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Abstract: In this paper, a novel adaptive robust control (ARC) scheme is proposed for electro-
hydraulic servo systems (EHSSs) with uncertainties and disturbances. All dynamic functions in
system dynamics are effectively approximated by multi-layer radial basis function neural network
(RBF NN)-based approximators with online adaptive mechanisms. Moreover, neural network-based
disturbance observers (NN-DOBs) are established to actively estimate and efficiently compensate
for the effects of not only the matched/mismatched but also the imperfections of RBF NN-based
approximators on the control system. Based on that, the nonlinear robust control law which integrates
RBF NNs and NN-DOBs is synthesized via the sliding mode control (SMC) approach to guarantee
the high-accuracy position tracking performance of the overall control system. Furthermore, the
problem of the combination between DOBs and RBF NNs is first introduced in this paper to treat both
disturbances and uncertainties in the EHSS. The stability of the recommended control mechanism is
proven by using Lyapunov theory. Finally, numerical simulations with several distinct frequency
levels of reference trajectory are conducted to convincingly demonstrate the effectiveness of the
proposed approach.

Keywords: electro-hydraulic servo system (EHSS); RBF-neural network (RBF-NN); sliding mode
control (SMC); disturbance observer (DOB); high-order sliding mode Levant’s differentiators

1. Introduction

Hydraulic servomechanisms have been broadly employed in various industrial appli
cations—e.g., hydraulic robot manipulators [1], hydraulic press [2], load simulators [3],
vehicle active suspension systems [4], and so on—due to their superiorities such as a high
power-to-weight ratio, fast and smooth response, high stiffness, and ability to generate
a tremendous force/torque [5]. However, the inherent highly nonlinear characteristics,
parameter variations, modeling uncertainties, and external disturbances of the EHSS are
still the major obstacles to achieving high-accuracy tracking performance. Hence, the
position tracking problem of the EHSS has attracted many studies in recent years.

To control EHSSs, proportional–integral–derivative (PID) control law [6] was initially
employed due to its simple structure and easy implementation. However, it is difficult
to achieve satisfactory performance since the system dynamics are not compensated in
the control law. Alternatively, model-based control strategies for EHSSs such as feedback
linearization control (FLC) [7], backstepping control (BC) [8], and adaptive control (ADC) [9]
have been widely employed to achieve a better tracking performance. Although in these
control methods, the system dynamics are taken into account in control design, they are
sensitive to the modeling uncertainties and disturbances that naturally exist in EHSSs. In
contrast, SMC [10–14] which was originally introduced by Utkin [15], is considered as a
powerful candidate to deal with disturbances and uncertainties, satisfying the matching
condition in nonlinear systems that are assumed to be bounded. However, it can be
seen that all the above model-based control approaches for EHSSs require the system
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dynamics to be known, which are complicated and difficult to precisely acquire due to high
nonlinearities in pressure dynamics and a number of unknown parameters that need to be
identified from experimental input–output data [16].

By virtue of the excellent properties of their self-learning capability and online weight-
adaptive mechanisms, radial basis function (RBF) neural networks (NNs) have been
employed in various fields such as robot manipulators [17–20], magnetic levitation sys-
tems [21], aircraft [22], hydraulic systems [5,23–26], and so on to approximate the unknown
dynamic components of control systems. For EHSSs, Z. Yao et al. introduced multilayer
RBF NNs to approximate partly mismatched and matched uncertainties [5], and semi-
global asymptotic stability was achieved accordingly. In [23], an NN-based estimator
was proposed to approximate an unknown term generated in the control design of the
hydraulic active suspension systems (ASSs). Besides, an RBF NN-based function approxi-
mator [24] was developed to compensate for the effects of the nonlinear friction in EHSSs.
In [25], parametric uncertainties and an unknown external load in hydraulic systems were
grouped into so-called generalized uncertainties, which were compensated by using RBF
NNs. However, in the above-mentioned works, RBF NNs were only exploited to partially
approximate model uncertainty in the control system. Hence, the employment of RBF NNs
for approximating full model uncertainties is still an open problem.

Besides, although RBF NNs are capable of dealing with model uncertainties, they
cannot effectively treat disturbances whose behaviors are independent of the system states.
Hence, the employment of disturbance observers (DOBs) can be considered as an effec-
tive way to cope with disturbances in EHSSs. Extended state observers (ESOs) were
employed [27,28] for EHSSs to estimate both unmeasurable system states and matched/
mismatched disturbances; therefore, high-accuracy tracking performances were achieved.
In another approach to cope with disturbances, some DOB designs based on exact differ-
entiators [29] have been applied in hydraulic systems. For example, a linear disturbance
observer (LDOB) [30] for hydraulic rotary actuator (HRA) control systems and nonlinear
disturbance observers (NDOBs) [1,31] for hydraulic robot manipulators have been success-
fully employed to actively reject the influence of the grouped disturbances on the tracking
performance. It is noted that the above-mentioned DOB designs require the construction
of an observer with a careful tuning process of observer gains to achieve highly efficient
disturbance compensation. Hence, to simplify the parameter tuning, the unknown distur-
bance estimator (UDE) [32] has been proposed with only one parameter that needs to be
selected. Nevertheless, similar to model-based control approaches, DOB designs require
system dynamic information, which inhibits the applications of DOBs. In addition, the
employment of RBF-NNs and DOBs to cope with partial uncertainties and disturbances
has been studied [33,34]. However, to the best of the authors’ knowledge, the integration of
RBF NNs and DOBs into a controller to treat the problem of full model uncertainties and
disturbances is still challenging, and this is considered in this paper.

