,2, µ1 =
a4,2

φ3−φ2
, µ2 = φ2

corresponds to matrices (30) and (27) with spectra (20) and (18) in the form

Φ̃RY0
∣∣
φ2 6=φ3

=

[
φ3 − a42

φ3−φ2

0 φ4

]
, Φ̃RY1

∣∣
φ2 6=φ3

=

[
φ1

a42
φ3−φ2

0 φ2

]
(37)

and the output regulator matrix (31) equal to

FRY|φ2φ4=a5,2
= JRY

[
φ1φ3 −φ1 − φ3 0

0 0 −φ2 − φ4

]
.

The fifth solution

s12 /∈
{
−φ3, −φ4, s34

}
, m12 = a5,2, µ1 =

a4,2
s12−s34

, µ2 =
a5,2−m34
s12−s34

− s12,

where s12 = −φ1 − φ2, s34 = −φ3 − φ4, m12 = φ1φ2, m34 = φ3φ4, corresponds to matrices
(30) and (27) with spectra (20) and (18) in the form

Φ̃RY0
∣∣
s12 6=s34

=

 m12−m34
s12−s34

− s34 − a4,2
s12−s34

1
a4,2

(
(m12−m34)

2

s12−s34
+ s12m34 − s34m12

)
−m12−m34

s12−s34

,

Φ̃RY1
∣∣
s12 6=s34

=

 −m12−m34
s12−s34

a4,2
s12−s34

− 1
a4,2

(
(m12−m34)

2

s12−s34
+ s12m34 − s34m12

)
m12−m34
s12−s34

− s12

,

(38)

and the output regulator matrix (31) equal to

FRY|φ1φ2=a5,2
= JRY

[
φ3φ4 −φ3 − φ4 0

0 0 −φ1 − φ2

]
.

Having compared the results of the five presented solutions, and also taking into
account the fact that the spectra (18) and (20) can be swapped between the matrices Φ̃RY0
and Φ̃RY1, we draw the following conclusion. If the product of any two poles in a given
spectrum (15) (we denote these poles by the symbols φy1 and φy2, and the other two poles by
the symbols φx1 and φx2) is equal to a positive number a52, then the output regulator matrix

FRY|my=a5,2
= JRY

[
mx sx 0
0 0 sy

]
, (39)
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where sx = −φx1 − φx2, sy = −φy1 − φy2, mx = φx1φx2 – positive constants and my =
φy1φy2 = a5,2 > 0, provides a spectrum

eig
(

ARY − BRY FRY|φy1φy2=a5,2
CRY

)
=
{

φx1, φx2, φy1, φy2
}

,

which, according to the Hurwitz criterion [29], corresponds to a stable system.
Matrix (39) does not contain cross coefficients between the “Roll” and “Yaw” channels.

Moreover, it is robust because does not depend on the variable parameters a4,2 and a5,2 of
the state matrix ARY.

Next, we will consider the autonomous problem of modal output control in the “Pitch”
channel, described by a completely controllable and completely observable (by state) triple
of matrices (16) and spectrum (17). This is a problem with one control input, which means
that the state regulator matrix is uniquely found using the Ackerman formula [30]:

KP =
[
0 1

][
BP APBP

]−1
(AP − φ5 I2)(AP − φ6 I2) = Jz

[
mz − a6,3 sz

]
,

where sz = −φz1 − φz2, mz = φz1φz2, φz1 = φ5, φz2 = φ6. Output control is possible if the
equation as below is fulfilled.

KP

[
1
0

]
︸︷︷︸
C⊥R

P

= 0 ⇔ mz = a6,3.

The output regulator matrix will be

FP|mz=a6,3
= KP CT

P

(
CPCT

P

)−1

︸ ︷︷ ︸
C+

P

= Jzsz. (40)

If sz is a positive constant, then, since mz = φz1φz2 = a6,3 > 0, matrix (40) will provide
the spectrum

eig
(

AP − BP FP|φz1φz2=a6,3
CP

)
=
{

φz1, φz2
}

,

which, according to the Hurwitz criterion [29], corresponds to a stable system. Moreover,
matrix (40) is robust, since does not depend on the variable parameter a6,3 of the state
matrix AP.

