An Intelligent Control Strategy for a Highly Reliable Microgrid in Island Mode
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Off-Grid Microgrid Topology with a Reconfigurable Inverter
2.2. Open-Circuit Fault Diagnosis and Reconfiguration for Inverter 1
2.3. The Control Strategy for The Off-Grid Microgrid
2.3.1. The Circulating Currents Analysis
2.3.2. Adoptable Virtual Impedance Based on the Cloudy Model
2.3.3. The General Control Strategy
3. Results and Discussion
3.1. Simulating Results and Analysis
3.1.1. Operating Mode 1
3.1.2. Operating Mode 2
3.1.3. Operating Mode 3
3.1.4. Operating Mode 4
3.1.5. Operating Model without Reconfigured Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yu, Z.; Hu, X.; Yao, Z.; Chen, L.; Zhang, M.; Jiang, S. Analysis and Design of a Transformerless Boost Inverter for Stand-Alone Photovoltaic Generation Systems. CPSS Trans. Power Electron. Appl. 2019, 4, 310–319. [Google Scholar]
- Firuzi, M.F.; Roosta, A.; Gitizadeh, M. Stability Analysis and Decentralized Control of Inverter-Based AC Microgrid. Prot. Control Mod. Power Syst. 2019, 4, 65–86. [Google Scholar]
- Ouanjli, N.E.; Derouich, A.; Ghzizal, A.E.; Taoussi, M.; Bossoufi, B. Direct torque control of doubly fed induction motor using three-level NPC inverter. Prot. Control Mod. Power Syst. 2019, 4, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Cheng, S.; Yu, T.; Wu, X.; Xiang, C.; Bilal, A. An On-Line Multiple Open-Circuit Fault Diagnostic Technique for Railway Vehicle Air-Conditioning Inverters. IEEE Trans. Veh. Technol. 2020, 69, 7026–7039. [Google Scholar] [CrossRef]
- Daoudi, S.E.; Lazrak, L.; Lafkih, M.A. Sliding mode approach applied to sensorless direct torque control of cage asynchronous motor via multi-level inverter. Prot. Control Mod. Power Syst. 2020, 5, 166–175. [Google Scholar] [CrossRef]
- Fotopoulou, M.; Rakopoulos, D.; Trigkas, D.; Stergiopoulos, F.; Blanas, O.; Voutetakis, S. State of the art of low and medium voltage direct current (Dc) microgrids. Energies 2021, 14, 5595. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Van, T.L.; Nawaz, A.; Natsheh, A. Feedback Linearization-Based Control Strategy for Interlinking Inverters of Hybrid AC/DC Microgrids with Seamless Operation Mode Transition. Energies 2021, 14, 5613. [Google Scholar] [CrossRef]
- Betta, G.; Capriglione, D.; Ferrigno, L.; Laracca, M.; Miele, G.; Polese, N.; Sangiovanni, S. A Fault Diagnostic Scheme for Predictive Maintenance of AC/DC Converters in MV/LV Substations. Energies 2021, 14, 7668. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, D. Fault Analysis and Fault-Tolerant Design for Parallel Redundant Inverter Systems in Case of IGBT Short-Circuit Failures. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 2031–2041. [Google Scholar] [CrossRef]
- Yang, S.; Bryant, A.; Mawby, P.; Xiang, D.; Ran, L.; Tavner, P. An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 2011, 47, 1441–1451. [Google Scholar] [CrossRef]