Motivated by the above comprehensive analysis, in this paper, a novel adaptive robust
control mechanism for the EHSS with completely unknown dynamics and disturbances is
originally proposed. In this framework, high-order sliding mode exact differentiators [35]
are adopted to exactly calculate the angular velocity, acceleration, and pressure derivative.
Based on that, all unknown dynamic functions in system dynamics are approximated by
RBF-NN-based approximators. For the first time, a pair of NN-based DOBs is established
to estimate and compensate for the effects of the NN approximation imperfections, un-
modeled dynamics, and external load on the control system of the EHSS simultaneously.
Finally, the full-state feedback robust control law is synthesized to ensure the high-accuracy
tracking performance in the presence of completely unknown dynamic functions and both
matched/mismatched lumped disturbances. The overall system stability is proven by
utilizing the Lyapunov theory. Several simulations are conducted to verify the effectiveness
of the proposed control strategy.

The main contributions of this paper are summarized as follows:
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1. The RBF NN-based function approximators with adaptive mechanisms are designed
to online approximate all unknown dynamic functions in the dynamics of the EHSS.

2. A pair of DOBs based on the HOSM differentiators along with NNs are first devel-
oped to effectively estimate and actively compensate for not only the effects of both
mismatched and matched disturbances but also the imperfections of the function
approximation of RBF NNs.

3. A robust control law based on the RBF NNs and DOBs is synthesized to guarantee the
high-accuracy tracking performance of the EHSS control system under the impacts of
large model uncertainties and disturbances.

4. The combination of RBF NNs and DOBs in order to take all their advantages is
originally introduced to efficiently treat both full model uncertainties and disturbances
in the dynamics of EHSSs.

The remainder of the paper is organized as follows. In Section 2, the system mod-
eling is presented. The high-order differentiator, neural network-based system dynamic
approximators, disturbance observers, and control strategy are developed in Section 3. The
total system stability is analyzed in Section 4 and comparative numerical simulations are
conducted in Section 5. Finally, Section 6 concludes this paper.

2. System Modeling

The structure of the studied EHSS is presented in Figure 1. In this configuration, the
angular position and pressures of the hydraulic rotary actuator chambers are measured
by encoder and pressure transducers, respectively. To control the fluid flow in/out of the
actuator, a high-bandwidth servo valve is utilized. The problem is how to design a control
law such that the angular position of the HRA tracks the reference trajectory as closely as
possible in the presence of both mismatched and matched disturbances and completely
unknown system dynamic functions with the assumption that the radian displacement
per revolution of the HRA is determined by manufacturer’s datasheets and the moment of
inertial of the load is known.

A

A
B

B

u(t)

Q
2

Q
1

Ps P = 0s

Controller

P1 P2
q

u(t)

Desired
Trajectory

Inertial
Load

Servo Valve

Hydraulic Rotary Actuator

Figure 1. The structure of the studied servo valve-controlled electro-hydraulic system.

To carefully investigate the overall system dynamics, the system is divided into two
subsystems; i.e., mechanical and hydraulic systems. The dynamics of these subsystems are
presented in the following sections.

2.1. Mechanical System

The motion dynamics of the inertial load are obtained by applying Newton’s second
law as

Jθ̈ = τL − τf (θ̇)− τd (1)
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where J and θ are the moment of inertia and the angular position of the load, respectively. τL,
τf , and τd are the load torque of the hydraulic actuator, frictional torque, and disturbances
caused by modeling errors, unmodeled dynamics, and external load, respectively.

The load torque generated by the pressure difference between chambers of the actuator
is determined by [36]

τL = PLDm (2)

where PL = P1 − P2 is the load pressure with P1 and P2 representing the pressures of the
two actuator chambers and Dm denotes the radian displacement of the actuator.

Due to the high stiffness of EHSSs, the frictional torque can be modeled without
considering its dynamics as follows [16]:

τf = Bθ̇ +

(
τc0 + τs0 exp

(
−
∣∣θ̇∣∣
ωs

))
sgn(θ̇) (3)

where B is the viscous friction coefficient, τc0 and τs0 are the parameters for Coulomb
and Stribeck frictions, sgn(•) and exp(•) represent the standard signum and exponential
functions, respectively, and ωs is Stribeck velocity. Consequently, the frictional torque in (3)
can be re-arranged as

τf = τsm f + ∆τf

τsm f = Bθ̇ +

(
τc0 + τs0 exp

(
−|θ̇|ωs

))
tanh(c f θ̇)

(4)

where τsm f represents the smoothened term of frictional torque, tanh(•) is the hyperbolic
tangent function, c f is a positive constant, and ∆τf denotes the approximation error caused
by replacing the sgn(•) function by the tanh(•) function.

Combining (1), (2) and (4), one obtains

θ̈ =
Dm

J
PL −

τsm f

J
−

∆τf + τd

J
(5)

2.2. Hydraulic System

Due to the development of hydraulic seals, it is assumed that the external leakage is
negligible and can be ignored, and the load pressure dynamic can be described as [36]

Vt

4βe
ṖL = −Dm θ̇ − qL + QL + q(t) (6)

where Vt represents the whole control volume of the actuator, βe is the bulk modulus of the
hydraulic oil, qL denotes the internal leakage caused by the pressure discrepancy between the
chambers of the actuator, QL signifies the load flow, and q(t) is the modeling uncertainties.

The internal leakage model is given by [37]

qL = c1P2
L + c2PL + c3 (7)

where c1, c2, and c3 are constants.
The load flow is computed by [16]

QL = Cdwxv

√
1
ρ
(Ps − sgn(xv)PL) (8)

where Cd denotes the discharge coefficient, w is the spool valve area gradient, ρ is the oil
density, and Ps represents the supply pressure.

Since the tracking performance is only slightly improved and the system order in-
creases significantly if the full dynamics of the servo valve are considered [38], to reduce
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the complexity of control design, a simplified model in which valve spool displacement is
directly proportional to the control input can be used as

xv = kvu (9)

where xv signifies the spool displacement, kv represents the servo valve coefficient, which
is determined based on its datasheet provided by the manufacturer, and u is the control
input voltage.