Combining the results (39) and (40), we write down the robust matrix of the output
regulator, which does not contain cross coefficients between the “Roll”, “Yaw” and “Pitch”
channels:

F|my=a5,2
mz=a6,3

= J

mx sx 0 0
0 0 sy 0
0 0 0 sz

. (41)

Thus, a robust output regulator (Figure 2) has been synthesized, in which there are no
cross-connections between control channels, and the remaining coefficients do not depend
on the variable parameters of the state matrix. The resulting regulator with matrix (41)
is universal in the sense that it is determined only by the inertial characteristics of the
lander and the desired poles, which allows its use on vehicles with any aerodynamic
characteristics, including any aerodynamic quality [23,25].

It is shown that a robust regulator can be synthesized on the basis of a modified van der
Wood approach using parameterization and methodically different calculations of matrices
with the desired spectra at the zero and first decomposition levels (at the zero level, the
output regulator is calculated, and due to the first level, its desired properties are provided).
Two separate parametrized modal control problems have been solved: in the “Roll-Yaw”
and “Pitch” channels. In the first task, the goal was set to zero cross-connections between
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the “Roll” and “Yaw” channels. To achieve it, complex sets and systems of equations and
inequalities were compiled, and 5 cumbersome solutions were obtained. The complexity is
caused by the presence of decomposition, and the robustness of the output regulator for a
specific linear model is obtained as a concomitant factor in zeroing cross-connections. In
the second task (“Pitch”), a robust solution is found by means of a special designation of
the poles.

Figure 2. Robust control formation scheme.

7. Selecting the Desired Poles

Let the control signals (5) be recalculated into the duration of switching on of the relay
reaction engines of the system of executive organs according to the standard on-board logic.

Let us consider the choice of the desired poles used in the formation of the robust
regulator output matrix (41). From the given constraints written in its subscript,

my = φy1φy2 = a5,2(t) = q̃(t)ā5,2 > 0,

mz = φz1φz2 = a6,3(t) = q̃(t)ā6,3 > 0

it can be seen that in the “Roll” channel the constant poles f1 and f2 can be assigned
arbitrarily if the stability conditions are met

sx = −(φx1 + φx2) > 0, mx = φx1φx2 > 0,

and in the channels “Yaw” and “Pitch” the variable poles have the form

φy1(t) = −
sy
2 −

√
s2

y
4 − q̃(t)ā5,2, φy2(t) = −

sy
2 +

√
s2

y
4 − q̃(t)ā5,2;

φz1(t) = − sz
2 −

√
s2

z
4 − q̃(t)ā6,3, φz2(t) = − sz

2 +
√

s2
z
4 − q̃(t)ā6,3.

(42)

It is known from model (13) that the coefficients ā5,2, ā6,3 and q̃(t) are positive.
Therefore, regardless of the specific values of the constants sy = −

(
φy1 + φy2

)
> 0 and

sz = −(φz1 + φz2) > 0,the poles φy1, φy2 and φz1, φz2 will be located in the left complex
half-plane, ensuring, together with the poles, the stability of the closed-loop system (13)
and (41).

With an appropriate choice of the values of sy and sz, at the beginning of the flight
section under consideration at a low velocity head q, there is a time interval where

q̃(t) ≤ 1
4

max

(
s2

y

ā5,2
,

s2
z

ā6,3

)
,
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that is, one or both pairs of poles φy1, φy2 and φz1, φz2 consist of real numbers. This allows
the process of bringing the orientation in the corresponding control channel to be aperiodic
(with less overshoot and fuel consumption than during the oscillatory process). Further,
with a descend of the lander and an increase in the velocity head q, a moment of time
begins, starting from which

q̃(t) >
1
4

max

(
s2

y

ā5,2
,

s2
z

ā6,3

)
,

and the parameters sy and sz, defining constant real parts in pairs of complex conjugate
poles (42) with variable imaginary parts, provide a fixed stability margin in the Yaw and
Pitch channels.

Specific positive values of the constants sx, sy, sz and mx in formula (41) are selected
based on the results of mathematical modeling for a specific object and initial conditions
(IC). The selection criterion is the accuracy of maintaining the orientation of the vehicle at a
given restriction on the total fuel consumption Qmax. Accuracy (δγ, δβ, δα in angles and
δwxv , δwyv , δwzv in angular velocities) is understood as the maximum modulus deviations
of the state parameters from their programmed values over the time interval [t0 +Ttrans; t0 +
T], where Ttrans is the duration of the PP of alignment, T is the total simulation time.