- Chen, M.; Xu, D.; Zhang, X.; Zhu, N.; Wu, J.; Rajashekara, K. An Improved IGBT Short-Circuit Protection Method with Self-Adaptive Blanking Circuit Based on VCE Measurement. IEEE Trans. Power Electron. 2018, 33, 6126–6136. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Z. A Fault Diagnosis Algorithm for Microgrid Three-Phase Inverter Based on Trend Relationship of Adjacent Fold Lines. IEEE Trans. Ind. Inform. 2019, 16, 267–276. [Google Scholar] [CrossRef]
- Shi, T.; He, Y.; Wang, T.; Tong, J.; Li, B.; Deng, F. An Improved Open Switch Fault Diagnosis Technique of a PWM Voltage Source Rectifier Based on Current Distortion. IEEE Trans. Power Electron. 2019, 34, 12212–12225. [Google Scholar] [CrossRef]
- Cecati, C.; Di Tommaso, A.O.; Genduso, F.; Miceli, R.; Galluzzo, G.R. Comprehensive Modeling and Experimental Testing of Fault Detection and Management of a Nonredundant Fault-Tolerant VSI. IEEE Trans. Ind. Electron. 2015, 62, 3945–3954. [Google Scholar]
- Huang, Z.; Wang, Z.; Zhang, H. A Diagnosis Algorithm for Multiple Open-Circuited Faults of Microgrid Inverters Based on Main Fault Component Analysis. IEEE Trans. Energy Convers. 2018, 33, 925–937. [Google Scholar] [CrossRef]
- Gan, C.; Wu, J.; Yang, S.; Hu, Y.; Cao, W.; Si, J. Fault diagnosis scheme for open-circuit faults in switched reluctance motor drives using fast Fourier transform algorithm with bus current detection. IET Power Electron. 2016, 9, 20–30. [Google Scholar] [CrossRef]
- Oliveira, A.B.D.M.; Moreno, R.L.; Ribeiro, E.R. Short-circuit fault diagnosis based on the rough sets theory for a single-phase inverter. IEEE Trans. Power Electron. 2019, 34, 4747–4764. [Google Scholar] [CrossRef]
- Hadjou, F.; Tabbache, B.; Henini, N.; Benbouzid, M. Diagnosis of PWM Power Inverter Based on Fuzzy Logic and Concordia Current Pattern. In Proceedings of the International Conference on Applied Smart Systems, Medea, Algeria, 24–25 November 2018. [Google Scholar]
- Mirafzal, B. Survey of fault-tolerance techniques for three-phase voltage source inverters. IEEE Trans. Ind. Electron. 2014, 61, 5192–5202. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, J.; Hang, J. Investigation of a Fault-Tolerant Three-Level T-Type Inverter System. IEEE Trans. Ind. Appl. 2019, 53, 4613–4623. [Google Scholar] [CrossRef]
- Wang, B.; Li, Z.; Bai, Z.; Krein, P.T.; Ma, H. A Redundant Unit to Form T-type Three-Level Inverters Tolerant of IGBT Open-Circuit Faults in Multiple Legs. IEEE Trans. Power Electron. 2020, 35, 924–939. [Google Scholar] [CrossRef]
- Wang, B.; Li, Z.; Dong, M.; Bai, Z.; Krein, P.T.; Ma, H. Recovering Partial Three-level Operation in a T-type Inverter with Fault Management Redundant Unit. IEEE Trans. Power Electron. 2020, 35, 8944–8955. [Google Scholar] [CrossRef]