Based on (8) and (9), one obtains

QL = ktu
√
(Ps − tanh(cvu)PL) + ∆QL (10)

where kt = Cdwkv
√

1/ρ denotes the total load flow coefficient, cv is a positive constant,
and ∆QL represents the approximation error when smoothing the load flow Equation (8).

2.3. Total System

Defining x = [x1, x2, x3]
T := [θ, θ̇, DmPL/J]T as the state vector, based on (4)–(7)

and (10), the total system dynamics can be derived in a strict feedback form as

ẋ1 = x2

ẋ2 = x3 + f1(x) + d1(x, t)
ẋ3 = f2(x) + g2(x, u)u + d2(x, t)

(11)

where f1(x), d1(x, t), f2(x), g2(x, u), g2(x, u) and d2(x, t) are given by

f1(x) = −
B
J

x2 −
1
J

(
τc0 + τs0 exp

(
−|x2|

ωs

))
tanh

(
c f x2

)
d1(x, t) = −

∆τf + τd

J

f2(x) = −
4βeD2

m
JVt

x2 −
4βe

Vt

(
c1

J2

D2
m

x2
3 + c2

J
Dm

x3 + c3

)
g2(x, u) =

4βekt

Vt

√
Ps − tanh(cvu)

J
Dm

x3

d2(x, t) =
4βe

Vt
(∆QL + q(t))

(12)

To facilitate the controller design, some reasonable assumptions are made as follows:

Assumption 1. The desired trajectory x1d(t) is sufficiently smooth, and its derivatives up to order
three are bounded.

Assumption 2. The pressures of the actuator chambers P1 and P2 are bounded by the supply
pressure Ps. The absolute value of the load pressure PL is adequately smaller than the supply
pressure Ps to ensure the function g2(x, u) is distant from zero.

Assumption 3. The mismatched and matched lumped disturbances d1(x, t) and d2(x, t) are
smooth enough and their first-order derivatives are bounded by positive constants; i.e.,

∣∣ḋ1(x, t)
∣∣ ≤ δ1

and
∣∣ḋ2(x, t)

∣∣ ≤ δ2.

3. Adaptive Robust Control Design

The control scheme of the proposed method is depicted in Figure 2. In this configura-
tion, the angular velocity, angular acceleration, and the first-order derivative of the load
pressure are determined by employing Levant’s high-order exact differentiators. Then, the
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unknown dynamic functions—i.e., f1(x), f2(x), and g2(x, u)—caused by unknown system
parameters are approximated based on RBF NN-based approximators. A pair of NN-based
DOBs are designed to estimate not only mismatched/matched lumped disturbances but
also approximation errors of RBF NNs. Finally, a control law is synthesized to guarantee
the stability of the overall system and achieve high-accuracy tracking performance.

Electro-
hydraulic

Servo System

Levant’s High-order
Exact Differentiator

Disturbance
Observers

Controller

RBF Neural
Network-based

Dynamic Approximator

Adaption
Mechanism

x1d

x1

x3

x1dx1

_

f
^ g^
2

d1
^

d2
^ x2

x2

x2

.

x3

.

x3

x2

x3

x1

u

u

Saturation

e

2f
^
1

f1
^ f1

^ g2
^

f
^

1

.

f2
^

.

_

_

_

_

_

G1

G2
^

^

Figure 2. The control scheme of the proposed control strategy.

3.1. Robust Control Law Design

To facilitate the controller design, it is assumed that the system dynamic functions
f1(x), f2(x), and g2(x, u), which are approximated later, are completely known. In addition,
the mismatched/matched lumped disturbances and angular velocity of the inertial load
are measurable. The control objective is to design a robust control law that ensures high-
accuracy tracking performance. The tracking errors are defined as follows:

e1 = x1 − x1d

e2 = x2 − ẋ1d
(13)

where x1d and ẋ1d are the desired angular position and velocity.
The sliding surface for the actual tracking error is constructed by

s = e2 + λe1 (14)

where λ is a positive constant. To guarantee the convergence for the sliding variable (14),
an auxiliary sliding surface is designed as

σ = ṡ + ks (15)

where k is a positive constant.
The time derivative of the auxiliary sliding surface σ defined in (15) can be derived as

σ̇ = s̈ + kṡ (16)
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For the sake of simplicity, we use f1, ḟ1, f2, and g2 instead of f1(x), ḟ1(x), f2(x), and
g2(x, u). Taking the first and second-order derivatives of the sliding variable (14) and
combining them with the system dynamics (11), one obtains

ṡ = x3 + f1 + d1 − ẍ1d + λe2

s̈ = f2 + g2u + d2 + ḟ1 + ḋ1 − x(3)1d

+ λ(x3 + f1 + d1 − ẍ1d)

(17)

where x(3) represents the third-order derivative of x.
Substituting (17) into (16), the derivative of σ is given by

σ̇ = f2 + d2 + g2u + ḟ1 + ḋ1 − x(3)1d + kλ(x2 − ẋ1d)

+ (λ + k)(x3 + f1 + d1 − ẍ1d)
(18)

Based on this, the equivalent control is synthesized as

ueq =
1
g2

− f2 − d2 − ḟ1 − ḋ1 + x(3d)
1

−(λ + k)(x3 + f1 + d1 − ẍ1d)

−kλ(x2 − ẋ1d)

 (19)

The switching control term is designed as

usw = − 1
g2

(η1sgn(σ) + η2σ) (20)

where η1 and η2 are positive constants that are determined later.
Based on (19) and (20), the complete control law is derived as

u = ueq + usw (21)

Theorem 1. The control laws (19)–(21) guarantee the finite-time convergence of the auxiliary
sliding variable without a singularity. Based on that, the tracking error asymptotically converges to
zero in the case that the functions f1(x), f2(x), and g2(x, u) are known and the angular velocity
along with the lumped disturbances d1 and d2 are measurable.

