Lignocellulosic Materials Used as Biosorbents for the Capture of Nickel (II) in Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. pH Optimization
2.4. Adsorption Isotherms
2.5. Adsorption Kinetics
3. Results
3.1. Materials Characterization
3.2. pH Optimization
3.3. Adsorption Isotherm
3.4. Kinetics Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furlan, F.L.; Consolin, N.; Consolin, M.F.B.; Gonçalves, M.S.; Valderrama, P.; Genena, A.K. Use of agricultural and agroindustrial residues as alternative adsorbents of manganese and iron in aqueous solution. Rev. Ambiente Água 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Gürel, L. Applications of the Biosorption Process for Nickel Removal from Aqueous Solutions—A Review. Chem. Eng. Commun. 2017, 204, 711–722. [Google Scholar] [CrossRef]
- Malamis, S.; Katsou, E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 2013, 252–253, 428–461. [Google Scholar] [CrossRef] [PubMed]
- Decreto-Lei n.o 236/98. de 1 de Agosto. Série I-A de 1998-08-01. 1 August 1998, pp. 3676–3722. Available online: https://dre.pt/dre/detalhe/decreto-lei/236-1998-430457 (accessed on 10 December 2021).
- Zafar, M.N.; Nadeem, R.; Hanif, M.A. Biosorption of nickel from protonated rice bran. J. Hazard. Mater. 2007, 143, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Carrapatoso, I.; Loureiro, G.; Loureiro, C.; Faria, E.; Todo-Bom, A.; Chieira, C. Dermatite endógena induzida pela ingestão de níquel: A propósito de dois casos clínicos. Nickel Induc. Endog. Dermat. Two Cases Report. Revist. Portuguesa de Imunoalergologia. 2004, XII, 261–270. [Google Scholar]
- Duarte, R.P.S.; Pasqual, A. Avaliação do cádmio (Cd), chumbo (Pb), níquel (Ni) e zinco (Zn) em solos, plantas e cabelos humanos. Energ. na Agric. 2000, 15, 46–58. [Google Scholar]
- Raval, N.P.; Shah, P.U.; Shah, N.K. Adsorptive removal of nickel(II) ions from aqueous environment: A review. J. Environ. Manag. 2016, 179, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.C.; Mall, I.D.; Mishra, I.M. Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. J. Hazard. Mater. 2006, 134, 257–267. [Google Scholar] [CrossRef]
- Krishna, V.D.; Wu, K.; Su, D.; Cheeran, M.C.J.; Wang, J.-P.; Perez, A. Nanotechnology: Review of concepts and potential application of sensing platforms in food safety. Food Microbiol. 2018, 75, 47–54. [Google Scholar] [CrossRef]
- Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 2016, 91, 317–332. [Google Scholar] [CrossRef]
- Chen, D.; Wang, L.; Ma, Y.; Yang, W. Super-adsorbent material based on functional polymer particles with a multilevel porous structure. NPG Asia Mater. 2016, 8, e301. [Google Scholar] [CrossRef]
- Naseer, A.; Jamshaid, A.; Hamid, A.; Muhammad, N.; Ghauri, M.; Iqbal, J.; Rafiq, S.; Khuram, S.; Shah, N.S. Lignin and Lignin Based Materials for the Removal of Heavy Metals from Waste Water-An Overview. Z. Für Phys. Chem. 2019, 233, 315–345. [Google Scholar] [CrossRef]
- Rajeshwarisivaraj; Sivakumar, S.; Senthilkumar, P.; Subburam, V. Carbon from Cassava peel, an agricultural waste, as an adsorbent in the removal of dyes and metal ions from aqueous solution. Bioresour. Technol. 2001, 80, 233–235. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Arulkumar, M.; Palvannan, T. Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR). J. Clean. Prod. 2012, 22, 67–75. [Google Scholar] [CrossRef]