- Zaky, M.S.; Metwaly, M.K. A Performance Investigation of a Four-Switch Three-Phase Inverter-Fed IM Drives at Low Speeds Using Fuzzy Logic and PI Controllers. IEEE Trans. Power Electron. 2017, 32, 3741–3753. [Google Scholar] [CrossRef]
- Hoang, K.D.; Zhu, Z.Q.; Foster, M.P. Influence and compensation of inverter voltage drop in direct torque-controlled four-switch three-phase PM brushless AC drives. IEEE Trans. Power Electron. 2011, 26, 2343–2357. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Li, Q.; Wang, H.; Cao, L.; Han, S. Variable parameter pulse width modulation-based current tracking technology applied to four-switch three-phase shunt active power filter. IET Power Electron. 2013, 6, 543–553. [Google Scholar] [CrossRef]
- Luo, Z.; Su, M.; Sun, Y.; Zhang, W.; Lin, Z. Analysis and control of a reduced switch hybrid active power filter. IET Power Electron. 2016, 9, 1416–1425. [Google Scholar] [CrossRef]
- Lee, T.S.; Liu, J.H. Modeling and control of a three-phase four-switch PWM voltage-source rectifier in d-q synchronous frame. IEEE Trans. Power Electron. 2011, 26, 2476–2489. [Google Scholar] [CrossRef]
- Badsi, B.E.; Bouzidi, B.; Masmoudi, A. DTC scheme for a four-switch inverter-fed induction motor emulating the six-switch inverter operation. IEEE Trans. Power Electron. 2013, 28, 3528–3538. [Google Scholar] [CrossRef]
- Dasgupta, S.; Mohan, S.N.; Sahoo, S.K.; Panda, S.K. Application of four-switch-based three-phase grid-connected inverter to connect renewable energy source to a generalized unbalanced microgrid system. IEEE Trans. Ind. Electron. 2013, 60, 1204–1215. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Shuai, Z.; Shen, Z.J. A fault tolerant topology of inverter for micro-grid. Proceedings of the IEEE International Conference on Industrial Technology. Taibei, Taiwan, 14–17 March 2016. [Google Scholar]
- Jin, N.; Hu, S.; Gan, C.; Ling, Z. Finite States Model Predictive Control for Fault Tolerant Operation of Three-Phase Bidirectional AC/DC Converter Under Unbalanced Grid Voltages. IEEE Trans. Ind. Electron. 2018, 65, 819–829. [Google Scholar] [CrossRef]
- Li, Y.; Fan, X. Recursive integral proportional–integral control based on membership cloud for active power filter. IET Power Electron. 2014, 7, 2870–2876. [Google Scholar] [CrossRef]
Modes | Inverter 1 | Inverter 2 |
---|---|---|
1 | Normal | Normal |
2 | Normal | Removed |
3 | TPFS | Removed |
4 | TPFS | Normal |
Case | First Fault | Jao | Jbo | Jco | On |
---|---|---|---|---|---|
1–1 | Normal | Z | Z | Z | TR3 |
1–2 | V1 | N | Z | Z | TR4 |
1–3 | V2 | P | Z | Z | TR4 |
1–4 | V3 | Z | N | Z | TR2, TR4 |
1–5 | V4 | Z | P | Z | TR2, TR4 |
1–6 | V5 | Z | Z | N | TR1, TR4 |
1–7 | V6 | Z | Z | P | TR1, TR4 |
1–8 | V1 & V2 | N-P | Z | Z | TR4 |
1–9 | V1 & V3 | N | N | Z | No |
1–10 | V1 & V4 | N | P | Z | TR2, TR4 |
1–11 | V1 & V5 | N | Z | N | No |
1–12 | V1 & V6 | N | Z | P | TR1, TR4 |
1–13 | V2 & V3 | P | N | Z | TR2, TR4 |
1–14 | V2 & V4 | P | P | Z | No |
1–15 | V2 & V5 | P | Z | N | TR1, TR4 |