Proof of Theorem 1. Consider the candidate Lyapunov function as

Vc =
1
2

σ2 (22)

Taking the time derivative of (22), one obtains

V̇c = σσ̇ (23)

Substituting (19)–(21) into (23), we derive

V̇c ≤ −η1|σ| (24)

Based on (23) and (24), one can obtain

V̇c ≤ −η
√

2V1/2
c (25)

It can be observed from (25) that Vc converges to zero in finite time with convergence
time is computed as

tr ≤
√

2
η

V1/2
c (0) (26)
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Based on this, it can be concluded that by using the control laws (19), (20), and (21),
the auxiliary sliding variable converges to zero in finite time; hence, the control system is
asymptotically stable.

This completes the proof of Theorem 1.

3.2. Levant’s High-Order Exact Differentiator

To exactly compute the angular velocity and the angular acceleration of the inertial
load, the first Levant’s differentiator [29] is designed as

x̄1 = z1; ż1 = −ς1|z1 − x1|3/4sgn(z1 − x1) + z2

x̄2 = z2; ż2 = −ς2|z2 − ż1|2/3sgn(z2 − ż1) + z3

¯̇x2 = z3; ż3 = −ς3|z3 − ż2|1/2sgn(z3 − ż2) + z4

ż4 = −ς4sgn(z4 − ż3)

(27)

where ς1, ς2, ς4, and ς4 are positive constants and x̄1, x̄2, and ¯̇x2 denote the estimated
position, velocity, and acceleration, respectively.

Similarly, the second Levant’s differentiator to calculate the first-order derivative of
load pressure is determined by

x̄3 = v1; v̇1 = −ξ1|v1 − x3|2/3sgn(v1 − x3) + v2

¯̇x3 = v2; v̇2 = −ξ2|v2 − v̇1|1/2sgn(v2 − v̇1) + v3

v̇3 = −ξ3sgn(v3 − v̇2)

(28)

where ξ1, ξ2, and ξ3 are positive constants; x̄3 and ¯̇x3 denote estimates of load pressure and
the first-order derivative, respectively.

Remark 1. The angular velocity and acceleration of the load and the derivative of load pressure of
the HRA are computed based on the well-known Levant’s exact differentiator [29] with negligible
calculation error. The differentiation term of (•) is denoted by (•̄). For the sake of condensation, the
dynamics of this differentiator are not presented in this paper.

3.3. Unknown Dynamic Estimators

Consider an arbitrary unknown smooth multivariate function f (x) with x as the input
vector. This function can be represented in RBF NN form as [39]

f (x) = W f
Th f (x) + ε f (29)

where W f is the ideal neural network weights, h f = [hj]
T with hj represents the radial-

basis function output of the jth node in the hidden layer, and ε f denotes the function
approximation error.

Assumption 4. The weight value and the approximation error of NN are bounded as ‖W f ‖ ≤
W f M and |ε f | ≤ ε f M where W f M and ε f M are positive constants.

The radial-basis function is usually chosen as the Gaussian function, which has the
form [40]

hj = exp

(
−
∥∥x− cj

∥∥2

2b2
j

)
(30)

where cj is the center vector of the jth node in the hidden layer, which has the same
dimension as the input vector x, and ‖•‖ represents the Euclid distance of a vector.
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The estimation of the function f (x) is denoted by f̂ (x), which is the output of RBF
NN as

f̂ (x) = ŴT
f h f (x) (31)

In (11), since the system parameters are unknown, the functions f1, ḟ1, f2, and g2 are
unknown smooth functions that are approximated by employing RBF NN-based approxi-
mators as

f1 = WT
f1

h f1(x) + ε f1

ḟ1 = WT
d f1

hd f1(x) + εd f1

f2 = WT
f2

h f2(x) + ε f2

g2 = WT
g2

hg2(Ø) + εg2

(32)

where the weight values ‖W f1‖, ‖Wd f1‖, ‖W f2‖, ‖Wg2‖ and approximation errors ε f1 , εd f1 ,
ε f2 , εg2 are bounded by W f1 M, Wd f1 M, W f2 M, Wg2 M and ε f1 M, εd f1 M, ε f2 M, εg2 M, respectively;
and the input vector Ø = [x1, x̄2, x3, u]T .

The estimates of f1, ḟ1, f2, and g2 are determined as

f̂1 = ŴT
f1

h f1(x)

ˆ̇f 1 = ŴT
d f1

hd f1(x)

f̂2 = ŴT
f2

h f2(x)

ĝ2 = ŴT
g2

hg2(Ø)

(33)

The approximation errors are determined by

f̃1
∆
= f1 − f̂1 = W̃T

f1
h f1 + ε f1

˜̇f 1
∆
= ḟ1 − ˆ̇f1 = W̃T

d f1
hd f1 + εd f1

f̃2
∆
= f2 − f̂2 = W̃T

f2
h f2 + ε f2

g̃2
∆
= g2 − ĝ2 = W̃T

g2
hg2 + εg2

(34)

where

W̃ f1 = W f1 − Ŵ f1

W̃d f1 = Wd f1 − Ŵd f1

W̃ f2 = W f2 − Ŵ f2

W̃g2 = Wg2 − Ŵg2

(35)

The adaption mechanisms are determined as

˙̂W f1 = γ f1

(
λ + k− 1

κ1

)
σh f1 − Γ f1 Ŵ f1

˙̂Wd f1 = γd f1 σhd f1 − Γd f1 Ŵd f1

˙̂W f2 = γ f2 σh f1 − Γ f2 Ŵ f2

˙̂Wg2 = γg2 σuhg2 − Γg2 Ŵg2

(36)

where γ f1 , γd f1 , γ f2 , and γg2 are learning rates of the neural networks, σ is the auxiliary
sliding variable defined in (15), u is the control input, Γ f1 , Γd f1 , Γ f2 , and Γg2 are positive
constants, and κ1 is the time constant of a disturbance observer, which is designed later.
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3.4. Disturbance Observer Design

To actively compensate for the effect of unmodeled disturbances, uncertain nonlineari-
ties, external load, and the imperfection in approximating unknown continuous functions
in system dynamics (11) on the control system, a pair of NN-based disturbance observers
are proposed as

˙̂d1 =
1
κ1

(
¯̇x2 − x3 − f̂1 − d̂1

)
˙̂d2 =

1
κ2

(
¯̇x3 − f̂2 − ĝ2u− Ĝ1 − d̂2

) (37)

where κ1 and κ2 are small positive constants, d̂1 and d̂2 are estimates of d1 and d2, respec-
tively. Ĝ1 is the NN-based approximation of G1 = g̃2u, which is generated by the NN
weighting approximation error of g2.