- Junior, A.C.G.; Strey, L.; Lindino, C.A.; Nacke, H.; Schwantes, D.; Seidel, E.P. Applicability of the Pinus bark (Pinus elliottii) for the adsorption of toxic heavy metals from aqueous solutions. Acta Sci. Technol. 2012, 34, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Esteves, B.; Cruz-Lopes, L.; Figueirinha, A.; de Lemos, L.T.; Ferreira, J.; Pereira, H.; Domingos, I. Heat-treated wood as chromium adsorption material. Eur. J. Wood Wood Prod. 2017, 75, 903–909. [Google Scholar] [CrossRef]
- Doke, K.M.; Khan, E.M. Equilibrium, kinetic and diffusion mechanism of Cr (VI) adsorption onto activated carbon derived from wood apple shell. Arab. J. Chem. 2017, 10, S252–S260. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, A.; Sillanpää, M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem. Eng. J. 2010, 157, 277–296. [Google Scholar] [CrossRef]
- Kamari, A.; Yusoff, S.N.M.; Abdullah, F.; Putra, W.P. Biosorptive removal of Cu (II), Ni (II) and Pb (II) ions from aqueous solutions using coconut dregs residue: Adsorption and characterisation studies. J. Environ. Chem. Eng. 2014, 2, 1912–1919. [Google Scholar] [CrossRef]
- Asberry, H.B.; Kuo, C.-Y.; Gung, C.-H.; Conte, E.D.; Suen, S.-Y. Characterization of water bamboo husk biosorbents and their application in heavy metal ion trapping. Microchem. J. 2014, 113, 59–63. [Google Scholar] [CrossRef]
- Özçimen, D.; Ersoy-Meriçboyu, A. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons. J. Hazard. Mater. 2009, 168, 1118–1125. [Google Scholar] [CrossRef]
- Yang, J.-K.; Kim, H.-J.; Lee, W.-H. Changes of specific surface area of the steam exploded wood. J. Korean Wood Sci. Technol. 1995, 23, 54–60. [Google Scholar]
- Aygün, A.; Yenisoy-Karakaş, S.; Duman, I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater. 2003, 66, 189–195. [Google Scholar] [CrossRef]
- Velić, N.; Stjepanović, M.; Begović, L.; Habuda-Stanić, M.; Velić, D.; Jakovljević, T. Valorisation of waste wood biomass as biosorbent for the removal of synthetic dye methylene blue from aqueous solutions. South-East Eur. For. 2018, 9, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Lagergren, S.K. About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, U.P.; Ralph, S.A.; Baez, C.; Reiner, R.S.; Verrill, S.P. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 2017, 24, 1971–1984. [Google Scholar] [CrossRef]
- Esteves, B.; Velez Marques, A.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas Cienc. Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.; Faix, O.; Pereira, H. Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung 1998, 52, 46–50. [Google Scholar] [CrossRef]
- Kumar, K.V.; Sivanesan, S. Prediction of optimum sorption isotherm: Comparison of linear and non-linear method. J. Hazard. Mater. 2005, 126, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.V.; Porkodi, K.; Rocha, F. Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon. J. Hazard. Mater. 2008, 150, 158–165. [Google Scholar] [CrossRef]