1–16 | V2 & V6 | P | Z | P | No |
1–17 | V3 & V4 | Z | N-P | Z | TR2, TR4 |
1–18 | V3 & V5 | Z | N | N | No |
1–19 | V3 & V6 | Z | N | P | No |
1–20 | V4 & V5 | Z | P | N | No |
1–21 | V4 & V6 | Z | P | P | No |
1–22 | V5 & V6 | Z | Z | N-P | TR1, TR4 |
Case | First Fault | Second Fault | Jao | Jbo | Jco | On |
---|---|---|---|---|---|---|
2–1 | V1 | V4 | Z | P | Z | TR2 |
2–2 | V1 | V6 | Z | Z | P | TR1 |
2–3 | V2 | V3 | Z | N | Z | TR2 |
2–4 | V2 | V5 | Z | Z | N | TR1 |
2–5 | V3 | V2 | N | P | Z | TR2 |
2–6 | V3 | V4 | Z | P | Z | / |
2–7 | V4 | V1 | P | Z | Z | TR2 |
2–8 | V4 | V3 | Z | N | Z | / |
2–9 | V5 | V2 | P | Z | Z | TR1 |
2–10 | V5 | V6 | Z | Z | P | / |
2–11 | V6 | V1 | N | Z | Z | TR1 |
2–12 | V6 | V5 | Z | Z | N | / |
e(Exe, Ene, Hee) | ec(Exec, Enec, Heec) |
---|---|
eNB(−10, 3.33, 0.42) | ecNB(−3, 0.89, 0.32) |
eNM(−3.82, 2.06, 0.26) | ecNM(−1.21, 0.61, 0.23) |
eNS(−1.91, 1.27, 0.16) | ecNS(−0.58, 0.19, 0.11) |
eZ(0, 0.79, 0.1) | ecZ(0, 0.40, 0.05) |
ePS(1.91, 1.27, 0.16) | ecPS(0.58, 0.19, 0.11) |
ePM(3.82, 2.06, 0.26) | ecPM(1.21, 0.61, 0.23) |
ePB(10, 3.33, 0.42) | ecPB(3, 0.89, 0.32) |
LV(ExL, EnL,HeL) | RV(ExR, EnR, HeR) |
---|---|
LV NB(−6 × 10−4, 2 × 10−4, 4.2 × 10−4) | RV NB(−2.5 × 10−2, 8.3 × 10−3, 8.4 × 10−4) |
LV NM(−2.9 × 10−4, 1.2 × 10−4, 2.6 × 10−4) | RV NM(−9.5 × 10−3, 5.2 × 10−3, 5.2 × 10−4) |
LV NS(−1.9 × 10−4, 0.76 × 10−4, 1.6 × 10−4) | RV NS(−4.8 × 10−3, 3.2 × 10−3, 3.2 × 10−4) |
LV Z(0, 0.5 × 10−4, 1 × 10−4) | RV Z (0, 2 × 10−3, 2 × 10−4) |
LV PS(1.9 × 10−4, 0.76 × 10−4, 1.6 × 10−4) | RV PS(4.8 × 10−3, 3.2 × 10−3, 3.2 × 10−4) |
LV PM(2.9 × 10−4, 1.2 × 10−4, 2.6 × 10−4) | RV PM(9.5 × 10−3, 5.2 × 10−3, 5.2 × 10−4) |
LV PB(6 × 10−4, 2 × 10−4, 4.2 × 10−4) | RV PB(2.5 × 10−2, 8.3 × 10−3, 8.4 × 10−4) |
Main Paramenter | Value |
---|---|
Given voltage value Um | 380 V |
Given voltage frequency f | 50 Hz |
The DC side voltage of inverter 1 and 2 | 800 V |
The switch frequency of IGBT | 10 k/Hz |
The filter inductance L1 The filter capacitance C | 3 mH 5000 μF |
The filter inductance L2 | 3 mH |
km and kn of droop control | 1 × 10−5, 4× 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Y.; Yang, Z.; Cheng, X. An Intelligent Control Strategy for a Highly Reliable Microgrid in Island Mode. Appl. Sci. 2022, 12, 801. https://doi.org/10.3390/app12020801
Wang Y, Li Y, Yang Z, Cheng X. An Intelligent Control Strategy for a Highly Reliable Microgrid in Island Mode. Applied Sciences. 2022; 12(2):801. https://doi.org/10.3390/app12020801
Chicago/Turabian StyleWang, Youyun, Yan Li, Zhuo Yang, and Xin Cheng. 2022. "An Intelligent Control Strategy for a Highly Reliable Microgrid in Island Mode" Applied Sciences 12, no. 2: 801. https://doi.org/10.3390/app12020801
APA StyleWang, Y., Li, Y., Yang, Z., & Cheng, X. (2022). An Intelligent Control Strategy for a Highly Reliable Microgrid in Island Mode. Applied Sciences, 12(2), 801. https://doi.org/10.3390/app12020801