The function G1 is represented by RBF NN as

G1 = WT
G1

hG1(Ø) + εG1 (38)

where the weight value ‖WG1‖ and approximation error εG1 are bounded by positive
constants; i.e., ‖WG1‖ ≤WG1 M, |εG1 | ≤ εG1 M.

From (37), the approximated value Ĝ1 and the approximation error G̃1 are given by

Ĝ1 = ŴT
G1

hG1

G̃1 = W̃T
G1

hG1 + εG1

(39)

where W̃G1 = WG1 − ŴG1 and the weight is updated according to the following law:

˙̂WG1 =
1
2

γG1 σhG1 − ΓG1 ŴG1 (40)

where γG1 and ΓG1 are positive constants. The disturbance estimation errors are defined by

d̃1 = d1 − d̂1

d̃2 = d2 − d̂2
(41)

Assuming that the state derivatives are perfectly calculated, based on (11) and (37),
the disturbance estimation error dynamics are obtained as

˙̃d1 = − 1
κ1

(
f̃1 + d̃1

)
+ ḋ1

˙̃d2 = − 1
κ2

(
f̃2 + G̃1 + d̃2

)
+ ḋ2

(42)

Remark 2. With the help of the exact high-order differentiators (27) and (28), and when the
system dynamics are assumed to be known—i.e., f̃1 = 0, f̃2 = 0, and g̃2 = 0—the disturbance
observers (37) guarantee the uniformly asymptotic stability under the constant disturbances and
boundedness stability under the time-varying disturbances.
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Based on (19)–(21), (27), (28), (33), and (37), the control laws are redesigned as

ueq =
1
ĝ2


− f̂2 −

1
2

Ĝ1 −
1
2

Ĝ2 − d̂2 − ˆ̇f 1 +
˙̂d1

+x(3)1d − (λ + k)
(

x3 + f̂1 + d̂1 − ẍ1d

)
−kλ(x̄2 − ẋ1d)


usw = − 1

ĝ2
[η1sgn(σ) + η2σ]

u = ueq + usw

(43)

where

e1 = x1 − x1d; e2 = x̄2 − ẋ1d

s = e2 + λe1; σ = s̈ + kṡ
(44)

and the function G2 = εg2 u is approximated by adopting RBF NN as

G2 = WT
G2

hG2(Ø) + εG2 (45)

with ‖WG2‖ ≤WG2 M and |εG2 | ≤ εG2 M.
The approximation value of G2 is determined by

Ĝ2 = ŴT
G2

hG2 (46)

The weight update law is designed as

˙̂WG2 =
1
2

γG2 σhG2 − ΓG2 ŴG2 (47)

where γG2 and ΓG2 are positive constants.

4. Stability Analysis

Theorem 2. For system (11), by using the control law (43) with unknown function approximators
(33), (39) and (46), the pair of disturbance observers (37), adaptive mechanisms (36), (40), and (47),
and differentiators (27) and (28), the ultimately uniformly bounded tracking performance is ensured
in the presence of unknown dynamics and both mismatched and matched disturbances.

Proof of Theorem 2. Consider the candidate Lyapunov function as

V =
1
2

σ2 +
1

2γ f1

W̃T
f1

W̃ f1 +
1

2γd f1

W̃T
d f1

W̃d f1 +
1

2γG1

W̃T
G1

W̃G1 +
1

2γG2

W̃T
G2

W̃G2

+
1

2γ f2

W̃T
f2

W̃ f2 +
1

2γg2

W̃T
g2

W̃g2 +
1
2

d̃2
1 +

1
2

d̃2
2

(48)

Taking the time derivative of (48), one obtains

V̇ = σσ̇ +
1

γ f1

W̃T
f1

˙̃W f1 +
1

γd f1

W̃T
d f1

˙̃Wd f1 +
1

γG1

W̃T
G1

˙̃WG1 +
1

γG2

W̃T
G2

˙̃WG2

+
1

γ f2

W̃T
f2

˙̃W f2 +
1

γg2

W̃T
g2

˙̃Wg2 + d̃1
˙̃d1 + d̃2

˙̃d2

(49)
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Based on (18), (37), (42), and (43), (49) can be transformed into

V̇ = σ


f̃2 +

1
2

W̃T
g2hg2 u +

1
2

G̃1 +
1
2

G̃2 + d̃2

+ ˜̇f 1 + ḋ1 +

(
λ + k− 1

κ1

)(
f̃1 + d̃1

)
− η1sgn(σ)− η2σ

−
1

γ f1

W̃T
f1

˙̂W f1 −
1

γd f1

W̃T
d f1

˙̂Wd f1

− 1
γ f2

W̃T
f 2

˙̂W f2 −
1

γg2

W̃T
g2

˙̂Wg2 −
1

γG1

W̃T
G1

˙̂WG1 −
1

γG2

W̃T
G2

˙̂WG2

+ d̃1

(
− 1

κ1

(
f̃1 + d̃1

)
+ ḋ1

)
+ d̃2

(
− 1

κ2

(
f̃2 + G̃1 + d̃2

)
+ ḋ2

)
(50)