- Subramanyam, B.; Das, A. Linearized and non-linearized isotherm models comparative study on adsorption of aqueous phenol solution in soil. Int. J. Environ. Sci. Technol. 2009, 6, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.L.; Hameed, B.H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Badawi, M.A.; Negm, N.A.; Abou Kana, M.T.H.; Hefni, H.H.; Abdel Moneem, M.M. Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism. Int. J. Biol. Macromol. 2017, 99, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Huang, S.; Dong, C.; Meng, Z.; Wang, X. Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars. Bioresour. Technol. 2020, 303, 122853. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, S.; Önal, Y.; Akmil-Başar, C.; Bilmez-Erdemoğlu, S.; Sarıcı-Özdemir, Ç.; Köseoğlu, E.; Icduygu, G. Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation. Appl. Surf. Sci. 2005, 252, 1324–1331. [Google Scholar] [CrossRef]
- Pelekani, C.; Snoeyink, V.L. Competitive adsorption between atrazine and methylene blue on activated carbon: The importance of pore size distribution. Carbon 2000, 38, 1423–1436. [Google Scholar] [CrossRef]
- Mamchenko, A.V.; Yakimova, T.I.; Koganovskii, A.M. The mechanism of the filling of the micropores in activated charcoals during the adsorption of organic substances dissolved in water. Russ. J. Phys. Chem. 1982, 56, 741. [Google Scholar]
- Kulkarni, R.M.; Shetty, K.V.; Srinikethan, G. Cadmium (II) and nickel (II) biosorption by Bacillus laterosporus (MTCC 1628). J. Taiwan Inst. Chem. Eng. 2014, 45, 1628–1635. [Google Scholar] [CrossRef]
- Hasar, H. Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 2003, 97, 49–57. [Google Scholar] [CrossRef]
- Çelekli, A.; Bozkurt, H. Bio-sorption of cadmium and nickel ions using Spirulina platensis: Kinetic and equilibrium studies. Desalination 2011, 275, 141–147. [Google Scholar] [CrossRef]
- Moreira, D.A.; de Souza, J.A.R.; Silva, É.L.; Gonçalves, J.M.; Rezende, D.C.V.; Oliveira, W.M.; Ribeiro, W.A.S.; Rezende, J.G.F. Biossorção de metais pesados pela casca de ovo de galinhas poedeiras. Rev. Ibero-Am. Ciênc. Ambient. 2018, 9, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jiang, C.; Hou, B.; Wang, Y.; Hao, C.; Wu, J. Carbon composite lignin-based adsorbents for the adsorption of dyes. Chemosphere 2018, 206, 587–596. [Google Scholar] [CrossRef]
- Delle Site, A. Factors Affecting Sorption of Organic Compounds in Natural Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A Review. J. Phys. Chem. Ref. Data 2001, 30, 187–439. [Google Scholar] [CrossRef] [Green Version]
- Febrianto, J.; Kosasih, A.N.; Sunarso, J.; Ju, Y.-H.; Indraswati, N.; Ismadji, S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard. Mater. 2009, 162, 616–645. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Ramalingam, S.; Kirupha, S.D.; Murugesan, A.; Vidhyadevi, T.; Sivanesan, S. Adsorption behavior of nickel(II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism and process design. Chem. Eng. J. 2011, 167, 122–131. [Google Scholar] [CrossRef]
- Usman, M.; Zarebanadkouki, M.; Waseem, M.; Katsoyiannis, I.A.; Ernst, M. Mathematical modeling of arsenic (V) adsorption onto iron oxyhydroxides in an adsorption-submerged membrane hybrid system. J. Hazard. Mater. 2020, 400, 123221. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cabanas, M.; López-García, M.; Barriada, J.L.; Herrero, R.; de Vicente, M.E.S. Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As (V) removal. Chem. Eng. J. 2016, 301, 83–91. [Google Scholar] [CrossRef]
