Simulation Model of PV Module Built from Point-Focusing Fresnel Radiation Concentrators and Three-Junction High-Performance Cells
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of the C3PV Module under Test
2.2. Building the Simulation Model
3. Results
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conibeer, G.; Willoughby, A. Solar Cell Materials: Developing Technologies, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; ISBN 978-1-118-69581-4. [Google Scholar]
- Messenger, R.A.; Ventre, A. Photovoltaic Systems Engineering, 4th ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, USA, 2017; ISBN 978-1-4398-0293-9. [Google Scholar]
- Kalogirou, S. McEvoy’s Handbook of Photovoltaics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128099216. [Google Scholar]
- Sarniak, M.T. Photovoltaic Systems; Warsaw University of Technology Publishing House: Warsaw, Poland, 2021; ISBN 978-83-7814-926-2. [Google Scholar]
- Zhang, H.L.; Baeyens, J.; Degrève, J.; Cacères, G. Concentrated solar power plants: Review and design methodology. Renew. Sustain. Energy Rev. 2013, 22, 466–481. [Google Scholar] [CrossRef]
- Choubey, P.C.; Dewangan, A.; Oudhia, R. A review: Solar cell current scenario and future trends. Recent Res. Sci. Technol. 2012, 4, 99–101. [Google Scholar]
- GENI Review and Comparison of Different Solar Energy Technologies. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.1641&rep=rep1&type=pdf (accessed on 22 November 2021).
- Emery, K. Solar cell efficiency tables (version 47). Prog. Photovoltaics Res. Appl. 2015, 24, 3. [Google Scholar]
- IRENA International Renewable Energy Agency. Available online: https://www.irena.org/ (accessed on 22 November 2021).
- Fathabadi, H. Novel high efficient offline sensorless dual-axis solar tracker for using in photovoltaic systems and solar concentrators. Renew. Energy 2016, 95, 485–494. [Google Scholar] [CrossRef]
- Carpanelli, M.; Borelli, G.; Verdilio, D.; De Nardis, D.; Migali, F.; Cancro, C.; Graditi, G. Characterization of the Ecosole HCPV tracker and single module inverter. AIP Conf. Proc. 2015, 1679, 120001. [Google Scholar] [CrossRef]
- Mroziński, A. Inżynieria Instalacji Fotowoltaicznych; Grafpol: Bydgoszcz, Poland, 2016; ISBN 9788364423406. [Google Scholar]
- Renzi, M.; Egidi, L.; Comodi, G. Performance analysis of two 3.5 kWp CPV systems under real operating conditions. Appl. Energy 2015, 160, 687–696. [Google Scholar] [CrossRef]
- ENCON Solar Pvt. Ltd. Solar Technologies. Available online: http://www.enconre.com/technology.html (accessed on 17 November 2021).
- Kurtz, S.; Geisz, J. Multijunction solar cells for conversion of concentrated sunlight to electricity. Opt. Express 2010, 18, A73. [Google Scholar] [CrossRef]
- Zsiborács, H.; Baranyai, N.; Vincze, A.; Weihs, P.; Schreier, S.; Gützer, C.; Revesz, M.; Pintér, G. The Impacts of Tracking System Inaccuracy on CPV Module Power. Processes 2020, 8, 1278. [Google Scholar] [CrossRef]
- Pham, T.; Vu, N.; Shin, S. Novel Design of Primary Optical Elements Based on a Linear Fresnel Lens for Concentrator Photovoltaic Technology. Energies 2019, 12, 1209. [Google Scholar] [CrossRef] [Green Version]
- Ferrer-Rodríguez, J.; Valera, A.; Fernández, E.; Almonacid, F.; Pérez-Higueras, P. Ray Tracing Comparison between Triple-Junction and Four-Junction Solar Cells in PMMA Fresnel-Based High-CPV Units. Energies 2018, 11, 2455. [Google Scholar] [CrossRef] [Green Version]
- Ataser, T.; Ozturk, M.K.; Zeybek, O.; Ozcelik, S. An Examination of the GaInP/GaInAs/Ge Triple Junction Solar Cell with the Analytical Solar Cell Model. Acta Phys. Pol. 2019, 136, 21–25. [Google Scholar] [CrossRef]
- Fetzer, C.M.; King, R.R.; Colter, P.C.; Edmondson, K.M.; Law, D.C.; Stavrides, A.P.; Yoon, H.; Ermer, J.H.; Romero, M.J.; Karam, N.H. High-efficiency metamorphic GaInP/GaInAs/Ge solar cells grown by MOVPE. J. Cryst. Growth 2004, 261, 341–348. [Google Scholar] [CrossRef]
- Marketplace SECONDSOL. Available online: https://www.secondsol.com/en/anzeige/12163/modules/cpv/concentrix-solar/cx-75-ii (accessed on 17 November 2021).
- Mathworks Solar Cell Block. Available online: https://www.mathworks.com/help/physmod/sps/ref/solarcell.html (accessed on 30 December 2021).