Applying adaptation mechanisms (33) and (40), (47) and (50) become

V̇ =
Γ f1

γ f1

W̃T
f1

Ŵ f1 +
Γd f1

γd f1

W̃T
d f1

Ŵd f1 +
Γ f2

γ f2

W̃T
f 2Ŵ f2 +

Γg2

γg2

W̃T
g2Ŵg2 +

ΓG1

γG1

W̃T
G1

ŴG1

+
ΓG2

γG2

W̃T
G2

ŴG2 +

(
λ + k− 1

κ1

)
σε f1 + σεd f1 + σε f2 +

1
2

σεG1 +
1
2

σεG2

+

(
λ + k− 1

κ1

)
σd̃1 + σḋ1 + σd̃2 − η1|σ| − η2σ2 − 1

κ1
d̃1W̃T

f1
h f1 −

1
κ1

d̃1ε f1

− 1
κ1

d̃2
1 + d̃1ḋ1 −

1
κ2

d̃2W̃T
f2

h f2 −
1
κ2

d̃2ε f2 −
1
κ2

d̃2W̃T
G1

hG1 −
1
κ2

d̃2εG −
1
κ2

d̃2
2 + d̃2ḋ2

(51)

Based on the Cauchy–Schwarz inequality, the following inequality holds:(
WTh

)2
≤
(

WTW
)(

hTh
)

(52)

Applying Young’s inequality and (52), (51) can be transformed into

V̇ ≤ −
(

η2 −
5λ

2
− 5k

2
+

5
2κ1
− 4
)

σ2 −
(

Γ f1

2γ f1

−
2λ f1

κ1

)
W̃T

f1
W̃ f1 −

Γd f1

2γd f1

W̃T
d f1

W̃d f1

−
(

Γ f2

2γ f2

−
2λ f2

κ2

)
W̃T

f 2W̃ f2 −
Γg2

2γg2

W̃T
g2W̃g2 −

(
ΓG1

2γG1

−
2λG1

κ2

)
W̃T

G1
W̃G1

−
ΓG2

2γG2

W̃T
G2

W̃G2 −
(

7
8κ1
− λ

8
− k

8
− 1

2

)
d̃2

1 −
(

1
2κ2
− 5

8

)
d̃2

2 +
Γ f1

2γ f1

W2
f1 M

+
Γd f1

2γd f1

W2
d f1 M +

Γ f2

2γ f2

W2
f2 M +

Γg2

2γg2

W2
g2 M +

ΓG1

2γG1

W2
G1 M +

ΓG2

2γG2

W2
G2 M

+

(
λ

2
+

k
2
+

3
2κ1

)
ε2

f1 M +
ε2

d f1 M

2
+

(
1
2
+

2
κ2

)
ε2

f2 M +

(
1
4
+

2
κ2

)
ε2

G1 M

+
1
4

ε2
G2 M + δ2

1 +
δ2

2
2

(53)

where λ f1 , λ f2 , and λG1 are the number of nodes in the hidden layers of NNs for approxi-
mating f1, f2, and G1, respectively; control gains, disturbance observer parameters, and
NN parameters are chosen such that
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λ + k− 1
κ1

> 0; η2 −
5λ

2
− 5k

2
+

5
2κ1
− 4 > 0

Γ f1

2γ f1

−
2λ f1

κ1
> 0;

Γ f2

2γ f2

−
2λ f2

κ2
> 0;

ΓG1

2γG1

−
2λG1

κ2
> 0

7
8κ1
− λ

8
− k

8
− 1

2
> 0;

1
2κ2
− 5

8
> 0

(54)

Equation (53) can be rewritten in a simple form as

V̇ ≤ −ΠV + ψ (55)

where

Π = min


2η2 − 5λ− 5k +

5
κ1
− 8;

Γ f1

γ f1

−
4λ f1

κ1
;

Γd f1

γd f1

;
Γ f2

γ f2

−
4λ f2

κ2
;

Γg2

γg2

;

ΓG1

γG1

−
4λG1

κ2
;

ΓG2

γG2

;
7

4κ1
− λ

4
− k

4
− 1;

1
κ2
− 5

4

 (56)

and

ψ =
Γ f1

2γ f1

W2
f1 M +

Γd f1

2γd f1

W2
d f1 M +

Γ f2

2γ f2

W2
f2 M

+
Γg2

2γg2

W2
g2 M +

ΓG1

2γG1

W2
G1 M +

ΓG2

2γG2

W2
G2 M

+

(
λ

2
+

k
2
+

7
2κ1

)
ε2

f1 M +
ε2

d f1 M

2
+

(
1
2
+

2
κ2

)
ε2

f2 M

+

(
1
4
+

2
κ2

)
ε2

G1 M +
1
4

ε2
G2 M + δ2

1 +
δ2

2
2

(57)

From (55), one obtains

V ≤ V(0)e−Πt +
ψ

Π

(
1− e−Πt

)
(58)

Based on this, one can conclude that σ is bounded, which implies that the tracking
errors of the system are also bounded. Therefore, the ultimately uniformly bounded
tracking performance of the system is guaranteed by using the proposed control strategy.

Hence, Theorem 2 is completely proven.

Remark 3. Firstly, the parameters κ1 and κ2 of disturbance observers (37) are chosen to be as small
as possible based on the sampling time to achieve high estimation accuracy; however, the selection
of the excessively small disturbance observer gains may make the disturbance observers unstable.
Consequently, the remaining parameters, including controller gains in (14) and (15), parameters
of adaptation mechanisms (36), (40) and (47) of RBF-NNs, are designed based on the closed-loop
system stability condition (54).

5. Numerical Simulation
5.1. Simulation Setup

To verify the effectiveness of the proposed control strategy, the hydraulic servo sys-
tem [38] is adopted. System parameters for the simulation are given in Table 1.
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Table 1. System parameters of the studied EHSS.