As a working variant of the IC of angular motion, one of the most fuel-intensive
options is used in terms of initial deviations and signs of angles and angular velocities.
Further, for this option, a certain sample of stochastic descent processes (with scatter of the
parameters of the Earth’s atmosphere, aerodynamics of the lander and measurement errors)
is modeled without roll-overs with control according to the existing algorithm. As a result,
the most probable total fuel consumption is determined, and its value is assigned to the
variable Qmax. After that, one similar descent process is modeled using a new algorithm for
various combinations of the constants sx, sy, sz and mx. Under the restriction Qmax, from
the simulated variants of the new algorithm, the “optimal” variant with the values s∗x, s∗y,
s∗z and m∗x corresponding constants is selected according to the criterion

∆(Qmax) = χγδγ + χβδβ + χαδα + χwxv δwxv + χwyv δwyv + χwzv δwzv → min
mx , sx , sy , sz

(43)

where χγ = 4, χβ = χα = 2, χwxv = χwyv = χwzv = 1 – weight coefficients of the
corresponding state parameters.

8. Numerical Example

Let us investigate the stabilization of the lander by the example of an object with
typical characteristics. Consider the model (3), (4) with the parameters indicated in Table 1
and the IC presented in Table 2. The nominal values of the characteristics of the lander,
reaction engines, measuring instruments and the Earth’s atmosphere (GOST 4401-81), as
well as their typical spreads [31] are used (Table 3).

The balancing position of the lander and the programmed value of the roll angle (for
controlling the trajectory of the lander) are determined by the components of the vector

θE÷Qv
pr =

[
γpr βbal αbal

]T
=
[
±60◦ 0 −21.5◦

]T .

The position of the measuring base of the GAMS (“frozen” orbital CS at the moment
of powering on the GAMS) relative to the reference base (“frozen” Greenwich CS) is set,
respectively, by the angles of course, longitude and latitude

ηgyr = 15◦, λgyr = 31◦, ϕgyr = 35◦.

The initial moment of time, counted from the moment of powering on the GAMS, as
well as the IC for the motion of the CM in the study of various processes of angular motion
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are taken to be the same. Combinations of the IC of angular motion (64 variants) are used
in statistics when testing control algorithms.

Table 1. Simulation parameters.

Parameter Value

total simulation time T = 280 s
numerical integration method Runge-Kutta 4th Order Method

size and board steps hm = 0.005, hb = 0.020

We will call the set of ICs characteristic,

γ0 = γpr − 5◦, β0 = βbal − 5◦, α0 = αbal − 5◦, ωEv
xv0 = ωEv

yv0 = ωEv
zv0 = −2 ◦/s (44)

and further we will use it for a visual graphical comparison of control processes with the
same ICs on the existing and new algorithms.

Table 2. Initial Simulation Conditions.

Parameter Value

the initial moment of time
(from the time of powering on the GAMS)

t0 = 280 s

height above the surface of the earth h0 = 80 km
longitude (east) hm = 0.005, hb = 0.020
longitude (east) λ0 = 51◦

latitude (north) ϕ0 = 38◦

the angle of inclination of the trajectory θ0 = −1.5◦

linear velocity of the CM of the lander (relative
to the Earth) v0 = 7.5 km/s

heading angle η0 = 0
speed roll angle γ0 = γpr ± 5◦

angles of side slip β0 = βbal ± 5◦

angles of attack α0 = αbal ± 5◦

angular velocity of channel xv ωEv
xv0 = ±2 ◦/s

angular velocity of channel yv ωEv
yv0 = ±2 ◦/s

angular velocity of channel zv ωEv
zv0 = ±2 ◦/s

Table 3. Parameters of the spacecraft and engines (test version).

Channel Moment of Inertia, kg·m2 Engine Thrust, N

xv 1500 150

yv 1700 75

zv 1800 75

xvyv 50 –

MATLAB simulates 64 samples (Table 2) out of 100 lander stabilization processes with-
out roll overturns according to the standard algorithm. The worst statistical characteristics
of the processes for samples are presented in Table 4, and the graphs of the corresponding
process under typical IC (44) are shown in Figure 3.



Appl. Sci. 2022, 12, 731 16 of 19

Table 4. Statistics of lander stabilization processes without roll overturns according to the standard
algorithm.

Channel

Stabilization Accuracy Consumption
(Units Q̄BT0

alg0)
By Angles (°) By Velocities (°/s)

δtrn+
max δall

avr δtrn+
max δall

avr In Channel Total
ME 2.489 1.347 1.250 0.487 0.289

xv MSE 0.147 0.100 0.104 0.008 0.046
ME 0.931 1.000 2.922 1.760 0.231

yv MSE 0.018 0.006 0.030 0.007 0.009
ME 1.805 1.360 6.661 2.518 0.495

zv MSE 0.197 0.053 0.756 0.172 0.158

1.000
0.163

Figure 3. Typical process of stabilization of the lander without roll overturns according to the standard
algorithm.