- Abdolali, A.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Du, B.; Wei, Q.; Wang, X.C.; Nguyen, P.D. Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies. Bioresour. Technol. 2015, 193, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.; Lee, X.J.; Chia, P.C.; Tan, K.W.; Gan, S. Utilisation of Cymbopogon citratus (lemon grass) as biosorbent for the sequestration of nickel ions from aqueous solution: Equilibrium, kinetic, thermodynamics and mechanism studies. J. Taiwan Inst. Chem. Eng. 2014, 45, 1764–1772. [Google Scholar] [CrossRef]
Materials | BET Surface Area (m2g−1) | Pore Volume (cm3 g−1) | Pore Size (nm) |
---|---|---|---|
Walnut shell | 4.855 | 1.195 × 10−3 | 5.41 |
Chestnut shell | 4.210 | 4.202 × 10−3 | 7.33 |
Pine wood | 1.738 | 4.920 × 10−4 | 26.54 |
Burnt pine wood | 3.968 | 3.388 × 10−3 | 5.40 |
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
R2 | qmax (mg g−1) | KL (L mg−1) | R2 | N | KF (mg/g)/(mg/L)n | |
Walnut shell | 0.996 | 4.82 | 0.121 | 0.942 | 2.11 | 0.781 |
Chestnut shell | 0.998 | 2.50 | 0.278 | 0.859 | 4.72 | 0.946 |
Pine wood | 0.994 | 3.45 | 0.063 | 0.936 | 2.41 | 0.449 |
Burnt pine wood | 0.996 | 2.97 | 0.061 | 0.911 | 2.41 | 0.386 |
Biosorbent | Pseudo-First Order Model | Pseudo-Second Order Model | |||||||
---|---|---|---|---|---|---|---|---|---|
k1 (min−1) | qe Calc (mg·g−1) | qe Exp (mg·g−1) | R2 | k2 (g·mg·min−1) | h (mg·g·min−1) | qe Calc (mg·g−1) | qe Exp (mg·g−1) | R2 | |
Walnut shell | 2.50 × 10−3 | 0.546 | 4.84 | 0.956 | 2.46 × 10−2 | 0.575 | 4.84 | 4.84 | 1.000 |
Chestnut shell | 2.20 × 10−3 | 0.675 | 5.12 | 0.966 | 2.13 × 10−2 | 0.527 | 4.98 | 5.12 | 1.000 |
Pine wood | 1.90 × 10−3 | 1.156 | 4.25 | 0.977 | 1.07 × 10−2 | 0.169 | 3.98 | 4.25 | 0.998 |
Burnt pine wood | 1.80 × 10−3 | 0.907 | 3.85 | 0.971 | 1.47 × 10−2 | 0.191 | 3.61 | 3.85 | 0.999 |
Biosorbent | Elovich Model | Intraparticle Diffusion Model | ||||
---|---|---|---|---|---|---|
A (mg·g−1·min−1) | B (g·mg−1) | R2 | C | Kdif (mg/g·min1/2) | R2 | |
Walnut shell | 9.94 × 1010 | 6.84 | 0.956 | 4.23 | 0.019 | 0.924 |
Chestnut shell | 1.05× 1012 | 7.67 | 0.990 | 4.37 | 0.021 | 0.942 |
Pine wood | 1.00× 104 | 4.44 | 0.905 | 2.99 | 0.035 | 0.978 |
Burnt pine wood | 1.09× 105 | 5.59 | 0.908 | 2.84 | 0.027 | 0.970 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Lopes, L.; Macena, M.; Esteves, B.; Santos-Vieira, I. Lignocellulosic Materials Used as Biosorbents for the Capture of Nickel (II) in Aqueous Solution. Appl. Sci. 2022, 12, 933. https://doi.org/10.3390/app12020933
Cruz-Lopes L, Macena M, Esteves B, Santos-Vieira I. Lignocellulosic Materials Used as Biosorbents for the Capture of Nickel (II) in Aqueous Solution. Applied Sciences. 2022; 12(2):933. https://doi.org/10.3390/app12020933
Chicago/Turabian StyleCruz-Lopes, Luísa, Morgana Macena, Bruno Esteves, and Isabel Santos-Vieira. 2022. "Lignocellulosic Materials Used as Biosorbents for the Capture of Nickel (II) in Aqueous Solution" Applied Sciences 12, no. 2: 933. https://doi.org/10.3390/app12020933
APA StyleCruz-Lopes, L., Macena, M., Esteves, B., & Santos-Vieira, I. (2022). Lignocellulosic Materials Used as Biosorbents for the Capture of Nickel (II) in Aqueous Solution. Applied Sciences, 12(2), 933. https://doi.org/10.3390/app12020933