Parameter Unit Value Parameter Unit Value

J kg ·m2 0.2 C0 m3 · s−1 · Pa−2 0
B N ·m · s · rad−1 90 C1 m3 · s−1 · Pa−1 1× 10−12

Dm m3 · rad−1 5.8× 10−5 C2 m3 · s−1 0
βe Pa or N ·m−2 7× 108 Ps Pa 1× 107

kt m3 · s−1 ·V−1 · Pa−1/2 1.1969× 10−8 Vt m3 1.16× 10−4

τC0 N ·m · s · rad−1 35 ωs rad · s−1 0.01
τS0 N ·m · s · rad−1 40

To illustrate the superiority of the proposed method, some controllers are employed
for comparison as follows:

1. The proposed controller with the control parameters λ = 1000, k = 150, η1 = 1000,
and η2 = 4.1 × 104. The parameters for the first Levant’s differentiator are cho-
sen as ς1 = 100, ς2 = 50, ς3 = 100, and ς4 = 100. For the second differentiator
ξ1 = 350, ξ2 = 1.5× 104, and ξ3 = 1.5× 104 are selected. The RBF NNs are designed
with 51 nodes in the hidden layer, and their parameters are γ f1 = 0.15, γd f1 = 0.2,
γ f2 = 0.02, γg2 = 0.1, γG1 = 0.01, γG2 = 0.1, Γ f1 = 103, Γd f1 = 10−7, Γ f2 = 103,
Γg2 = 10−7, ΓG1 = 2× 103, and ΓG2 = 10−7. The disturbance observer gains are
chosen as κ1 = 0.005 and κ2 = 0.005.

2. RBF NN-based sliding mode control without disturbance observer (RBF-SMC), in
which larger controller gains are designed η1 = 1500 and η2 = 4.1× 104 to attenu-
ate the effects of disturbances while the avoidance of the chattering phenomenon
is guaranteed. The structures and parameters of RBF NNs are the same as the pro-
posed method.

3. Extended state observer-based backstepping controller (ESO-BC) [27], with the as-
sumption that nominal system parameters are known.
The control law is designed as

u =
1

g20

(
− f20 − d̂2 + α̇2 − k3(x3 − α2)

)
α2 = − f10 + α̇1 − k2z2 − d̂1

α1 = ẋ1d − k1(x1 − x1d)

(59)

where z1 = x1 − x1d, z2 = x̂2 − α1, z3 = x3 − α2, and the nominal dynamic func-
tions are

f10 = −1
J

B0 x̂2 −

τc0 + τs0e

(
− |x̂2|

ωs

) tanh
(

c f x̂2

)
f20 = −4D2

mβe0

JVt0
x̂2 −

4βe0 JC20

Vt0Dm
x3

g20 =
4βe0kt0

Vt0

√
Ps − sign(u)

J
Dm

x3

The two ESOs are designed as
˙̂x1 = x̂2 + 3ωe1(x1 − x̂1)

˙̂x2 = x3 + f10(x̂2) + d̂1 + 3ω2
1(x1 − x̂1)

˙̂d1 = ω3
1(x1 − x̂1){ ˙̂x3 = f20(x̂2, x3) + g20(x3, u)u + 2ω2(x3 − x̂3)

˙̂d2 = ω2
2(x3 − x̂3)

(60)
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where f10(x2), f20(x2, x3), and g20(x3, u) are nominal system dynamic functions using
known nominal system parameters, ω1 and ω2 are the observer gains, d̂1 and d̂2
are the estimates of mismatched and matched disturbances, respectively, and x̂i is
the estimated value of the system state xi. The control parameters and observer
gains are chosen as k1 = 450, k2 = 350, and k3 = 350; ω1 = 1000 and ω2 = 1000,
respectively, to make the tracking performance as good as possible without chattering
issues. In this case, the nominal system parameters, which are slightly different from
the actual system parameters, are employed to design the backstepping control law,
as illustrated in Table 2.

4. Proportional–Integral–Derivative (PID) controller with controller gains manually
tuned to make the tracking performance as good as possible without chattering in the
control input as KP = 750, KI = 500, and KD = 0.02.

Table 2. Nominal system parameters of the EHSS for backstepping control design.

Parameter Unit Value Parameter Unit Value

B0 N ·m · s · rad−1 80 C10 m3 · s−1 · Pa−1 1× 10−12

βe0 Pa or N ·m−2 7× 108 C20 m3 · s−1 0
C00 m3 · s−1 · Pa−2 0 Vt0 m3 1× 10−4

kt0 m3 · s−1 ·V−1 · Pa−1/2 1× 10−8

The time-varying sinusoidal-like mismatched and matched disturbances d1(t) and d2(t)
are intentionally injected into the control system for performance examination as follows:

d1(t) = 1.5× 103 sin(πt)
(
rad · s−2)

d2(t) = 106 sin(πt)
(
rad · s−3) (61)

where the magnitudes of these disturbances are chosen based on the specifications of
the EHSS.

Performance indexes—i.e., the maximum, average, and standard deviation of the
tracking errors [38]—are used to measure the efficiency of the aforementioned controllers.
These criteria are defined as follows:

(i) Maximal absolute tracking error:

Me = max
i=1,...,N

{|e1(i)|} (62)

(ii) Average tracking error:

µe =
1
N

N

∑
i=1
|e1(i)| (63)

(iii) Standard deviation of the tracking errors:

σe =

√√√√ 1
N

N

∑
i=1

(|e1(i)| − µe)
2 (64)