- Drabczyk, K.; Panek, P. Silicon-Based Sollar Cells. Characteristics and Production Processes; Institute of Metallurgy and Materials Science of Polish Academy of Sciences: Krakow, Poland, 2012; ISBN 978-83-62098-07-1. [Google Scholar]
- Sharma, C.; Jain, A. Solar Panel Mathematical Modeling Using Simulink. J. Eng. Res. Appl. 2014, 1, 67–72. [Google Scholar]
- Sarniak, M.T. The Efficiency of Obtaining Electricity and Heat from the Photovoltaic Module under Different Irradiance Conditions. Energies 2021, 14, 8271. [Google Scholar] [CrossRef]
- HT ITALIA Specifications Meter Characteristics I-V 400. Available online: https://www.ht-instruments.com/en/products/photovoltaic-testers/i-v-curve-tracers/i-v400w/ (accessed on 30 November 2021).
- Theristis, M.; Fernández, E.; Almonacid, F.; Georghiou, G. Spectral Correction of CPV Modules Equipped with GaInP/GaInAs/Ge Solar Cells and Fresnel Lenses. Appl. Sci. 2017, 7, 842. [Google Scholar] [CrossRef] [Green Version]
- Fernández, E.F.; Soria-Moya, A.; Almonacid, F.; Aguilera, J. Comparative assessment of the spectral impact on the energy yield of high concentrator and conventional photovoltaic technology. Sol. Energy Mater. Sol. Cells 2016, 147, 185–197. [Google Scholar] [CrossRef]
- Duda, J.; Kusa, R.; Pietruszko, S.; Smol, M.; Suder, M.; Teneta, J.; Wójtowicz, T.; Żdanowicz, T. Development of Roadmap for Photovoltaic Solar Technologies and Market in Poland. Energies 2021, 15, 174. [Google Scholar] [CrossRef]
- Żdanowicz, T. Photovoltaic system (PV) reception-procedures and documentation-part 2 (in Polish). Magazynfotowoltaika 2018, 1, 16–20. [Google Scholar]
- Sarniak, M.T.; Wernik, J.; Wołosz, K.J. Application of the Double Diode Model of Photovoltaic Cells for Simulation Studies on the Impact of Partial Shading of Silicon Photovoltaic Modules on the Waveforms of Their Current–Voltage Characteristic. Energies 2019, 12, 2421. [Google Scholar] [CrossRef] [Green Version]
- Sarniak, M.T. Modeling the Functioning of the Half-Cells Photovoltaic Module under Partial Shading in the Matlab Package. Appl. Sci. 2020, 10, 2575. [Google Scholar] [CrossRef] [Green Version]
- Sarniak, M. Modeling of photovoltaic modules in Simulink and Simscape packages of Matlab software. Econtechmod. Int. Q. J. 2017, 6, 133–138. [Google Scholar]
Name | Focusing Degree, [Suns] | Type of Converter | Type of Recommended Tracking System |
---|---|---|---|
Low Concentrator Photovoltaic (LCPV) | 1.5–10 | modified crystalline cells | none or single-axis |
Medium Concentrator Photovoltaic (MCPV) | 10–300 | crystalline or thin-film cells | single-axis or dual-axis |
High Concentrator Photovoltaic (HCPV) | 300–2000 | multijunction cells | dual-axis |
Parameter Name | Module C3PV: CX-75/200 |
---|---|
Cell type | three-junction |
Number of cells, pcs. | 200 |
Cell size d, mm | 3 |
Concentrator type | Fresnel spot-focusing |
Maximum power PMPP, W | 75 ± 10% |
Open-circuit voltage UOC, V | 152 |
Voltage to MPP UMPP, V | 138 |
Short-circuit current ISC, A | 0.58 |
Current for MPP IMPP, A | 0.54 |
Temperature coefficient, %/°C | −0.15 |
Maximum operating temperature above ambient temperature, °C | 55 |
Maximum system operating voltage UMAX, V | 1000 |
Dimensions, mm | 828 × 428 × 82 |
Mass, kg | 9.4 |
Deviation of the Radiation Angle Δθ, (deg) | Short-Circuit Current ISC, (A) | Open-Circuit Voltage UOC, (V) | Maximum Power Point PMPP, (W) |
---|---|---|---|
0 | 0.2047 | 129.424 | 26.4931 |
2 | 0.2046 | 129.76 | 26.5489 |
4 | 0.2042 | 129.5803 | 26.4603 |
5 | 0.052 | 117.2519 | 6.0971 |
10 | 0.051 | 120.3843 | 6.1396 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarniak, M.T. Simulation Model of PV Module Built from Point-Focusing Fresnel Radiation Concentrators and Three-Junction High-Performance Cells. Appl. Sci. 2022, 12, 806. https://doi.org/10.3390/app12020806
Sarniak MT. Simulation Model of PV Module Built from Point-Focusing Fresnel Radiation Concentrators and Three-Junction High-Performance Cells. Applied Sciences. 2022; 12(2):806. https://doi.org/10.3390/app12020806
Chicago/Turabian StyleSarniak, Mariusz T. 2022. "Simulation Model of PV Module Built from Point-Focusing Fresnel Radiation Concentrators and Three-Junction High-Performance Cells" Applied Sciences 12, no. 2: 806. https://doi.org/10.3390/app12020806
APA StyleSarniak, M. T. (2022). Simulation Model of PV Module Built from Point-Focusing Fresnel Radiation Concentrators and Three-Junction High-Performance Cells. Applied Sciences, 12(2), 806. https://doi.org/10.3390/app12020806