The statistics contains mathematical expectations (ME) and mean square deviations
(MSE) for stabilization accuracy: absolute δtrn+

max (maximum deviations from programmed
values after PP in 30 s) and average δall

avr (average deviations from programmed values for
the entire control time). The consumptions are given in the units of the highest ME total
flow rate Q̄BT0

alg0. The upper index is the number of bank turns, the lower one is the number
of the algorithm (0—standard, 1—new).

Further, according to criterion (43) with fuel limitation

Qmax = Q̄BT0
alg0 − 2σ

(
QBT0

alg0

)
,

where QBT0
alg0 – fuel consumption for the existing algorithm (its ME and MSE are used) under

the characteristic IC (44), the “optimal” values of the parameters of the controller matrix
(41) were determined

s∗x = 0.3, s∗y = 1.4, s∗z = 0.9, m∗x = 0.2. (45)
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MATLAB simulates 64 samples (Table 2) of 100 processes of the lander stabilization
without roll overturns using a new robust algorithm with controller matrix (41) and param-
eters (45). The worst statistical characteristics of the processes for samples are presented in
Table 5, and the graphs of the corresponding process under typical IC (44) are shown in
Figure 4.

Figure 4. Typical process of stabilization of the lander without roll overturns according to the new
algorithm.

Table 5. Statistics of lander stabilization processes without roll overturns according to the new
algorithm.

Channel

Stabilization Accuracy Consumption
(Units Q̄BT0

alg0)
By Angles (°) By Velocities (°/s)

δtrn+
max δall

avr δtrn+
max δall

avr In Channel Total
ME 1.438 0.727 0.453 0.147 0.235

xv MSE 0.162 0.065 0.062 0.011 0.026
ME 0.078 0.120 0.264 0.108 0.151

yv MSE 0.014 0.007 0.044 0.011 0.010
ME 1.412 0.771 5.492 1.427 0.578

zv MSE 0.249 0.036 1.030 0.109 0.143

0.944
0.148

As an additional example of using the proposed robust algorithm, a similar simulation
of the spacercraft motion with increased moments of inertia and proportionally increased
thrust of control motors was carried out (Tables 6 and 7).
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Table 6. Characteristics of the spacecraft and engines (test version).

Channel Moment of Inertia, kg·m2 Engine Thrust, N

xv 1600. . . 3000 160. . . 3000

yv 1800. . . 3400 90. . . 160

zv 1900. . . 3600 90. . . 160

xvyv 60. . . 100 –

Table 7. Averaged statistics of spacecraft stabilization processes without roll overturns according to
the new algorithm for the range of tensors of inertia and thrust of engines.

Channel

Stabilization Accuracy Consumption
(Units Q̄BT0

alg0)
By Angles (°) By Velocities (°/s)

δtrn+
max δall

avr δtrn+
max δall

avr In Channel Total

ME 1.843 0.882 0.558 0.175 0.259
xv MSE 0.212 0.114 0.131 0.072 0.115

ME 0.117 0.212 0.378 0.218 0.201
yv MSE 0.024 0.091 0.107 0.061 0.054

ME 1.534 0.934 5.552 1.529 0.525
zv MSE 0.258 0.092 1.196 0.162 0.148

0.985
0.151

Thus, according to the results of statistical modeling in MATLAB for a new robust
algorithm (Tables 5 and 7, Figure 4) with the output feedback matrix (41), such desired
poles with characteristics (45) were found that, in comparison with the standard damping
algorithm (Table 4, Figure 3), the accuracy of stabilization of the lander is doubled at
approximately the same consumption.

9. Conclusions

As a result of applying a new approach to the synthesis of output control, a robust regu-
lator is analytically synthesized to stabilize the angular position of the lander when it moves
in the Earth’s atmosphere. A comparative analysis of this algorithm with the corresponding
algorithm currently used on board the lander of the Soyuz transport manned spacecraft
is carried out. As can be seen from Tables 4 and 5, and also shown in Figures 3 and 4, the
new robust control algorithm for the angular motion of the spacecraft allows doubling
the spacecraft stabilization accuracy in comparison with the existing standard algorithm
without increasing the fuel consumption for control.
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