5.2. Simulation Results
5.2.1. Slow-Motion Reference Trajectory

In this case, the smooth reference trajectory is chosen to evaluate the effectiveness of
the proposed controller as

x1d(t) =
π

8

(
1− cos

(π

2
t
))(

1− e−t)(rad) (65)
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The tracking performances and tracking errors of all four controllers are depicted in
Figures 3 and 4, respectively. As shown in Figure 3, all four controllers guarantee that
the system output tracks the desired trajectory at an acceptable level. Nevertheless, from
Figure 4, it is obviously seen that the proposed controller performs better than others
with the smallest tracking errors, whereas the ESO-BC controller can track the reference
trajectory more closely than RBF-SMC and PID controllers. For more details, the final track-
ing accuracies of all controllers are indicated via the three performance indexes given in
Table 3. It is clear that, although it has some robustness, the PID controller can do little with
uncertainties and disturbances due to the lack of model-based compensation mechanisms.
Consequently, it exhibits the worst tracking performance in all performance indexes (maxi-
mal value, average, and standard deviation of the tracking error are about 0.4684 degrees,
0.2169 degrees, and 0.1326 degrees, respectively). Meanwhile, with the support of ESOs (60),
both mismatched and matched disturbances are estimated and efficiently compensated;
based on that, the ESO-BC controller (maximal error about 0.0315 degrees) achieves better
tracking performance in comparison with the RBF-SMC controller (maximal error about
0.0358 degrees). It is noted that the maximal tracking error is only about 0.0148 degrees
in the case of the proposed controller. The results demonstrate the effectiveness of the
suggested control strategy in which the combination of DOBs and NNs is able to effectively
deal with full unknown system dynamics and both mismatched and matched disturbances.

Figure 3. The tracking performance of the proposed strategy compared with other control laws with
slow-motion reference trajectory.

Figure 4. The tracking errors of the considered four control strategies with slow-motion refer-
ence trajectory.
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Table 3. Performance indexes in slow-motion reference trajectory of all considered controllers

Controller Me (Degree) µe (Degree) σe (Degree)

Proposed Controller 0.0148 0.0097 0.0038
RBF-SMC Controller 0.0358 0.0233 0.0092
ESO-BC Controller 0.0315 0.0151 0.0104

PID Controller 0.4684 0.2169 0.1326

Figure 5. The estimates of the mismatched and matched disturbances of the proposed method.

Figure 6. The weighting values of RFB NNs employed of the proposed method.
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The estimates of the mismatched and matched grouped disturbances and the weight-
ing values of RBF NNs for approximating all unknown dynamic functions are illustrated in
Figures 5 and 6, respectively. It is noted that from Figure 6 that the weighting values of RFB
NNs are smooth and bounded. Moreover, the estimates of both mismatched and matched
disturbances have the same frequencies as the injected disturbances (61). However, they are
not in sinusoidal shapes, since the estimates of disturbances also include the approximation
errors of RBF NNs. The control inputs of all controllers are depicted in Figure 7. With the
same desired reference trajectory, the control input shapes of all controllers are relatively
similar. The interesting thing is that the control input is generated without chattering by the
proposed controller, which demonstrates the effectiveness of the combination between RBF
NNs and DOBs in dealing with the problem of full model uncertainties and disturbance of
the recommended control method.

Figure 7. The control signals of all controllers with slow-motion reference trajectory.

5.2.2. Fast-Motion Reference Trajectory

For further capability investigation of the suggested control algorithm, a smooth
fast-motion reference trajectory is chosen as

x1d(t) =
π

16
(1− cos(2πt))

(
1− e−t)(rad) (66)

The tracking characteristics of all controllers with the fast-motion reference trajectory
are illustrated in Figure 8. As in the above case, all controllers still follow the desired
trajectory. Due to the bandwidth limitations of EHSSs, the tracking errors of all control
approaches depicted in Figure 9 rise remarkably along with the increase in the frequency
of the reference trajectory. The tracking accuracies of all controllers in terms of the three
performance indexes are illustrated in Table 4. As shown, the tracking performances of the
PID controller and the RBF-SMC controller significantly degrade with the maximal final
tracking errors, which are 0.5364 degrees and 0.0621 degrees, respectively. Meanwhile, the
ESO-BC controller demonstrates robustness against uncertainties and disturbances based
on the support of ESOs and known nominal system dynamics. However, it is worth noting
that the proposed controller tracks the reference trajectory more accurately than others.
This once again demonstrates the effectiveness of the recommended method in dealing
with full model uncertainties and disturbances.
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Figure 8. The tracking performance of the proposed strategy compared with other control laws in
fast-motion reference trajectory.

Figure 9. The tracking errors of the four controllers in fast-motion reference trajectory.

Table 4. Performance indexes in fast-motion reference trajectory of all considered controllers

Controller Me (Degree) µe (Degree) σe (Degree)

Proposed Controller 0.0263 0.0138 0.0086
RBF-SMC Controller 0.0621 0.0331 0.0203
ESO-BC Controller 0.0360 0.0151 0.0117

PID Controller 0.5364 0.2287 0.1843

The simulation results of the two case studies demonstrate the superiorities and robust-
ness against disturbances and uncertainties of the proposed control mechanism compared
with others in achieving high-accuracy tracking performance for the EHSS without a chatter-
ing phenomenon. Although the use of the RBF NNs to cope with unstructured uncertainties
is efficient, a number of parameters need to be carefully tuned to obtain better performance,
which impedes its applications. Additionally, the suitability of the selection of radial basis
function type when employing the RBF NNs to approximate unknown functions requires
further careful investigation. Moreover, expert knowledge about the EHSS dynamics is
also needed when designing the structure of NNs. Finally, the effectiveness of the adopted
DOBs to compensate for the effects of disturbances on the controlled systems depends on
the accuracy of the system state derivative calculation based on the Levant’s differentiator,
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whose parameters are required to be meticulously selected to make the tradeoff between
the computational precision and robustness against measurement noises.

6. Conclusions

In this paper, an adaptive robust control for the EHSS with full model uncertainties
and disturbances based on RBF NNs and NN-based DOBs was proposed. For the first
time, the combination of DOBs and RBF NNs was developed to effectively deal with
both disturbances and completely unknown dynamics. In addition, the employment of
the excessive switching gain of the controller was avoided; hence, the chattering issue
was efficiently eliminated. The system stability was successfully proven by using the
Lyapunov theory. The high-accuracy tracking performance achieved with several case
studies demonstrated the effectiveness of the recommended control approach. In addition,
the proposed method can be considered as a new framework dealing with control systems
with limited knowledge about the system dynamics. Sophisticated control laws and
experiments on a real test-bench will be considered in further studies.
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